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Main algorithm

Theorem (Dembélé, Dembélé-Donnelly, Greenberg-V, V)
There exists an algorithm which, given a

totally real field F,
a weight k € (Z>2)IF'Y, and
a nonzero ideal N C Zr,

computes the space Si(M) of Hilbert cusp forms of weight k and
level 0 over F as a Hecke module.

In other words, there exists an explicit finite procedure which takes
as input the field F, the weight k, and the ideal 91 encoded in bits
(in the usual way), and outputs: a finite set of sequences (ap(f))y

encoding the Hecke eigenvalues for each cusp form constituent f in
Sk(‘ﬁ), where ap(f) € Ef C @



Let F = Q(V/5), with w = (1L +/5)/2. Let k = (2,2) and write
simply 52(0) = S2.2(N).

For ideals Mt C Zr = Z & Zw with N(91) < 30 we have
dim $;(91) = 0.

Let 91 = (2w — 7) with N(91) = 31. Then dim S;(N) = 1.

|2 w+23w+3w—-4 ... 2w+5 2w—-7

Np| 4 5 9 11 11 ... 31 31

a|-3 —2 2 4 —4 .. 8 1
Here, p = (7).

The numbers a, satisfy a, = Np + 1 — #A(F,) where
A y? £ xy+wy = X3+ (w+ 1)x% 4+ wx

and [F, denotes the residue class field of p.



In these lectures, for simplicity we restrict to forms of parallel
weight k = (2,...,2).

To compute with the space S»(N) of classical (elliptic) cusp forms
of level N, one approach is to use the geometry of the modular
curve Xo(N) = Fo(N)\H*, where H* = H UP(Q) denotes the
completed upper half-plane.

A cusp form f € Sy(N) corresponds to a holomorphic differential
form f(z) dz on Xp(N) and so by the theorem of Eichler-Shimura
arises naturally in the space H*(Xo(N), C).

In a similar way, a Hilbert cusp form f € S>(0) gives rise to a
holomorphic differential n-form f(zi,...,2,) dz; ...dz, on the
Hilbert modular variety Xo(91). But now Xo(91) has dimension n
and f arises in H"(Xo(MN), C). Yikes!

Computing with higher dimensional varieties (and higher degree
cohomology groups) is not an easy task.



General strategy

Langlands functoriality predicts that S;(9t) as a Hecke module
occurs in the cohomology of other “modular” varieties. We use a
principle called the Jacquet-Langlands correspondence, which
allows us to work with varieties of complex dimension 0 or 1 by
considering twisted forms of GL; over F.

Let B be a quaternion algebra over F with discriminant © and let
N C ZF be coprime to .

The Jacquet-Langlands correspondence implies the isomorphism of

Hecke modules
SE(MN) — S, (DN)

where 525(‘)”() denotes the space of quaternionic cusp forms for B
(of weight 2) and level 91. The image consists exactly of those
forms which are new at all primes p | ©.



Quaternionic modular forms: Notation

Quaternionic modular forms are, roughly speaking, analytic
functions on the ideles of B with a certain left- and
right-invariance.

Let vi,..., v, be the real places of F, and suppose that B is split
at vi,...,v, and ramified at v,41,..., vy, i.e.

0 B By =B®gR = Ma(R) x H™"
where H denotes the division ring of real Hamiltonians. Let
Keo = (R* SO3(R))" x (H*)"" C B

be the stabilizer of (v/—1,...,v/—1) € H".

Let Og(1) C B be a maximal order and let O = Op(D) C Op(1)
be an Eichler order of level 1.

Let Z = (Ln Z/nZ = H Zp and let ~ denote tensor with Z.



Quaternionic modular forms: Definition

Modular forms on B are analytic functions on B x B* which are
invariant on the left by B> and transform on the right by
K X O* on the right in a specified way.

A (quaternionic) modular form of parallel weight 2 and level D for
B is an analytic function

¢:BXxB* = C
such that for all (g, @) € BX x B*, we have:
(i) ¢(g,an) = ¢(g,a) for all T € O,
(i) o(gk, Q) (HJ(Kd ) o(g,a) for all Kk € Ky; and
etk

(i) o(~vg,va) = ¢(g, @) for all v € B*.

Let ME(91) denote the space of such forms.



Quaternionic modular forms: Upper and lower half-planes

Modular forms on B are analytic functions on B x BX which are
invariant on the left by B* and transform by K., X O% ina
specified way. Such a function uniquely defines a function on the
quotient

BX /K x B /O*.
We identify BX /Ky — (HE)" = (C\R)" b
g—~z=g(V-1...,v/-1)
Thus, a modular form is equivalently a function
f:(HY) x BX/O* = C

which is holomorphic in the first variable and locally constant in
the second one and such that

~ >< o ./'YHZI ~AX
f(’yz,’ya(’) ( detr, )f(z,a(’) )

for all v € BX and (z,a0%) € (H*)" x BX/O*.



