Notations
Hilbert Modular Surfaces
Compactification
Hilbert modular forms
Cohomology
The action of Hecke operators

Hilbert modular forms and cohomology

Shervin Shahrokhi Tehrani

University of Toronto

April 9th, 2011

Notations

- *F* is totally real quadratic field extension.
- $\mathcal{O}_{\mathcal{F}}$ is the ring of integers of F.
- \mathfrak{a} is a fractional ideal of $\mathcal{O}_{\mathcal{F}}$.
- CI(F) is the ideal class group of F.
- $CI(F)^+$ is the narrow ideal class group of F.
- H is upper half plane.
- $\bullet \ \mathbb{P}^1(F) = F \bigcup \{\infty\}.$
- $e(\omega) = e^{2\pi i \omega}$
- If $M \subseteq F$ is a \mathbb{Z} -module of rank 2, then

$$M^{\vee} = \{ \lambda \in F; tr(\mu \lambda) \in \mathbb{Z}, \forall \mu \in M \}$$

• The $\mathbb{A} = \mathbb{A}_{\infty} \mathbb{A}_f$ is adelic ring over F where \mathbb{A}_f is finite part of \mathbb{A} .

Notations

- *F* is totally real quadratic field extension.
- $\mathcal{O}_{\mathcal{F}}$ is the ring of integers of F.
- \mathfrak{a} is a fractional ideal of $\mathcal{O}_{\mathcal{F}}$.
- CI(F) is the ideal class group of F.
- $CI(F)^+$ is the narrow ideal class group of F.
- ℍ is upper half plane.
- $\bullet \ \mathbb{P}^1(F) = F \bigcup \{\infty\}.$
- $e(\omega) = e^{2\pi i \omega}$.
- If $M \subseteq F$ is a \mathbb{Z} -module of rank 2, then

$$M^{\vee} = \{ \lambda \in F; tr(\mu \lambda) \in \mathbb{Z}, \forall \mu \in M \}$$

• The $\mathbb{A} = \mathbb{A}_{\infty} \mathbb{A}_f$ is adelic ring over F where \mathbb{A}_f is finite part of \mathbb{A} .

Notations

- *F* is totally real quadratic field extension.
- $\mathcal{O}_{\mathcal{F}}$ is the ring of integers of F.
- \mathfrak{a} is a fractional ideal of $\mathcal{O}_{\mathcal{F}}$.
- CI(F) is the ideal class group of F.
- $CI(F)^+$ is the narrow ideal class group of F.
- ℍ is upper half plane.
- $\bullet \ \mathbb{P}^1(F) = F \bigcup \{\infty\}.$
- $e(\omega) = e^{2\pi i \omega}$.
- If $M \subseteq F$ is a \mathbb{Z} -module of rank 2, then

$$M^{\vee} = \{\lambda \in F; tr(\mu\lambda) \in \mathbb{Z}, \forall \mu \in M\}$$

• The $\mathbb{A} = \mathbb{A}_{\infty} \mathbb{A}_f$ is adelic ring over F where \mathbb{A}_f is finite part of \mathbb{A} .

Let F be a real quadratic field.

$$SL_2(F) \hookrightarrow SL_2(\mathbb{R}) \times SL_2(\mathbb{R}).$$

 $SL_2(F)$ acts on $\mathbb{H} \times \mathbb{H}$ by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} (z_1, z_2) = \left(\frac{az_1 + b}{cz_1 + d}, \frac{a'z_2 + b'}{c'z_2 + d'} \right)$$

Definition

$$\Gamma_{(\mathcal{O}_{\mathcal{F}}\oplus\mathfrak{a})}=\left\{\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\in SL_2(F); a,d\in\mathcal{O}_{\mathcal{F}},b\in\mathfrak{a}^{-1},c\in\mathfrak{a}\right\}$$

Let F be a real quadratic field.

$$SL_2(F) \hookrightarrow SL_2(\mathbb{R}) \times SL_2(\mathbb{R}).$$

 $SL_2(F)$ acts on $\mathbb{H} \times \mathbb{H}$ by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} (z_1, z_2) = \begin{pmatrix} \frac{az_1 + b}{cz_1 + d}, \frac{a'z_2 + b'}{c'z_2 + d'} \end{pmatrix}$$

Definition

$$\Gamma_{(\mathcal{O}_{\mathcal{F}}\oplus\mathfrak{a})}=\left\{\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\in SL_2(F); a,d\in\mathcal{O}_{\mathcal{F}},b\in\mathfrak{a}^{-1},c\in\mathfrak{a}\right\}$$

Let F be a real quadratic field.

$$SL_2(F) \hookrightarrow SL_2(\mathbb{R}) \times SL_2(\mathbb{R}).$$

 $SL_2(F)$ acts on $\mathbb{H} \times \mathbb{H}$ by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} (z_1, z_2) = \begin{pmatrix} \frac{az_1 + b}{cz_1 + d}, \frac{a'z_2 + b'}{c'z_2 + d'} \end{pmatrix}$$

Definition

$$\Gamma_{(\mathcal{O}_{\mathcal{F}}\oplus\mathfrak{a})}=\left\{\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\in SL_2(F); a,d\in\mathcal{O}_{\mathcal{F}},b\in\mathfrak{a}^{-1},c\in\mathfrak{a}\right\}$$

Definition

The Hilbert full modular group is

$$\Gamma_F = \Gamma(\mathcal{O}_{\mathcal{F}} \oplus \mathcal{O}_{\mathcal{F}}) = SL_2(\mathcal{O}_{\mathcal{F}})$$

Definition

Any subgroup of $SL_2(F)$ which is commensurable with Γ_F is called an arithmetic subgroup.

