Jacobi Forms

Victoria de Quehen

McGill University

Sept 2010

2

P.

History of Jacobi Forms

Notation

Let e(x) denote $e^{2\pi i x}$ for $x \in \mathbb{C}$. Let $q = e(\tau)$ and $\zeta = e(z)$ where $\tau \in \mathcal{H}$ and $z \in \mathbb{C}$.

Jacobi forms are meant to be a natural generalization of Jacobi theta series.

Definition

Let *L* be a lattice of rank 2k with a positive-definite quadratic form Q(x) and bilinear form B(x, y) = Q(x + y) - Q(x) - Q(y). Given a vector $y \in L$ we define the Jacobi theta series $\Theta_y(\tau, z)$ by

$$\Theta_y(\tau,z) = \sum_{x \in L} e((Q(x)\tau + B(x,y)z)).$$

Motivation

The main reference for this topic is *The Theory of Jacobi Forms* by Eichler and Zagier (1985). Their main interest in Jacobi forms was their relation to the Saito-Kurokawa lift.

The Transformation Law

Jacobi forms are complex functions on $\mathcal{H}\times\mathbb{C}$ which are invariant under an action of the Jacobi group.

Definition

The Jacobi group is
$$SL_2(\mathbb{Z})^J = SL_2(\mathbb{Z}) \ltimes \mathbb{Z}^2$$
 where

$$[M, X][M', X'] = [MM', XM' + X'].$$

For a congruence subgroup Γ let $\Gamma^J = \Gamma \ltimes \mathbb{Z}^2$.

Notation

fo

Given integers k and m, the slash operator is

$$(\phi|_{k,m}\gamma)(\tau,z) = (c\tau+d)^{-k}e\left(m\left(\frac{-c(z+\lambda\tau+\mu)^2}{c\tau+d} + \lambda^2\tau + 2\lambda z + \lambda\mu\right)\right) \\ \cdot \phi\left(\frac{a\tau+b}{c\tau+d}, \frac{z+\lambda\tau+\mu}{c\tau+d}\right)$$

or $\gamma = [\begin{pmatrix} a & b \\ c & d \end{pmatrix}, (\lambda,\mu)] \in SL_2(\mathbb{Z})^J$ This defines an action of the acobi group on complex function of $\mathcal{H} \times \mathbb{C}$.

Relationship to Modular Forms

Lemma

In the case
$$\gamma = \left[\begin{pmatrix} a & b \\ c & d \end{pmatrix}, (0, 0) \right]$$
 we have

$$(\phi|_{k,m}\gamma)(\tau,z) = (c\tau+d)^{-k}e\left(\frac{-cmz^2}{c\tau+d}\right)\phi\left(\frac{a\tau+b}{c\tau+d},\frac{z}{c\tau+d}\right)$$

and in the case $\gamma = [\left(\begin{smallmatrix} 0 & 0 \\ 0 & 0 \end{smallmatrix}\right), (\lambda, \mu)]$ we find

$$(\phi|_{k,m}\gamma)(\tau,z) = e(\lambda^2 m \tau + 2\lambda m z) \phi(\tau,z + \lambda \tau + \mu).$$

Remark

In the case of m = 0 the previous slash operators reduce to the slash operator for elliptic modular forms.

A holomorphic function on $\mathcal{H}\times\mathbb{C}$ which is invariant under the action given above has a Fourier expansion.

Definition of Jacobi Forms

Definition

A Jacobi form of weight k and index m for a congruence subgroup Γ is a function $\phi : \mathcal{H} \times \mathbb{C} \to \mathbb{C}$ which

- $\textbf{ o is holomorphic on } \mathcal{H} \times \mathbb{C},$
- 2 satisfies $\phi|_{k,m}\gamma = \phi$ for all $\gamma \in \Gamma^J$ and
- **③** is holomorphic at each cusp $Mi\infty$ where $M \in SL_2(\mathbb{Z})^J$, that is,

$$\phi|_{k,m}M = \sum_{\substack{n,r \in \mathbb{Z} \\ 4mn > r^2h}} c_M\left(\frac{n}{h},r\right) q^{n/h} \zeta^r$$

where *h* is the width of the cusp $Mi\infty$ of Γ .

Furthermore we say ϕ is a *Jacobi cusp form* if in addition to the conditions above ϕ vanishes at each cusp $Mi\infty$ for $M \in SL_2(\mathbb{Z})^J$, that is, if

$$\phi|_{k,m}M = \sum_{\substack{n,r\in\mathbb{Z}\\4mn>r^2h}} c_M\left(\frac{n}{h},r\right) q^{n/h} \zeta^r.$$

3

Structural Theorem

Notation

Let $J_{k,m}(\Gamma)$ denote the vector space of all Jacobi forms with weight k and index m on a congruence subgroup Γ . Let the subspace of cusp forms be denoted by $J_{k,m}^{cusp}(\Gamma)$. Furthermore let $M_k(\Gamma)$ denote the space of elliptic modular forms of weight k on the congruence subgroup Γ .

