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History of Jacobi Forms

Notation

Let e(x) denote e2πix for x ∈ C. Let q = e(τ) and ζ = e(z) where
τ ∈ H and z ∈ C.

Jacobi forms are meant to be a natural generalization of Jacobi
theta series.

Definition

Let L be a lattice of rank 2k with a positive-definite quadratic form
Q(x) and bilinear form B(x , y) = Q(x + y)− Q(x)− Q(y). Given
a vector y ∈ L we define the Jacobi theta series Θy (τ, z) by

Θy (τ, z) =
∑
x∈L

e((Q(x)τ + B(x , y)z)).
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Motivation
The main reference for this topic is The Theory of Jacobi Forms by
Eichler and Zagier (1985). Their main interest in Jacobi forms was
their relation to the Saito-Kurokawa lift.

Siegel Modular
Forms of

Degree TwoOO
Maass Lift

??

Special Theta Lift

��
��

��
��

��
��

��
��

��
��

� ]]

Saito-Kurokawa Lift

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

Jacobi Forms
of Index 1

wwooooooooooo

&&MMMMMMMMMM

Elliptic Modular
Forms of

Half-Integral Weight

Shimura Lift //
Elliptic Modular

Forms of
Integral Weight

Our interest in Jacobi forms will be in their connection with the
Borcherds lift.
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The Transformation Law
Jacobi forms are complex functions on H× C which are invariant
under an action of the Jacobi group.

Definition

The Jacobi group is SL2(Z)J = SL2(Z) n Z2 where

[M,X ][M ′,X ′] = [MM ′,XM ′ + X ′].

For a congruence subgroup Γ let ΓJ = Γ n Z2.

Notation

Given integers k and m, the slash operator is

(φ|k,mγ) (τ, z) = (cτ + d)−ke

„
m

„
−c(z + λτ + µ)2

cτ + d
+ λ2τ + 2λz + λµ

««
· φ

„
aτ + b

cτ + d
,
z + λτ + µ

cτ + d

«
for γ = [

(
a b
c d

)
, (λ, µ)] ∈ SL2(Z)J This defines an action of the

Jacobi group on complex function of H× C.
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Relationship to Modular Forms

Lemma

In the case γ =
[(

a b
c d

)
, (0, 0)

]
we have

(φ|k,mγ) (τ, z) = (cτ + d)−ke

(
−cmz2

cτ + d

)
φ

(
aτ + b

cτ + d
,

z

cτ + d

)
and in the case γ = [( 0 0

0 0 ) , (λ, µ)] we find

(φ|k,mγ) (τ, z) = e(λ2mτ + 2λmz) φ(τ, z + λτ + µ).

Remark

In the case of m = 0 the previous slash operators reduce to the
slash operator for elliptic modular forms.

A holomorphic function on H× C which is invariant under the
action given above has a Fourier expansion.
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Definition of Jacobi Forms

Definition

A Jacobi form of weight k and index m for a congruence subgroup
Γ is a function φ : H× C → C which

1 is holomorphic on H× C,

2 satisfies φ|k,mγ = φ for all γ ∈ ΓJ and

3 is holomorphic at each cusp Mi∞ where M ∈ SL2(Z)J , that
is,

φ|k,mM =
X
n,r∈Z

4mn≥r2h

cM

`
n
h
, r

´
qn/hζr

where h is the width of the cusp Mi∞ of Γ.

Furthermore we say φ is a Jacobi cusp form if in addition to the
conditions above φ vanishes at each cusp Mi∞ for M ∈ SL2(Z)J ,
that is, if

φ|k,mM =
X
n,r∈Z

4mn>r2h

cM

`
n
h
, r

´
qn/hζr .
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Structural Theorem

Notation

Let Jk,m(Γ) denote the vector space of all Jacobi forms with
weight k and index m on a congruence subgroup Γ. Let the
subspace of cusp forms be denoted by Jcusp

k,m (Γ). Furthermore let
Mk(Γ) denote the space of elliptic modular forms of weight k on
the congruence subgroup Γ.

Theorem

Given a congruence subgroup Γ structurally
⊕
k,m

Jk,m(Γ) forms a

bigraded ring with each Jk,m(Γ) finite dimensional. Moreover
J∗,∗(Γ) is a module over M∗(Γ).
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Jacobi-Eisenstein Series for SL2(Z)

Notation

Let SL2(Z)J∞ be the set elements γ ∈ SL2(Z)J which satisfy
1|k,mγ = 1; that is, let

SL2(Z)J∞ = {[± ( 1 n
0 1 ) , (0, µ)] |µ, n ∈ Z} .