Let Γ be an arithmetic subgroup. It acts properly discontinuous on \mathbb{H}^2 , i.e., if $W\subseteq \mathbb{H}^2$ is compact, then $\{\gamma\in\Gamma;\gamma W\cap W\neq\varnothing\}$ is finite

Definition

The Hilbert full modular group is

$$\Gamma_F = \Gamma(\mathcal{O}_{\mathcal{F}} \oplus \mathcal{O}_{\mathcal{F}}) = SL_2(\mathcal{O}_{\mathcal{F}})$$

Definition

Any subgroup of $SL_2(F)$ which is commensurable with Γ_F is called an arithmetic subgroup.

Let Γ be an arithmetic subgroup. It acts properly discontinuous on \mathbb{H}^2 , i.e., if $W\subseteq \mathbb{H}^2$ is compact, then $\{\gamma\in\Gamma;\gamma W\cap W\neq\varnothing\}$ is finite

Definition

The Hilbert full modular group is

$$\Gamma_F = \Gamma(\mathcal{O}_{\mathcal{F}} \oplus \mathcal{O}_{\mathcal{F}}) = SL_2(\mathcal{O}_{\mathcal{F}})$$

Definition

Any subgroup of $SL_2(F)$ which is commensurable with Γ_F is called an arithmetic subgroup.

Let Γ be an arithmetic subgroup. It acts properly discontinuous on \mathbb{H}^2 , i.e., if $W\subseteq \mathbb{H}^2$ is compact, then $\{\gamma\in \Gamma; \gamma W\cap W\neq\varnothing\}$ is finite.

Definition

The Hilbert full modular group is

$$\Gamma_F = \Gamma(\mathcal{O}_{\mathcal{F}} \oplus \mathcal{O}_{\mathcal{F}}) = SL_2(\mathcal{O}_{\mathcal{F}})$$

Definition

Any subgroup of $SL_2(F)$ which is commensurable with Γ_F is called an arithmetic subgroup.

Let Γ be an arithmetic subgroup. It acts properly discontinuous on \mathbb{H}^2 , i.e., if $W\subseteq \mathbb{H}^2$ is compact, then $\{\gamma\in \Gamma; \gamma W\cap W\neq\varnothing\}$ is finite.

Hilbert Modular groups Singularities Adelic version Further properties

Modular Surfaces

Definition

The space

$$X'_{\Gamma} = \Gamma \backslash \mathbb{H}^2$$

is the modular surface.

Elliptic fixed points

The stabilizer of $a \in \mathbb{H}^2$

$$\Gamma_a = \{ \gamma \in \Gamma; \gamma a = a \}$$

is finite subgroup of Γ .

Definition

a is called elliptic fixed point if

$$\overline{\Gamma_a} = \Gamma_a / \{\pm 1\}$$

is not trivial.

Proposition

There are finite number of elliptic fixed points, and these are only singularities of $X_{\Gamma}^{'}$.

Elliptic fixed points

The stabilizer of $a \in \mathbb{H}^2$

$$\Gamma_a = \{ \gamma \in \Gamma; \gamma a = a \}$$

is finite subgroup of Γ .

Definition

a is called elliptic fixed point if

$$\overline{\Gamma_a} = \Gamma_a / \{\pm 1\}$$

is not trivial.

Proposition

There are finite number of elliptic fixed points, and these are only singularities of X'_{Γ} .

Elliptic fixed points

The stabilizer of $a \in \mathbb{H}^2$

$$\Gamma_a = \{ \gamma \in \Gamma; \gamma a = a \}$$

is finite subgroup of Γ .

Definition

a is called elliptic fixed point if

$$\overline{\Gamma_a} = \Gamma_a / \{\pm 1\}$$

is not trivial.

Proposition

There are finite number of elliptic fixed points, and these are only singularities of X'_{Γ} .

The X'_{Γ} is not compact in general, therefore, there are points at infinity.

 $SL_2(F)$ acts on $\mathbb{P}^1(F)$ by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} (\alpha, \beta) = \frac{a\alpha + b\beta}{c\alpha + d\beta}.$$

Definition

The X'_{Γ} is not compact in general, therefore, there are points at infinity.

 $SL_2(F)$ acts on $\mathbb{P}^1(F)$ by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} (\alpha, \beta) = \frac{a\alpha + b\beta}{c\alpha + d\beta}.$$

Definition

The X'_{Γ} is not compact in general, therefore, there are points at infinity.

 $SL_2(F)$ acts on $\mathbb{P}^1(F)$ by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} (\alpha, \beta) = \frac{a\alpha + b\beta}{c\alpha + d\beta}.$$

Definition

The X'_{Γ} is not compact in general, therefore, there are points at infinity.

 $SL_2(F)$ acts on $\mathbb{P}^1(F)$ by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} (\alpha, \beta) = \frac{a\alpha + b\beta}{c\alpha + d\beta}.$$

Definition

Theorem

The map

$$\varphi: \Gamma_F \backslash \mathbb{P}^1(F) \longrightarrow CI(F)$$

$$(\alpha:\beta)\longrightarrow \alpha\mathcal{O}_{\mathcal{F}}+\beta\mathcal{O}_{\mathcal{F}}$$

is bijective.

Corollary

The number of cusp points of X'_{Γ_F} is the class number of F.