Theorem

Given a congruence subgroup Γ structurally $\bigoplus_{k,m} J_{k,m}(\Gamma)$ forms a bigraded ring with each $J_{k,m}(\Gamma)$ finite dimensional. Moreover $J_{*,*}(\Gamma)$ is a module over $M_*(\Gamma)$.

Jacobi-Eisenstein Series for $SL_2(\mathbb{Z})$

Notation

Let $SL_2(\mathbb{Z})^J_\infty$ be the set elements $\gamma \in SL_2(\mathbb{Z})^J$ which satisfy $1|_{k,m}\gamma = 1$; that is, let

$$\mathsf{SL}_2(\mathbb{Z})^J_{\infty} = \{ [\pm \left(\begin{smallmatrix} 1 & n \\ 0 & 1 \end{smallmatrix}\right), (0, \mu)] \mid \mu, n \in \mathbb{Z} \}.$$

Definition

Given integers $m \ge 0$ and $k \ge 4$ we define the Jacobi-Eisenstein series $E_{k,m}$ by

$$E_{k,m}(\tau,z) = \sum_{\gamma \in \mathsf{SL}_2(\mathbb{Z})_{\infty}^J \setminus \mathsf{SL}_2(\mathbb{Z})^J} 1|_{k,m} \gamma.$$

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

The Jacobi-Eisenstein series $E_{k,m}$ is a Jacobi form on $SL_2(\mathbb{Z})$.

Jacobi-Eisenstein Series for $\Gamma(N)$

Notation

Fix an integer N > 0 and $\bar{\nu} \in (\mathbb{Z}/N\mathbb{Z})^2$ where $\bar{\nu}$ has order N. Let $\delta = \begin{bmatrix} \begin{pmatrix} a & b \\ c_v & d_v \end{pmatrix}, (\lambda, \mu) \end{bmatrix} \in SL_2(\mathbb{Z})^J$ where $\overline{(c_v, d_v)} = \bar{\nu}$.

Definition

Given integers $m\geq 0$ and $k\geq 4$ we define the Jacobi Eisenstein series $E_{k,m}^{\bar\nu}$ by

$$E_{k,m}^{\bar{\nu}}(\tau,z) = \epsilon_N \sum_{\gamma \in (\mathsf{SL}_2(\mathbb{Z})_{\infty}^J \cap \Gamma(N)^J) \setminus \Gamma(N)^J \delta} 1|_{k,m} \gamma$$

where $\epsilon_N = 1$ if N > 2 and $\epsilon_N = 1/2$ otherwise.

Theorem

The Jacobi-Eisenstein series $E_{k,m}^{\bar{v}}$ is a Jacobi form on $\Gamma(N)$.

Fourier Expansion of the Jacobi-Eisenstein Series For $n' \in \mathbb{Z}/N\mathbb{Z}$ define

$$L_D^{n'}(s) = \sum_{\substack{n \equiv n \\ n \equiv n' \pmod{N}}}^{\infty} \left(\frac{D}{n}\right) n^{-s}$$
$$\zeta_+^{n'}(k,\mu) = \sum_{\substack{l=1 \\ l \equiv n' \pmod{N}}}^{\infty} \mu(l) l^{-s}.$$

Theorem

The Fourier expansion is of the form $E_{k,m}^{\bar{v}} = C + \sum_{\substack{q,r \in \mathbb{Z} \\ 4nm > r^2N}} c\left(\frac{n}{N}, r\right) q^{n/N} \zeta^r$

where

$$C = \begin{cases} \sum_{\lambda \in \mathbb{Z}} q^{\lambda^2 m} \zeta^{2m\lambda} & \text{if } v \equiv (0,1) \pmod{N} \\ 0 & \text{otherwise,} \end{cases}$$

Furthermore suppose m = 1 and $(c_v, N) = 1$ then

$$c\left(\frac{n}{N},r\right) = \epsilon_N \frac{(-1)^{\frac{k}{2}} \pi^{k-\frac{1}{2}} (4m\frac{n}{N} - r^2)^{k-\frac{3}{2}}}{N2^{k-2}m^{k-1}} A \sum_{\substack{j \pmod{N} \\ \gcd(j,N)=1}} \left(\zeta_+^j(2k,\mu) L_{Nr^2-4mn}^{c_v j^{(-2)}}(k)\right).$$