Definition

Given integers m ≥ 0 and k ≥ 4 we define the Jacobi-Eisenstein
series Ek,m by

Ek,m(τ, z) =
∑

γ∈SL2(Z)J∞\ SL2(Z)J

1|k,mγ.

Theorem

The Jacobi-Eisenstein series Ek,m is a Jacobi form on SL2(Z).
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Jacobi-Eisenstein Series for Γ(N)

Notation

Fix an integer N > 0 and v̄ ∈ (Z/NZ)2 where v̄ has order N. Let
δ =

[(
a b
cv dv

)
, (λ, µ)

]
∈ SL2(Z)J where (cv , dv ) = v̄ .

Definition

Given integers m ≥ 0 and k ≥ 4 we define the Jacobi Eisenstein
series E v̄

k,m by

E v̄
k,m(τ, z) = εN

∑
γ∈(SL2(Z)J∞∩Γ(N)J)\Γ(N)Jδ

1|k,mγ,

where εN = 1 if N > 2 and εN = 1/2 otherwise.

Theorem

The Jacobi-Eisenstein series E v̄
k,m is a Jacobi form on Γ(N).
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Fourier Expansion of the Jacobi-Eisenstein Series
For n′ ∈ Z/NZ define

Ln′
D (s) =

∞X
n=1

n≡n′(mod N)

„
D

n

«
n−s

ζn′
+ (k, µ) =

∞X
l=1

l≡n′(mod N)

µ(l)l−s .

Theorem

The Fourier expansion is of the form E v̄
k,m = C +

P
q,r∈Z

4nm>r2N

c
`

n
N

, r
´
qn/Nζr

where

C =

(P
λ∈Z qλ2mζ2mλ if v ≡ (0, 1) (mod N)

0 otherwise,

Furthermore suppose m = 1 and (cv ,N) = 1 then

c
“ n

N
, r

”
= εN

(−1)
k
2 πk− 1

2 (4m n
N
− r 2)k− 3

2

N2k−2mk−1
A

X
j(mod N)

gcd(j,N)=1

“
ζ j
+(2k, µ) Lcv j(−2)

Nr2−4mn
(k)

”
.
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Jacobi-Eisenstein Space

Definition

Fix integers m ≥ 0 and k ≥ 4. Let b be the largest positive number
such that m = ab2 for some a. For an integer s define the
Jacobi-Eisenstein series E v̄

k,m,s by

E v̄
k,m,s(τ, z) = εN

X
γ∈(SL2(Z)J∞∩Γ(N)J )\Γ(N)Jδ

“
1|k,m

h
( 1 0

0 1 ) ,
“ s

b
, 0

”i”
|k,mγ

= εN

X
γ∈(SL2(Z)J∞∩Γ(N)J )\Γ(N)Jδ

“
qas2

ζ2abs
”
|k,mγ.

Theorem

The Jacobi-Eisenstein series E v̄
k,m,s is a Jacobi form on Γ(N).

Definition

Fix integers m ≥ 0 and k ≥ 4. Let the Jacobi-Eisenstein space
Ek,m(Γ(N)) be the span of the Jacobi-Eisenstein series E v̄

k,m,s .
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Basis of Jacobi-Eisenstein Space

Theorem

If v̄M 6≡ (0, 1) (mod N) then E v̄
k,m,s has no constant term at

Mi∞, otherwise E v̄
k,m,s has constant term at Mi∞ which are:

1
P

r≡2abs (mod 2m)

„
q

r2

4m ζr + (−1)−kq
r2

4m ζ−r

«
if N ≤ 2 and

2
P

r≡2abs (mod 2m)

(±1)−kq
r2

4m ζ±r if N > 2.

Corollary

If K is the number of cusps the dimension of Ek,m(Γ(N))
1 is K

(
bb

2c+ 1
)

if N ≤ 2 and k is even,

2 is Kbb−1
2 c if N ≤ 2 and k is odd, and

3 is K (b + 1) if N > 2.

Corollary

Jk,m(Γ(N)) = Ek,m(Γ(N))⊕ Jcusp
k,m (Γ(N))
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Number of Coefficients which Determine a Modular Form
Let ea denote the ramification index at a (if a is a cusp 1

ea
= 0).