Theorem

The map

$$\varphi: \Gamma_F \backslash \mathbb{P}^1(F) \longrightarrow CI(F)$$

$$(\alpha:\beta)\longrightarrow \alpha\mathcal{O}_{\mathcal{F}}+\beta\mathcal{O}_{\mathcal{F}}$$

is bijective.

Corollary

The number of cusp points of X'_{Γ_F} is the class number of F.

Let $G = R_{F/\mathbb{O}}GL_2(F)$ be reductive algebraic group over \mathbb{Q} .

Therefore,

$$G(\mathbb{R}) = GL_2(\mathbb{R})^2$$

$$K_{\infty} = SO(2).\mathbb{R}_{>0} \times SO(2).\mathbb{R}_{>0}$$

The quotient $G(\mathbb{R})/K_{\infty}$ is homeomorphic with $\mathbb{H}^{\pm} \times \mathbb{H}^{\pm}$.

Let $G = R_{F/\mathbb{Q}}GL_2(F)$ be reductive algebraic group over \mathbb{Q} . Therefore,

$$G(\mathbb{R})=GL_2(\mathbb{R})^2$$

$$K_{\infty} = SO(2).\mathbb{R}_{>0} \times SO(2).\mathbb{R}_{>0}$$

The quotient $G(\mathbb{R})/K_\infty$ is homeomorphic with $\mathbb{H}^\pm imes\mathbb{H}^\pm.$

Let $G = R_{F/\mathbb{Q}}GL_2(F)$ be reductive algebraic group over \mathbb{Q} . Therefore,

$$G(\mathbb{R})=GL_2(\mathbb{R})^2$$

$$K_{\infty} = SO(2).\mathbb{R}_{>0} \times SO(2).\mathbb{R}_{>0}$$

The quotient $G(\mathbb{R})/K_\infty$ is homeomorphic with $\mathbb{H}^\pm imes\mathbb{H}^\pm.$

Let $G = R_{F/\mathbb{Q}}GL_2(F)$ be reductive algebraic group over \mathbb{Q} . Therefore,

$$G(\mathbb{R}) = GL_2(\mathbb{R})^2$$

$$K_{\infty} = SO(2).\mathbb{R}_{>0} \times SO(2).\mathbb{R}_{>0}$$

The quotient $G(\mathbb{R})/K_{\infty}$ is homeomorphic with $\mathbb{H}^{\pm} \times \mathbb{H}^{\pm}$.

Let $G = R_{F/\mathbb{Q}}GL_2(F)$ be reductive algebraic group over \mathbb{Q} . Therefore,

$$G(\mathbb{R}) = GL_2(\mathbb{R})^2$$

$$K_{\infty} = SO(2).\mathbb{R}_{>0} \times SO(2).\mathbb{R}_{>0}$$

The quotient $G(\mathbb{R})/K_{\infty}$ is homeomorphic with $\mathbb{H}^{\pm} \times \mathbb{H}^{\pm}$.

Let K_f be compact open subgroup of $G_f = G(\mathbb{A}_f)$. Using Strong Approximation Theorem, we have

Theorem

There is an identification

$$G(\mathbb{Q})\backslash G(\mathbb{A})/K_{\infty}K_f=igcup_{j=1}^m\Gamma_j\backslash \mathbb{H}^2$$

with
$$\Gamma_j = g_j G(\mathbb{R})^0 K_f g_i^{-1} \cap G(\mathbb{Q})$$
.

Let K_f be compact open subgroup of $G_f = G(\mathbb{A}_f)$. Using Strong Approximation Theorem, we have

$\mathsf{Theorem}$

There is an identification

$$G(\mathbb{Q})\backslash G(\mathbb{A})/\mathcal{K}_{\infty}\mathcal{K}_{f}=\bigcup_{i=1}^{m}\Gamma_{i}\backslash \mathbb{H}^{2}$$

with
$$\Gamma_j = g_j G(\mathbb{R})^0 K_f g_i^{-1} \cap G(\mathbb{Q})$$
.

Let K_f be compact open subgroup of $G_f = G(\mathbb{A}_f)$. Using Strong Approximation Theorem, we have

$\mathsf{Theorem}$

There is an identification

$$G(\mathbb{Q})\backslash G(\mathbb{A})/\mathcal{K}_{\infty}\mathcal{K}_{f}=\bigcup_{i=1}^{m}\Gamma_{i}\backslash \mathbb{H}^{2}$$

with
$$\Gamma_j = g_j G(\mathbb{R})^0 K_f g_i^{-1} \bigcap G(\mathbb{Q})$$
.

If
$$K_0 = \prod_{
u \in S_f} \textit{GL}_2(\mathcal{O}_{\mathcal{F}_{
u}})$$
, then

Corollary

 $G(\mathbb{Q})\backslash G(\mathbb{A})/K_{\infty}K_0$ can be identified with $\bigcup_{\mathfrak{a}}\Gamma(\mathcal{O}_{\mathcal{F}}\oplus\mathfrak{a})\backslash \mathbb{H}^2$, where \mathfrak{a} runs over a complete set of representatives of $CI(F)^+$

If
$$K_0 = \prod_{
u \in S_f} \textit{GL}_2(\mathcal{O}_{\mathcal{F}_{
u}})$$
, then

Corollary

 $G(\mathbb{Q})\backslash G(\mathbb{A})/K_{\infty}K_0$ can be identified with $\bigcup_{\mathfrak{a}}\Gamma(\mathcal{O}_{\mathcal{F}}\oplus\mathfrak{a})\backslash \mathbb{H}^2$, where \mathfrak{a} runs over a complete set of representatives of $CI(F)^+$.