Quaternionic Shimura variety: Upper half-plane

Now we include the invariance on the right. Let
X$(M)(C) = B*\(BL /Koo x B /O%) = BX\((HE)" x B*/0¥).
By Eichler's theorem of norms, we have
nrd(B*) = F(i) ={aeF*:vi(a)>0fori=r+1,...,n}.

In particular, B* /B = (Z/2Z)", where

B ={y e B:nrd(y) € F{}.
The group B acts on 1", therefore we may identify

X$(M)(C) = BY\(H" x B*/0O)

and a modular form on (H*)" x BX/O* can be uniquely
recovered from its restriction to H" x B*/O*.



Quaternionic Shimura variety: Components

Now we have a natural (continuous) projection map
XE(M)(C) = BX\(H" x B*/O*) — B}\B*/O*.
The reduced norm gives a surjective map
nrd : B\B*/O* — FX\F* /L = CI* Zg

where CI" ZF denotes the strict class group of Zg, i.e. the ray
class group of Zg with modulus equal to the product of all real
(infinite) places of F. Strong approximation implies that this map
is a bijection if B is indefinite (but in general it is not if B is
indefinite). Accordingly, our description will depend on if B is
definite or indefinite.



Quaternionic Shimura variety: Indefinite case

First, suppose that B is indefinite. Then the space XZ(9)(C) is
the disjoint union of connected Riemannian manifolds of dimension
r indexed by CIT Zr.

Let the ideals a C Zg form a set of representatives for CI™ Zg, and
let 3 € ZF be such that aZF NZr = a. (For the trivial class

a = ZF, we choose a = 1) There exists & € B such that

nrd(@) = 3. We let O, = a0a~1 N B so that Oy =0, and we

put o =0Op , = Ox N B. Then we have
xFne)= || B xa0d )= || TJ\H,
[a]€CI*(ZF) [a]€CI*(ZF)
where the last identification is obtained via the bijection
BX\ (H" x a0™) =5 T\ H'
BX(2,80%) v z



Shimura curves

Then the space X(C) = XB(M)(C) is the disjoint union of
Riemannian manifolds of dimension r indexed by CI* ZF.

Let r = 1. Then the space
X(C) = |_| Fa\H = |_| Xa(C)

[a]€C|+(ZF) [a]ECﬁ(ZF)

is the di§ioint union of Riemann surfaces indexed by CIt Zg, where
O,=a0a'nNnBand I, = O;Jr.

Therefore, a modular form of parallel weight 2 and level 91 is a
tuple (f,) of functions f; : # — C, indexed by [a] € CIT Zg, such
that for all a, we have

fu(vz) = (cz + d)*fo(2)

for all v = <j Z) €T, andall z € H.



Shimura curves: Example

Let F = Q(w) be the (totally real) cubic field of prime
discriminant 257, with w® — w? — 4w + 3 = 0. Then F has Galois
group S3 and Zg = Z[w]. The field F has class number 1 but
strict class number 2: the unit (w — 1)(w — 2) generates the group
Z,§7+/Z,§2 of totally positive units modulo squares.

—1,w-1
Let B = (";__V> be the quaternion algebra with 2 = —1,

j>=w—1, and ji = —ij. Then B has discriminant ® = (1) and is
ramified at two of the three real places and unramified at the place
with w +— 2.19869 . . ., corresponding to too : B < M3(R). The
order O with Zg-basis

W2 +w)—8i+j (W2+w—2)i+i
2 ’ 2

1, (w? 4w —3)i,

is an Eichler order of level 91 = (w)? where N(w) = 3.



Shimura curves: Example

A fundamental domain for the action of I on H is as follows.




Shimura curves: Example

The ideals (1) and a = (w + 1)Zf represent the classes in the
strict class group CIT Zf.

The ideal Jy = 20 + (W + w +2)/2 — 4i + (1/2)}) O has
nrd(J;) = a.

The left order of Jy is O (Jy) = O with basis
(W? +w) —8i+j
2 )
(174w? — 343w — 348)i + (w? — 2w — 2)j + (—w? + 2w + 2)ijj
10 '

1, (w? — 2w — 3)i,




Shimura curves: Example

A fundamental domain for the action of ', on H is as follows.




