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History of Jacobi Forms

Let e(x) denote 2™ for x € C. Let g = e(7) and ¢ = e(z) where
T€Hand z € C.

Jacobi forms are meant to be a natural generalization of Jacobi
theta series.

Definition

Let L be a lattice of rank 2k with a positive-definite quadratic form
Q(x) and bilinear form B(x,y) = Q(x + y) — Q(x) — Q(y). Given
a vector y € L we define the Jacobi theta series ©, (7, z) by

©y(r.2) = ) e((Q(X)T + B(x,y)z2)):

x€eL
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Motivation
The main reference for this topic is The Theory of Jacobi Forms by

Eichler and Zagier (1985). Their main interest in Jacobi forms was
their relation to the Saito-Kurokawa lift.

Siegel Modular

Forms of
Degree Two
aassTLift
Special Theta Lift Jacobi Forms Saito-Kurokawa Lift
of Index 1
Elliptic Modular , , Elliptic Modular
Shimura Lift
Forms of Forms of
Half-Integral Weight Integral Weight

Our interest in Jacobi forms will be in their connection with the
Borcherds lift.
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The Transformation Law

Jacobi forms are complex functions on H x C which are invariant
under an action of the Jacobi group.

Definition

The Jacobi group is SLy(Z)? = SLy(Z) x Z? where

[M, X][M, X'] = [MM', XM’ + X].

For a congruence subgroup I let [/ =T x Z2.

Notation

| A

Given integers k and m, the slash operator is
—c(z + At + p)?
ct+d

o ar+b z+ AT+ p
ct+d’ cr+d

for v =[(25),(A )] € SLo(Z)’ This defines an action of the
Jacobi group on complex function of H x C.
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Relationship to Modular Forms

Lemma
In the case v = [(25),(0,0)] we have

. v [ —cmz? ar+b z
(Glemy) (7,2) = (c7 + d) e <c7'+d> 9 (cr—i—d7 c7'+d)

and in the case v = [(33), (A, p)] we find

(Ble.my) (7, 2) = e(N2mT + 22Amz) ¢(T, z + AT + p).

Remark
In the case of m = 0 the previous slash operators reduce to the
slash operator for elliptic modular forms.

| \

A holomorphic function on H x C which is invariant under the
action given above has a Fourier expansion.
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Definition of Jacobi Forms

Definition

A Jacobi form of weight k and index m for a congruence subgroup
I" is a function ¢ : H x C — C which
@ is holomorphic on ‘H x C,
Q satisfies ¢|x my = ¢ for all v € T/ and
© is holomorphic at each cusp Mico where M € SLy(Z)?, that
IS,
s M= 3 cu(2r) g

n,reZ
4mn>r2h

where h is the width of the cusp Mioco of T.

Furthermore we say ¢ is a Jacobi cusp form if in addition to the
conditions above ¢ vanishes at each cusp Mioco for M € SL»(Z)”,

that is, if
Ble,mM = Z em (2,r) q""¢".

n,rez
4mn>r2h
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Structural Theorem

Notation

Let Jx m(I") denote the vector space of all Jacobi forms with
weight k and index m on a congruence subgroup I'. Let the
subspace of cusp forms be denoted by Ji?;P(r). Furthermore let
My (T) denote the space of elliptic modular forms of weight k on

the congruence subgroup I.

| A

Theorem

Given a congruence subgroup I structurally € Jx (') forms a
k,m

bigraded ring with each Ji (") finite dimensional. Moreover

Ji«(T") is @ module over M,(T).
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Jacobi-Eisenstein Series for SL>(Z)

Notation

Let SLo(Z)Z, be the set elements y € SL(Z)? which satisfy
1k,my = 1; that is, let

SLa(Z)5 = {[=(§1),(0,1)] |, n € Z} .

Definition

| \

Given integers m > 0 and k > 4 we define the Jacobi-Eisenstein
series Ey ,, by

& el 2] = Z 1L g e

~ESLA(Z)L,\ SLa(Z)

A

The Jacobi-Eisenstein series Ej , is a Jacobi form on SL»>(Z).
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Jacobi-Eisenstein Series for ['(N)

Fix an integer N > 0 and ¥ € (Z/NZ)? where v has order N. Let
s=1[(2 é’v) (A, )] € SLa(Z)? where (c,,d,) = V.

Given integers m > 0 and k > 4 we define the Jacobi Eisenstein
series Ey . by

El‘<7,m(7—7 Z) = EeN Z 1|k,m'77
YE(SL2(Z)L,NF(N)\T(N)/6

where ey = 1 if N > 2 and ey = 1/2 otherwise.

V
Theorem

The Jacobi-Eisenstein series E,‘Z’m is a Jacobi form on '(N).
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Fourier Expansion of the Jacobi-Eisenstein Series
For n' € Z/NZ define

Be= > ()

n=1
n=n’(mod N)
Clop)= Y wh.
=1
I=n’(mod N)
The Fourier expansion is of the form E/,,=C+ > c(5,r) q"/Ner
q,r€Z
4nm>r2N
where .
T Saez @ "™ if v=(0,1) (mod N)
0 otherwise,

Furthermore suppose m =1 and (¢,, N) = 1 then

n (~1)in* 3 (4mp — r2)<3 ; e
€ (N’ r) = €N N2k—2mk—1 A . Ed:N) (<+(2k’ /"L) LNr2—4mn(k)) .
Jj(mo

ged(j,N)=1

<
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Jacobi-Eisenstein Space

Fix integers m > 0 and k > 4. Let b be the largest positive number

such that m = ab? for some a. For an integer s define the
Jacobi-Eisenstein series E)/ by

Efms(7,2) = en > (them [(39), (30)]) limy

YE(SL2(Z)L, NT(N))\F(N) 6

= epn Z (qaszg2abs) lie,m Y-

YE(SLa(Z)4, NT(N))\F(N)

V.