Further properties

- \bullet There is fundamental domain for action of Γ on \mathbb{H}^2 in terms of Siegel domains.
- The form $\omega = \omega_1 \wedge \omega_2$ where

$$\omega_1 = \frac{1}{2\pi} \frac{dx_1 \wedge dy_1}{y_1^2}, \omega_2 = \frac{1}{2\pi} \frac{dx_2 \wedge dy_2}{y_2^2}$$

is volume form on X'_{Γ} .

Further properties

- \bullet There is fundamental domain for action of Γ on \mathbb{H}^2 in terms of Siegel domains.
- The form $\omega = \omega_1 \wedge \omega_2$ where

$$\omega_1 = \frac{1}{2\pi} \frac{dx_1 \wedge dy_1}{y_1^2}, \omega_2 = \frac{1}{2\pi} \frac{dx_2 \wedge dy_2}{y_2^2}$$

is volume form on X'_{Γ} .

Compactification

We have

$$\mathbb{P}^1(F) \hookrightarrow \mathbb{P}^1(\mathbb{R}) \times \mathbb{P}^1(\mathbb{R})$$

Let

$$(\mathbb{H}^2)^* = \mathbb{H}^2 \cup \mathbb{P}^1(F)$$

The group Γ acts on $(\mathbb{H}^2)^*$. let

$$X_{\Gamma} = \Gamma \backslash (\mathbb{H}^2)^*$$

then we have

Theorem (Baily-Borel)

On $(\mathbb{H}^2)^*$ there is unique topology such that the $\Gamma \setminus (\mathbb{H}^2)^*$ with quotient topology is a compact Hausdorff space. Moreover, there is a sheaf of functions \mathcal{O}_{X_Γ} on X_Γ such that $(X_\Gamma, \mathcal{O}_{X_\Gamma})$ is complex normal space.

Compactification

We have

$$\mathbb{P}^1(\mathsf{F}) \hookrightarrow \mathbb{P}^1(\mathbb{R}) imes \mathbb{P}^1(\mathbb{R})$$

Let

$$(\mathbb{H}^2)^* = \mathbb{H}^2 \cup \mathbb{P}^1(F)$$

The group Γ acts on $(\mathbb{H}^2)^*$. let

$$X_{\Gamma} = \Gamma \setminus (\mathbb{H}^2)^*$$

then we have

Theorem (Baily-Borel)

On $(\mathbb{H}^2)^*$ there is unique topology such that the $\Gamma\setminus(\mathbb{H}^2)^*$ with quotient topology is a compact Hausdorff space. Moreover, there is a sheaf of functions \mathcal{O}_{X_Γ} on X_Γ such that $(X_\Gamma, \mathcal{O}_{X_\Gamma})$ is complex normal space.

Compactification

We have

$$\mathbb{P}^1(F) \hookrightarrow \mathbb{P}^1(\mathbb{R}) \times \mathbb{P}^1(\mathbb{R})$$

Let

$$(\mathbb{H}^2)^* = \mathbb{H}^2 \cup \mathbb{P}^1(F)$$

The group Γ acts on $(\mathbb{H}^2)^*$. let

$$X_{\Gamma} = \Gamma \setminus (\mathbb{H}^2)^*$$

then we have

Theorem (Baily-Borel)

On $(\mathbb{H}^2)^*$ there is unique topology such that the $\Gamma \setminus (\mathbb{H}^2)^*$ with quotient topology is a compact Hausdorff space. Moreover, there is a sheaf of functions \mathcal{O}_{X_Γ} on X_Γ such that $(X_\Gamma, \mathcal{O}_{X_\Gamma})$ is complex normal space.

Compactification

We have

$$\mathbb{P}^1(F) \hookrightarrow \mathbb{P}^1(\mathbb{R}) \times \mathbb{P}^1(\mathbb{R})$$

Let

$$(\mathbb{H}^2)^* = \mathbb{H}^2 \cup \mathbb{P}^1(F)$$

The group Γ acts on $(\mathbb{H}^2)^*$. let

$$X_{\Gamma} = \Gamma \setminus (\mathbb{H}^2)^*$$

then we have

Theorem (Baily-Borel)

On $(\mathbb{H}^2)^*$ there is unique topology such that the $\Gamma\setminus(\mathbb{H}^2)^*$ with quotient topology is a compact Hausdorff space. Moreover, there is a sheaf of functions \mathcal{O}_{X_Γ} on X_Γ such that $(X_\Gamma, \mathcal{O}_{X_\Gamma})$ is complex normal space.

Compactification

We have

$$\mathbb{P}^1(F) \hookrightarrow \mathbb{P}^1(\mathbb{R}) \times \mathbb{P}^1(\mathbb{R})$$

Let

$$(\mathbb{H}^2)^* = \mathbb{H}^2 \cup \mathbb{P}^1(F)$$

The group Γ acts on $(\mathbb{H}^2)^*$. let

$$X_{\Gamma} = \Gamma \setminus (\mathbb{H}^2)^*$$

then we have

$\mathsf{Theorem}\;(\mathsf{Baily} ext{-}\mathsf{Borel})$

On $(\mathbb{H}^2)^*$ there is unique topology such that the $\Gamma\setminus(\mathbb{H}^2)^*$ with quotient topology is a compact Hausdorff space. Moreover, there is a sheaf of functions \mathcal{O}_{X_Γ} on X_Γ such that $(X_\Gamma, \mathcal{O}_{X_\Gamma})$ is complex normal space.