Jacobi-Eisenstein Space

Definition

Fix integers $m \ge 0$ and $k \ge 4$. Let b be the largest positive number such that $m = ab^2$ for some a. For an integer s define the Jacobi-Eisenstein series $E_{k,m,s}^{\bar{\nu}}$ by

$$\begin{split} E_{k,m,s}^{\overline{\nu}}(\tau,z) &= \epsilon_N \sum_{\gamma \in (\mathsf{SL}_2(\mathbb{Z})_{\infty}^J \cap \Gamma(N)^J) \setminus \Gamma(N)^J \delta} \left(1|_{k,m} \left[\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} s \\ b \end{pmatrix} d \right] \right)|_{k,m\gamma} \\ &= \epsilon_N \sum_{\gamma \in (\mathsf{SL}_2(\mathbb{Z})_{\infty}^J \cap \Gamma(N)^J) \setminus \Gamma(N)^J \delta} \left(q^{as^2} \zeta^{2abs} \right)|_{k,m\gamma}. \end{split}$$

Theorem

The Jacobi-Eisenstein series $E_{k,m,s}^{\bar{v}}$ is a Jacobi form on $\Gamma(N)$.

Definition

Fix integers $m \ge 0$ and $k \ge 4$. Let the Jacobi-Eisenstein space $E_{k,m}(\Gamma(N))$ be the span of the Jacobi-Eisenstein series $E_{k,m,s}^{\overline{\nu}}$.

Basis of Jacobi-Eisenstein Space

Theorem

If $\bar{v}M \not\equiv \overline{(0,1)} \pmod{N}$ then $E_{k,m,s}^{\bar{v}}$ has no constant term at $Mi\infty$, otherwise $E_{k,m,s}^{\bar{v}}$ has constant term at $Mi\infty$ which are:

$$\sum_{r \equiv 2abs \, (\text{mod } 2m)} \left(q^{\frac{r^2}{4m}} \zeta^r + (-1)^{-k} q^{\frac{r^2}{4m}} \zeta^{-r} \right) \text{ if } N \leq 2 \text{ and}$$

$$\sum_{r \equiv 2abs \, (\text{mod } 2m)} (\pm 1)^{-k} q^{\frac{r^{2}}{4m}} \zeta^{\pm r} \text{ if } N > 2.$$

Corollary

If K is the number of cusps the dimension of $E_{k,m}(\Gamma(N))$

) is
$$K\left(\lfloor rac{b}{2}
floor + 1
ight)$$
 if $N \leq 2$ and k is even,

2) is
$$K\lfloor rac{b-1}{2} \rfloor$$
 if $N \leq 2$ and k is odd, and

3 is
$$K(b+1)$$
 if $N > 2$.

Corollary

$$\mathsf{J}_{k,m}(\Gamma(N)) = \mathsf{E}_{k,m}(\Gamma(N)) \oplus \mathsf{J}_{k,m}^{\mathsf{cusp}}(\Gamma(N))$$

Number of Coefficients which Determine a Modular Form Let e_a denote the ramification index at a (if a is a cusp $\frac{1}{e_a} = 0$).

Theorem

For a fixed congruence subgroup Γ let g denote the genus $X(\Gamma)$. For a non-zero modular form $f \in M_k(\Gamma)$ we have the following formula

$$\deg(\operatorname{\mathsf{div}}(f)) = k(g-1) + rac{k}{2} \sum_{a \in \Gamma \setminus \mathcal{H}^*} \left(1 - rac{1}{e_a}\right).$$

Theorem

The number of coefficients $N_{k,\Gamma}$ needed to determine a modular form of weight k on a congruence subgroup Γ satisfies

$$N_{k,\Gamma} \leq k(g-1) + rac{k}{2} \sum_{a \in \Gamma \setminus \mathcal{H}^*} \left(1 - rac{1}{e_a}
ight).$$

3

Number of Coefficients which Determine a Jacobi Form

Theorem

Given a congruence subgroup Γ there exists an injection

$$\mathcal{D} = \left(\bigoplus_{\nu=0}^{2m} \mathcal{D}_{\nu}\right) : \mathsf{J}_{k,m}(\Gamma) \to \mathsf{M}_{k}(\Gamma) \oplus \mathsf{S}_{k+1}(\Gamma) \oplus \ldots \oplus \mathsf{S}_{k+2m}(\Gamma).$$

where the coefficient c(n) of the modular form $\mathcal{D}_{2\nu}(\phi)$ can be defined in terms of the coefficients c(n, r) (where $4mn \ge r^2h$) from the Jacobi form ϕ .