Theorem

The Jacobi-Eisenstein series E,‘Z’m,s is a Jacobi form on '(N).

v

Fix integers m > 0 and k > 4. Let the Jacobi-Eisenstein space
Ex,m(T(N)) be the span of the Jacobi-Eisenstein series E} ..
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Basis of Jacobi-Eisenstein Space

If vM #(0,1) (mod N) then E,‘:”m’s has no constant term at

. . V
Mioo, otherwise Ek’m7S

has constant term at Mioco which are:

o b <q%§’ + (_1)*"q%§*’> if N <2 and

r=2abs (mod 2m)

Q@ T (+l)tgI(ifN>2.

r=2abs (mod 2m)

v
Corollary

If K is the number of cusps the dimension of Ex ,(T'(N))
Q is K(|2] +1)if N<2and k is even,

Q is KL%J if N <2 and k is odd, and
Q@ isK(b+1)if N> 2.

”
Corollary

Jim(F(N)) = Exm(T(N)) © S22 (T(N))

v
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Number of Coefficients which Determine a Modular Form
Let e, denote the ramification index at a (if a is a cusp ela =0).

Theorem

For a fixed congruence subgroup I' let g denote the genus X(I).
For a non-zero modular form f € My (I') we have the following
formula

deg(div(f)) = k(g — 1) + g > (1 - 1> .

(]
ael\'H* d

Theorem
The number of coefficients N r needed to determine a modular
form of weight k on a congruence subgroup I satisfies

k 1
Ner < k(g —1)+ - 1—— ).
wske-v+y 2 (1-7)

acl\'H*

4
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Number of Coefficients which Determine a Jacobi Form
Theorem

Given a congruence subgroup [ there exists an injection

(@D) Jim(T) = Mi(M) @ Sk1(M) @ . .. © Spram(T)-

where the coefficient ¢(n) of the modular form Dy, (¢) can be
defined in terms of the coefficients c(n, r) (where 4mn > r?h)
from the Jacobi form ¢.

Let Ni r denote the number of coefficients needed to determine a
modular form of weight k on a congruence subgroup I'. Let

N' = (k +2m)(g — 1) + k+22’" 3 <1_l>.

aelr\ ' H*

Then max(Nk’r, ey Nk+2m,r) < N

A Jacobi form of weight k and index m on I is determined by the
coefficients c(n, r) where n < N and —m < r < m.
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Structural Results for Jacobi Forms for SL»(Z)

The ring Ja.(SL2(Z)) is contained in M, (SL2(Z)) [Ea1, Es 1, %]
Furthermore J, .(SL2(Z)) is free as a module over M, (SL»(Z)).

We introduce the functions

1
= —(EgEs1 — E4E
$10,1 144( 6Ea1 — EsE61)

1
= —(E?E41 — EsE6.1).
$12,1 144( 4Es1 — EsEe1)

Theorem

The Jacobi forms E4 1 and Eg 1 form a basis for J, 1 over M, .
The Jacobi forms ¢101 and ¢121 form a basis for Jit'lsp over M, .
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The Borcherds Lift

Let jn’t(SLg(Z)) denote the space of weak Jacobi forms of weight
 and index t on SLp(Z) and let p; : Mp,(Z) — C[L'/L] denote
the Weil representation. Then

Jf'@t(SLZ(Z)) = MK—l/Z,Z,Q(X):tX2,p* (1)

the space of vector-valued modular forms on the lattice Z with
quadratic form Q(x) = tx? of weight x — 1/2 with respect to p*.
This space is relevant to the obstruction space.

More directly

3kt (SL2(Z)) = ML 15 00— —t (2)

the space of nearly holomorphic vector-valued modular forms on
the lattice Z with quadratic form Q(x) = —tx? of weight x — 1/2
with respect to p.

It. is the f.unctions in Mi@—l/_ZZ,Q(X)
directly via the Borcherds lift.

o that can be lifted

=—1tx2,



ﬁnt Example of the Borcherds Lift on a Jacobi Form
e
T,Z)  ~
doa(r,2) = 221402) ¢ 51,2y,

A(7)
By Equation 2
y ~ !
J071(SL2(Z)) = Mm—l/Z,Z,Q(x):—txz,p :
The discriminant groups for the lattices D and D & H & H where
D is Z with Q(x) = —tx? are isomorphic. Thus
Joa(SLa(2Z)) = M271/2,D®H®H,p

and hence ¢g1 can be lifted through the Borcherds lift to a
modular form on the Siegel upper-half plane Sp,(Z).

Explicitly calculating the principal part of ¢g 1 by Borcherds
theorem gives us the divisor of the lift. This divisor corresponds to
the Humbert surface of discriminant |[4m| which is also the divisor
of a known function Ag2).

These two functions differ by a constant. Thus using the
Borcherds product formula we get a product expansion for A(()z).
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