Compactification

• **Remark**: Using the line bundle of modular forms (in sufficiently large weights) on X_{Γ} , gives an embedding into projective space, therefore, X_{Γ} is projective algebraic variety and X'_{Γ} is quasi-projective.

- There is smooth compactification of X'_{Γ} using **Toroidal Theory**. Therefore, we can resolve the singularities at boundary of **Baily-Borel** compactification.
- Also, by using the theory of Hironaka, we are able to resolve the singularities caused by Elliptic fixed points.

We are going to use the adelic version and fix following spaces

•
$$X'_{K_f} = G(\mathbb{Q}) \backslash G(\mathbb{A}_{\mathbb{Q}}) / K_f K_{\infty}$$

- \bullet $X_{K_{\mathfrak{f}}}$ is its Baily-Borel compactification
- Z_{K_f} be the minimal resolution of the cusps
- ullet $Y_{K_{\mathcal{E}}}$ be the minimal resolution of all singularities.

- There is smooth compactification of X'_{Γ} using **Toroidal Theory**. Therefore, we can resolve the singularities at boundary of **Baily-Borel** compactification.
- Also, by using the theory of Hironaka, we are able to resolve the singularities caused by Elliptic fixed points.

We are going to use the adelic version and fix following spaces

- $X'_{K_f} = G(\mathbb{Q}) \backslash G(\mathbb{A}_{\mathbb{Q}}) / K_f K_{\infty}$
- X_{K_f} is its Baily-Borel compactification.
- Z_{K_f} be the minimal resolution of the cusps
- ullet $Y_{K_{\mathcal{E}}}$ be the minimal resolution of all singularities.

- There is smooth compactification of X'_{Γ} using **Toroidal Theory**. Therefore, we can resolve the singularities at boundary of **Baily-Borel** compactification.
- Also, by using the theory of Hironaka, we are able to resolve the singularities caused by Elliptic fixed points.

We are going to use the adelic version and fix following spaces:

- $X'_{K_f} = G(\mathbb{Q}) \backslash G(\mathbb{A}_{\mathbb{Q}}) / K_f K_{\infty}$
- X_{K_f} is its Baily-Borel compactification.
- Z_{K_f} be the minimal resolution of the cusps.
- ullet Y_{K_F} be the minimal resolution of all singularities

- There is smooth compactification of X'_{Γ} using **Toroidal Theory**. Therefore, we can resolve the singularities at boundary of **Baily-Borel** compactification.
- Also, by using the theory of Hironaka, we are able to resolve the singularities caused by Elliptic fixed points.

We are going to use the adelic version and fix following spaces:

- $X'_{K_f} = G(\mathbb{Q}) \backslash G(\mathbb{A}_{\mathbb{Q}}) / K_f K_{\infty}$
- X_{K_f} is its Baily-Borel compactification.
- Z_{K_f} be the minimal resolution of the cusps.
- Y_{K_f} be the minimal resolution of all singularities.

Definition

A holomorphic function $f: \mathbb{H}^2 \longrightarrow \mathbb{C}$ is called **Hilbert modular** forms of weight $k = (k_1, k_2) \in \mathbb{Z}^2$ on Γ if for all

$$\gamma = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \Gamma$$
 one has

$$f(\gamma z) = (cz_1 + d)^{k_1} (c'z_2 + d')^{k_2} f(z).$$

• If $k = k_1 = k_2$ then k is called the weight of f.

Definition

A holomorphic function $f: \mathbb{H}^2 \longrightarrow \mathbb{C}$ is called **Hilbert modular** forms of weight $k = (k_1, k_2) \in \mathbb{Z}^2$ on Γ if for all

$$\gamma = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \Gamma$$
 one has

$$f(\gamma z) = (cz_1 + d)^{k_1} (c'z_2 + d')^{k_2} f(z).$$

• If $k = k_1 = k_2$ then k is called the weight of f.

If f is Hilbert modular form then it has Fourier expansion at the cusp ∞ as:

There is $M \subset F$, \mathbb{Z} -module of rank 2, such that

$$f(z + \mu) = f(z)$$
 $\forall \mu \in M$, and

$$f = \sum_{\nu \in M^{\vee}} a_{\nu} e(tr(\nu z))$$
 where

$$a_{\nu} = \frac{1}{\operatorname{vol}(\mathbb{R}/M)} \int_{\mathbb{R}^2/M} f(z) e(-\operatorname{tr}(\nu z)) dx_1 dx_2.$$

If f is Hilbert modular form then it has Fourier expansion at the cusp ∞ as:

There is $M \subset F$, \mathbb{Z} -module of rank 2, such that

$$f(z + \mu) = f(z)$$
 $\forall \mu \in M$, and

$$f = \sum_{\nu \in M^{\lor}} a_{\nu} e(tr(\nu z))$$
 where

$$a_{\nu} = rac{1}{\operatorname{vol}(\mathbb{R}/M)} \int_{\mathbb{R}^2/M} f(z) e(-\operatorname{tr}(\nu z)) dx_1 dx_2.$$

If f is Hilbert modular form then it has Fourier expansion at the cusp ∞ as:

There is $M \subset F$, \mathbb{Z} -module of rank 2, such that

$$f(z + \mu) = f(z)$$
 $\forall \mu \in M$, and

$$f = \sum_{\nu \in M^{\vee}} a_{\nu} e(tr(\nu z))$$
 where

$$a_{\nu} = rac{1}{\operatorname{vol}(\mathbb{R}/M)} \int_{\mathbb{R}^2/M} f(z) e(-\operatorname{tr}(\nu z)) dx_1 dx_2.$$