Let $N_{k,\Gamma}$ denote the number of coefficients needed to determine a modular form of weight k on a congruence subgroup Γ . Let

$$N' = (k+2m)(g-1) + \frac{k+2m}{2} \sum_{a \in \Gamma \setminus \mathcal{H}^*} \left(1 - \frac{1}{e_a}\right)$$

$$(N_{L} \in \mathbb{R} \setminus \mathcal{H}) \leq N'$$

Then $\max(N_{k,\Gamma},\ldots,N_{k+2m,\Gamma}) \leq N'$.

Theorem

A Jacobi form of weight k and index m on Γ is determined by the coefficients c(n, r) where $n \leq N'$ and $-m \leq r < m$.

Structural Results for Jacobi Forms for $SL_2(\mathbb{Z})$

Theorem

The ring $J_{2*,*}(SL_2(\mathbb{Z}))$ is contained in $M_*(SL_2(\mathbb{Z}))[E_{4,1}, E_{6,1}, \frac{1}{\Delta}]$. Furthermore $J_{*,*}(SL_2(\mathbb{Z}))$ is free as a module over $M_*(SL_2(\mathbb{Z}))$.

Notation

We introduce the functions

$$\phi_{10,1} = rac{1}{144}(E_6E_{4,1} - E_4E_{6,1}) \ \phi_{12,1} = rac{1}{144}(E_4^2E_{4,1} - E_6E_{6,1}).$$

Theorem

The Jacobi forms $E_{4,1}$ and $E_{6,1}$ form a basis for $J_{*,1}$ over M_* . The Jacobi forms $\phi_{10,1}$ and $\phi_{12,1}$ form a basis for $J_{*,1}^{cusp}$ over M_* . The Borcherds Lift

Let $\tilde{J}_{\kappa,t}(SL_2(\mathbb{Z}))$ denote the space of weak Jacobi forms of weight κ and index t on $SL_2(\mathbb{Z})$ and let $\rho_L : Mp_2(\mathbb{Z}) \to \mathbb{C}[L'/L]$ denote the Weil representation. Then

$$\mathsf{J}_{\kappa,t}(\mathsf{SL}_2(\mathbb{Z})) \cong \mathsf{M}_{\kappa-1/2,\mathbb{Z},Q(x)=tx^2,\rho^*} \tag{1}$$

the space of vector-valued modular forms on the lattice \mathbb{Z} with quadratic form $Q(x) = tx^2$ of weight $\kappa - 1/2$ with respect to ρ^* . This space is relevant to the obstruction space.

More directly

$$\tilde{\mathsf{J}}_{\kappa,t}(\mathsf{SL}_2(\mathbb{Z})) \cong \mathsf{M}^!_{\kappa-1/2,\mathbb{Z},Q(x)=-tx^2,\rho}$$
(2)

the space of nearly holomorphic vector-valued modular forms on the lattice \mathbb{Z} with quadratic form $Q(x) = -tx^2$ of weight $\kappa - 1/2$ with respect to ρ .

It is the functions in $M^!_{\kappa-1/2,\mathbb{Z},Q(x)=-tx^2,\rho}$ that can be lifted directly via the Borcherds lift.

An Example of the Borcherds Lift on a Jacobi Form Let

$$\phi_{0,1}(\tau,z) = rac{\phi_{12,1}(\tau,z)}{\Delta(\tau)} \in \widetilde{J}_{0,1}(\mathsf{SL}_2(\mathbb{Z})).$$

By Equation 2

$$\widetilde{J}_{0,1}(\mathsf{SL}_2(\mathbb{Z}))\cong\mathsf{M}^!_{\kappa-1/2,\mathbb{Z},\mathcal{Q}(x)=-tx^2,
ho}$$
 .

The discriminant groups for the lattices D and $D \oplus H \oplus H$ where D is \mathbb{Z} with $Q(x) = -tx^2$ are isomorphic. Thus

$$\widetilde{J}_{0,1}(\mathsf{SL}_2(\mathbb{Z}))\cong\mathsf{M}^!_{\kappa-1/2,D\oplus\mathsf{H}\oplus\mathsf{H},
ho}$$

and hence $\phi_{0,1}$ can be lifted through the Borcherds lift to a modular form on the Siegel upper-half plane Sp₄(\mathbb{Z}).

Explicitly calculating the principal part of $\phi_{0,1}$ by Borcherds theorem gives us the divisor of the lift. This divisor corresponds to the Humbert surface of discriminant |4m| which is also the divisor of a known function $\Delta_0^{(2)}$.

These two functions differ by a constant. Thus using the Borcherds product formula we get a product expansion for $\Delta_0^{(2)}$.