Shimura curves: Example

The orders O and O, are not isomorphic. So the groups I and ',
are not conjugate as subgroups of PSLy(R) but nevertheless are
isomorphic as abstract groups: they both have signature
(1;2,2,2,2), so that

M= ru = <777/7517"-7(54 : 6% = :62 = [7)7/]51"'54 = 1>
In particular, both X(1)(C) and X,(C) have genus 1, so
dim H*(X(C),C) = dim H'(X(1)(C), C) + dim H'(X4(C), C) = 4.

We choose a basis of characteristic functions on ~,v’ as a basis for
Hl(X(l)((C),(C) and similarly for H*(X,(C), C).

The theorem of Eichler-Shimura applied to each component yields
an isomorphism

S (M) @ S(N) = HYX(C),C)
so dim S;(91) = 2.



Shimura curves: Example

We now compute Hecke operators (a black box). Let
H = HY(X(C),C). Complex conjugation acts on H by

-1 -1 00

0 1 00
H Woo = 0 0 -1

0 0 11

Now consider the Hecke operator T, where p = (2w — 1) and
N(p) = 7. Then p represents the nontrivial class in CI™ Zf, and

0 0 -3 2
0 0 -2 —4 0 -2
2 =3 0 O

Therefore there are two eigenspaces for T, with eigenvalues 4, —4.
By contrast, the Hecke operator T, acts as the scalar 3 on H.



Shimura curves: Example

Continuing in this way, we find the following table of eigenvalues:

Np |3 7 8 9 19 25 37 41 43 47 49 53 61 61 61
—43—4—4—84—6—80412—824
~43 4 48 —4-68 0 —4-128 2 —4

ap(g) | —

The form g is the quadratic twist of the form f by the nontrivial
character of the strict class group Gal(F™/F), where FT is the
strict class field of F. Note also that these forms do not arise from
base change from Q, since a, has three different values for the
primes p of norm 61.



Shimura curves: Example

We are then led to search for elliptic curves of conductor
M = (w)?, and we find two:

Er:y? 4+ (w4 )xy = x° — x?
+ (—36w? + 51w — 18)x + (—158w? + 557w — 317)
Eg i+ (W +w+xy+y=x>+w?—w-1)x°
+ (4w? + 11w — 11)x + (4w? + w — 3)
Each of these curves have nontrivial Z/2Z-torsion over F, and so

can be proven to be modular. We match Hecke eigenvalues to find
that Ef corresponds to f and Eg corresponds to g.

By Deligne’s theory of canonical models, we know that

X(C) = X(1)(C) U X5(C) has a model X¢ over F, but the curves
themselves are not defined over F: they are interchanged by the
action of Gal(F*/F). Nevertheless, the Jacobian of Xg is an
abelian variety of dimension 2 defined over F which is isogenous to
Ef‘ X Eg.



Definite quaternionic Shimura varieties

Now suppose that B is definite. Then the Shimura variety is simply
XE(M)(C) = BX\B*/O* =ClO

and so is canonically identified with the set of right ideal classes of
O. The reduced norm map here is the map nrd : ClO — CIT Zg
which is surjective but not a bijection, in general.

A modular form f on B of parallel weight 2 is thus completely
determined by its values on a set of representatives of ClO.
Therefore, there is an isomorphism of complex vector spaces given
by
MZO) —» P C
[I]ECI 0)
I=abnB
f— (f(@)).



Definite quaternionic Shimura varieties: Example

Consider the totally real quartic field F = Q(w) where
w* —5w? — 2w + 1 =0. Then F has discriminant 5744 = 2*359
and Galois group S;. We have CIT Zg = 2 (but CIZf = 1).

~1,-1

The quaternion algebra B = is unramified at all finite

places (and ramified at all real places). We compute a maximal
order O and find that # ClI O = 4.

We now compute the action of the Hecke operators: we identify
the isomorphism classes of the Np + 1 right ideals of norm p inside
each right ideal / in a set of representatives for CIO. We compute

0011 6200
0044 8120 0
Twiaw-= 220 0| M Tw-w-4=g ¢ 54
3300 00 610

representing the nontrivial and trivial classes, respectively.



Definite quaternionic Shimura varieties: Example

In this case, the space E;(1) of functions that factor through the
reduced norm has dimension dim E>(1) = 2, so dim S»(1) =2, and
we find that this space is irreducible as a Hecke module and so has
a unique constituent f.

We obtain the following table of Hecke eigenvalues:

w3 —4w—-1w—-1w?2—w-2 w?2-3

™
Np 4 5 7 13
ap(f)\ 0 t —2t —t

Here t satisfies the polynomial t> — 6 = 0. We therefore predict
the existence of an abelian variety over F with real multiplication
by Q(v/6) and everywhere good reduction.