If f is Hilbert modular form then it has Fourier expansion at the cusp ∞ as:

There is $M \subset F$, \mathbb{Z} -module of rank 2, such that

$$f(z + \mu) = f(z)$$
 $\forall \mu \in M$, and

$$f = \sum_{\nu \in M^{\vee}} a_{\nu} e(tr(\nu z))$$
 where

$$a_{
u}=rac{1}{vol(\mathbb{R}/M)}\int_{\mathbb{R}^2/M}f(z)e(-tr(
u z))dx_1dx_2.$$

If f is Hilbert modular form then it has Fourier expansion at the cusp ∞ as:

There is $M \subset F$, \mathbb{Z} -module of rank 2, such that

$$f(z + \mu) = f(z)$$
 $\forall \mu \in M$, and

$$f = \sum_{\nu \in M^{\vee}} a_{\nu} e(tr(\nu z))$$
 where

$$a_{
u}=rac{1}{vol(\mathbb{R}/M)}\int_{\mathbb{R}^2/M}f(z)e(-tr(
u z))dx_1dx_2.$$

Theorem (Koecher principle)

Let $f: \mathbb{H}^2 \longrightarrow \mathbb{C}$ Hilbert modular form, then

$$a_{\nu} \neq 0$$
 implies $\nu = 0$ or $\nu \gg 0$.

We denote the space of all Hilbert modular forms of weight k by M_k . This has an interpretation as global section of line bundles over modular surface, and by using sheaf cohomology, M_k is **finite** dimensional.

Definition

A Hilbert modular form is called **cusp form** if it vanishes at all cusps of Γ . S_k is the space of all cusp forms of weight k.

Theorem (Koecher principle)

Let $f: \mathbb{H}^2 \longrightarrow \mathbb{C}$ Hilbert modular form, then

$$a_{\nu} \neq 0$$
 implies $\nu = 0$ or $\nu \gg 0$.

We denote the space of all Hilbert modular forms of weight k by M_k . This has an interpretation as global section of line bundles over modular surface, and by using sheaf cohomology, M_k is **finite** dimensional.

Definition

A Hilbert modular form is called **cusp form** if it vanishes at all cusps of Γ . S_k is the space of all cusp forms of weight k.

Theorem (Koecher principle)

Let $f:\mathbb{H}^2\longrightarrow\mathbb{C}$ Hilbert modular form, then

$$a_{\nu} \neq 0$$
 implies $\nu = 0$ or $\nu \gg 0$.

We denote the space of all Hilbert modular forms of weight k by M_k . This has an interpretation as global section of line bundles over modular surface, and by using sheaf cohomology, M_k is **finite** dimensional.

Definition

A Hilbert modular form is called **cusp form** if it vanishes at all cusps of Γ . S_k is the space of all cusp forms of weight k.

Theorem

Let f be Hilbert modular form of weight $k = (k_1, k_2)$ for Γ . The f vanishes identically unless k_1 , k_2 are both positive or $k_1 = k_2 = 0$. In latter case f is constant.

Corollary

If $\pi: Z_{K_f} \longrightarrow X_{K_f}$ is the natural map, then any holomorphic 1-form on Z_{K_f} vanishes identically, i.e

$$H^1(Z_{K_f},\mathcal{O}_{K_f})=0$$

Theorem

Let f be Hilbert modular form of weight $k=(k_1,k_2)$ for Γ . The f vanishes identically unless k_1 , k_2 are both positive or $k_1=k_2=0$. In latter case f is constant.

Corollary

If $\pi: Z_{K_f} \longrightarrow X_{K_f}$ is the natural map, then any holomorphic 1-form on Z_{K_f} vanishes identically, i.e

$$H^1(Z_{K_f},\mathcal{O}_{K_f})=0$$

Theorem

Let f be Hilbert modular form of weight $k = (k_1, k_2)$ for Γ . The f vanishes identically unless k_1 , k_2 are both positive or $k_1 = k_2 = 0$. In latter case f is constant.

Corollary

If $\pi: Z_{K_f} \longrightarrow X_{K_f}$ is the natural map, then any holomorphic 1-form on Z_{K_f} vanishes identically, i.e

$$H^1(Z_{K_f},\mathcal{O}_{K_f})=0$$

Proof.

Let ω be 1-form, and η be pullback on regular points of X_{k_f} . We have

$$\eta = f_1(z)dz_1 + f_2(z)dz_2$$

where f_1 , f_2 are Hilbert modular form of weight (2,0), and (0,2) Using last theorem, we can say η vanishes. Therefore, ω is zero.

Remark: Using Hodge theory we can show $H^1(Z_{k_f}, \mathbb{C})$ vanishes. This means that the interesting part of cohomology of Hilbert modular surfaces is in degree 2.

Proof.

Let ω be 1-form, and η be pullback on regular points of X_{k_f} . We have

$$\eta = f_1(z)dz_1 + f_2(z)dz_2$$

where f_1 , f_2 are Hilbert modular form of weight (2,0), and (0,2). Using last theorem, we can say η vanishes. Therefore, ω is zero.

Remark: Using Hodge theory we can show $H^1(Z_{k_f}, \mathbb{C})$ vanishes. This means that the interesting part of cohomology of Hilbert modular surfaces is in degree 2.

Proof.

Let ω be 1-form, and η be pullback on regular points of X_{k_f} . We have

$$\eta = f_1(z)dz_1 + f_2(z)dz_2$$

where f_1 , f_2 are Hilbert modular form of weight (2,0), and (0,2). Using last theorem, we can say η vanishes. Therefore, ω is zero.