Theorem

For a fixed congruence subgroup Γ let g denote the genus X (Γ).
For a non-zero modular form f ∈ Mk(Γ) we have the following
formula

deg(div(f )) = k(g − 1) +
k

2

∑
a∈Γ\H∗

(
1− 1

ea

)
.

Theorem

The number of coefficients Nk,Γ needed to determine a modular
form of weight k on a congruence subgroup Γ satisfies

Nk,Γ ≤ k(g − 1) +
k

2

∑
a∈Γ\H∗

(
1− 1

ea

)
.
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Number of Coefficients which Determine a Jacobi Form
Theorem

Given a congruence subgroup Γ there exists an injection

D =

(
2m⊕
ν=0

Dν

)
: Jk,m(Γ) → Mk(Γ)⊕ Sk+1(Γ)⊕ . . .⊕ Sk+2m(Γ).

where the coefficient c(n) of the modular form D2ν(φ) can be
defined in terms of the coefficients c(n, r) (where 4mn ≥ r2h)
from the Jacobi form φ.

Let Nk,Γ denote the number of coefficients needed to determine a
modular form of weight k on a congruence subgroup Γ. Let

N ′ = (k + 2m)(g − 1) +
k + 2m

2

X
a∈Γ\H∗

„
1− 1

ea

«
.

Then max(Nk,Γ, . . . ,Nk+2m,Γ) ≤ N ′.

Theorem

A Jacobi form of weight k and index m on Γ is determined by the
coefficients c(n, r) where n ≤ N ′ and −m ≤ r < m.
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Structural Results for Jacobi Forms for SL2(Z)

Theorem

The ring J2∗,∗(SL2(Z)) is contained in M∗(SL2(Z))
[
E4,1,E6,1,

1
∆

]
.

Furthermore J∗,∗(SL2(Z)) is free as a module over M∗(SL2(Z)).

Notation

We introduce the functions

φ10,1 =
1

144
(E6E4,1 − E4E6,1)

φ12,1 =
1

144
(E 2

4 E4,1 − E6E6,1).

Theorem

The Jacobi forms E4,1 and E6,1 form a basis for J∗,1 over M∗ .
The Jacobi forms φ10,1 and φ12,1 form a basis for Jcusp

∗,1 over M∗ .
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The Borcherds Lift
Let J̃κ,t(SL2(Z)) denote the space of weak Jacobi forms of weight
κ and index t on SL2(Z) and let ρL : Mp2(Z) → C[L′/L] denote
the Weil representation. Then

Jκ,t(SL2(Z)) ∼= Mκ−1/2,Z,Q(x)=tx2,ρ∗ (1)

the space of vector-valued modular forms on the lattice Z with
quadratic form Q(x) = tx2 of weight κ− 1/2 with respect to ρ∗.
This space is relevant to the obstruction space.

More directly

J̃κ,t(SL2(Z)) ∼= M!
κ−1/2,Z,Q(x)=−tx2,ρ (2)

the space of nearly holomorphic vector-valued modular forms on
the lattice Z with quadratic form Q(x) = −tx2 of weight κ− 1/2
with respect to ρ.

It is the functions in M!
κ−1/2,Z,Q(x)=−tx2,ρ that can be lifted

directly via the Borcherds lift.
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An Example of the Borcherds Lift on a Jacobi Form
Let

φ0,1(τ, z) =
φ12,1(τ, z)

∆(τ)
∈ J̃0,1(SL2(Z)).

By Equation 2

J̃0,1(SL2(Z)) ∼= M!
κ−1/2,Z,Q(x)=−tx2,ρ .

The discriminant groups for the lattices D and D ⊕ H ⊕ H where
D is Z with Q(x) = −tx2 are isomorphic. Thus

J̃0,1(SL2(Z)) ∼= M!
κ−1/2,D⊕H⊕H,ρ

and hence φ0,1 can be lifted through the Borcherds lift to a
modular form on the Siegel upper-half plane Sp4(Z).

Explicitly calculating the principal part of φ0,1 by Borcherds
theorem gives us the divisor of the lift. This divisor corresponds to
the Humbert surface of discriminant |4m| which is also the divisor

of a known function ∆
(2)
0 .

These two functions differ by a constant. Thus using the
Borcherds product formula we get a product expansion for ∆

(2)
0 .
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