Remark: Using Hodge theory we can show $H^1(Z_{k_f}, \mathbb{C})$ vanishes. This means that the interesting part of cohomology of Hilbert

Proof.

Let ω be 1-form, and η be pullback on regular points of X_{k_f} . We have

$$\eta = f_1(z)dz_1 + f_2(z)dz_2$$

where f_1 , f_2 are Hilbert modular form of weight (2,0), and (0,2). Using last theorem, we can say η vanishes. Therefore, ω is zero.

Remark: Using Hodge theory we can show $H^1(Z_{k_f}, \mathbb{C})$ vanishes. This means that the interesting part of cohomology of Hilbert modular surfaces is in degree 2.

We are looking at $H^2(Z_{\Gamma}, \mathbb{Q})$. Using Poincare duality, we have a non-degenerate pairing

$$H_2(Z_{\Gamma}) \times H_2(Z_{\Gamma}) \longrightarrow \mathbb{Q}.$$

Let E_{σ} be the subspace of $H_2(Z_{\Gamma}, \mathbb{Q})$ generated by the classes of the curves S_{σ} in the resolving of cusp σ . We have the decomposition

$$H_2(Z_{\Gamma},\mathbb{Q}) = \left(\bigoplus_{\sigma} E_{\sigma}\right) \oplus Im\left\{j_*: H_2(X_{\Gamma}',\mathbb{Q}) \longrightarrow H_2(Z_{\Gamma},\mathbb{Q})\right\}.$$

where $j: X_{\Gamma}^{'} \longrightarrow Z_{\Gamma}$

$$H^2(-,\mathbb{Q})$$

We are looking at $H^2(Z_{\Gamma},\mathbb{Q})$. Using Poincare duality, we have a non-degenerate pairing

$$H_2(Z_{\Gamma}) \times H_2(Z_{\Gamma}) \longrightarrow \mathbb{Q}.$$

Let E_{σ} be the subspace of $H_2(Z_{\Gamma}, \mathbb{Q})$ generated by the classes of the curves S_{σ} in the resolving of cusp σ .

We have the decomposition

$$H_2(Z_{\Gamma},\mathbb{Q}) = \left(\bigoplus_{\sigma} E_{\sigma}\right) \oplus Im\left\{j_*: H_2(X_{\Gamma}',\mathbb{Q}) \longrightarrow H_2(Z_{\Gamma},\mathbb{Q})\right\}.$$

where $j: X_{\Gamma}^{'} \longrightarrow Z_{\Gamma}$

$$H^2(-,\mathbb{Q})$$

We are looking at $H^2(Z_{\Gamma},\mathbb{Q})$. Using Poincare duality, we have a non-degenerate pairing

$$H_2(Z_{\Gamma}) \times H_2(Z_{\Gamma}) \longrightarrow \mathbb{Q}.$$

Let E_{σ} be the subspace of $H_2(Z_{\Gamma}, \mathbb{Q})$ generated by the classes of the curves S_{σ} in the resolving of cusp σ .

We have the decomposition

$$H_2(Z_{\Gamma},\mathbb{Q}) = \left(\bigoplus_{\sigma} E_{\sigma}\right) \oplus Im\left\{j_*: H_2(X_{\Gamma}^{'},\mathbb{Q}) \longrightarrow H_2(Z_{\Gamma},\mathbb{Q})\right\}.$$

where $j: X_{\Gamma}^{'} \longrightarrow Z_{\Gamma}$.

We are looking at $H^2(Z_{\Gamma}, \mathbb{Q})$. Using Poincare duality, we have a non-degenerate pairing

$$H_2(Z_{\Gamma}) \times H_2(Z_{\Gamma}) \longrightarrow \mathbb{Q}.$$

Let E_{σ} be the subspace of $H_2(Z_{\Gamma}, \mathbb{Q})$ generated by the classes of the curves S_{σ} in the resolving of cusp σ .

We have the decomposition

$$H_2(Z_{\Gamma},\mathbb{Q}) = \left(\bigoplus_{\sigma} E_{\sigma}\right) \oplus Im\left\{j_*: H_2(X_{\Gamma}',\mathbb{Q}) \longrightarrow H_2(Z_{\Gamma},\mathbb{Q})\right\}.$$

where $j: X'_{\Gamma} \longrightarrow Z_{\Gamma}$.

We are looking at $H^2(Z_{\Gamma}, \mathbb{Q})$. Using Poincare duality, we have a non-degenerate pairing

$$H_2(Z_{\Gamma}) \times H_2(Z_{\Gamma}) \longrightarrow \mathbb{Q}.$$

Let E_{σ} be the subspace of $H_2(Z_{\Gamma}, \mathbb{Q})$ generated by the classes of the curves S_{σ} in the resolving of cusp σ .

We have the decomposition

$$H_2(Z_{\Gamma},\mathbb{Q}) = \left(\bigoplus_{\sigma} E_{\sigma}\right) \oplus Im\left\{j_*: H_2(X_{\Gamma}',\mathbb{Q}) \longrightarrow H_2(Z_{\Gamma},\mathbb{Q})\right\}.$$

where $j: X'_{\Gamma} \longrightarrow Z_{\Gamma}$.

By duality for cohomology we have

$$H^2(Z_{\Gamma},\mathbb{Q}) = \left(\bigoplus_{\sigma} E_{\sigma}^{\vee}\right) \oplus \pi^* H^2(X_{\Gamma},\mathbb{Q}).$$

where $\pi: Z_{\Gamma} \longrightarrow X_{\Gamma}$.

There is an exact sequence

$$0 = H^{1}(X_{\Gamma} - X_{\Gamma}^{'}, \mathbb{Q}) \to H^{2}_{c}(X_{\Gamma}^{'}, \mathbb{Q}) \to H^{2}(X_{\Gamma}, \mathbb{Q}) \to H^{2}(X_{\Gamma} - X_{\Gamma}^{'}, \mathbb{Q}) = 0.$$

Proposition

$$H^2(X_{\Gamma},\mathbb{Q})\cong H^2_c(X'_{\Gamma},\mathbb{Q})$$

By duality for cohomology we have

$$H^2(Z_{\Gamma},\mathbb{Q})=\left(\bigoplus_{\sigma}E_{\sigma}^{\vee}\right)\oplus\pi^*H^2(X_{\Gamma},\mathbb{Q}).$$

where $\pi: Z_{\Gamma} \longrightarrow X_{\Gamma}$.

There is an exact sequence

$$0=H^1(X_{\Gamma}-X_{\Gamma}^{'},\mathbb{Q})\to H^2_c(X_{\Gamma}^{'},\mathbb{Q})\to H^2(X_{\Gamma},\mathbb{Q})\to H^2(X_{\Gamma}-X_{\Gamma}^{'},\mathbb{Q})=0.$$

Proposition

By duality for cohomology we have

$$H^2(Z_{\Gamma},\mathbb{Q}) = \left(\bigoplus_{\sigma} E_{\sigma}^{\vee}\right) \oplus \pi^* H^2(X_{\Gamma},\mathbb{Q}).$$

where $\pi: Z_{\Gamma} \longrightarrow X_{\Gamma}$.

There is an exact sequence

$$0 = H^1(X_{\Gamma} - X_{\Gamma}^{'}, \mathbb{Q}) \to H^2_c(X_{\Gamma}^{'}, \mathbb{Q}) \to H^2(X_{\Gamma}, \mathbb{Q}) \to H^2(X_{\Gamma} - X_{\Gamma}^{'}, \mathbb{Q}) = 0.$$

Proposition

$$H^2(X_{\Gamma},\mathbb{Q})\cong H^2_c(X_{\Gamma}',\mathbb{Q})$$

 $X_{\Gamma}^{'}$ is quasi-projective algebraic variety, therefore by Deligne Hodge Theory, there is mixed Hodge structure as:

- There is decreasing filtration $\{F_p\}_{p\in\mathbb{Z}}$ on $H^i(X'_{\Gamma},\mathbb{Q})\otimes\mathbb{C}$,
- There is an increasing weight filtration $\{W_k\}_{k\in\mathbb{Z}}$ on $H^2(X_\Gamma',\mathbb{O})$ as
 - $\bullet \ W_kH^2(X_\Gamma',\mathbb{Q})=0 \qquad k\leq 1$
- Remark: There exists a pure hodge structure of weight k on $W_kH^2(X'_{\Gamma},\mathbb{Q})/W_{k-1}H^2(X'_{\Gamma},\mathbb{Q})$.

 X'_{Γ} is quasi-projective algebraic variety, therefore by Deligne Hodge Theory, there is mixed Hodge structure as:

- There is decreasing filtration $\{F_p\}_{p\in\mathbb{Z}}$ on $H^i(X'_{\Gamma},\mathbb{Q})\otimes\mathbb{C}$,
- There is an increasing weight filtration $\{W_k\}_{k\in\mathbb{Z}}$ on $H^2(X_\Gamma',\mathbb{Q})$ as
 - $W_k H^2(X'_{\Gamma}, \mathbb{Q}) = 0$ $k \le 1$ • $W_2 H^2(X'_{\Gamma}, \mathbb{Q}) = W_3 H^2(X'_{\Gamma}, \mathbb{Q}) = j^* H^2(Z_{\Gamma}, \mathbb{Q})$ • $W_k H^2(X'_{\Gamma}, \mathbb{Q}) = H^2(X'_{\Gamma}, \mathbb{Q})$
- **Remark**: There exists a pure hodge structure of weight k on $W_k H^2(X'_{\Gamma}, \mathbb{Q})/W_{k-1}H^2(X'_{\Gamma}, \mathbb{Q})$.

 X'_{Γ} is quasi-projective algebraic variety, therefore by Deligne Hodge Theory, there is mixed Hodge structure as:

- There is decreasing filtration $\{F_p\}_{p\in\mathbb{Z}}$ on $H^i(X'_{\Gamma},\mathbb{Q})\otimes\mathbb{C}$,
- There is an increasing weight filtration $\{W_k\}_{k\in\mathbb{Z}}$ on $H^2(X_\Gamma',\mathbb{Q})$ as
 - $W_k H^2(X'_{\Gamma}, \mathbb{Q}) = 0$ $k \le 1$
 - $W_2H^2(X'_{\Gamma}, \mathbb{Q}) = W_3H^2(X'_{\Gamma}, \mathbb{Q}) = j^*H^2(Z_{\Gamma}, \mathbb{Q})$
 - $W_k H^2(X'_{\Gamma}, \mathbb{Q}) = H^2(X'_{\Gamma}, \mathbb{Q})$ $k \geq 4$
- **Remark**: There exists a pure hodge structure of weight k on $W_kH^2(X'_{\Gamma},\mathbb{Q})/W_{k-1}H^2(X'_{\Gamma},\mathbb{Q})$.

 X'_{Γ} is quasi-projective algebraic variety, therefore by Deligne Hodge Theory, there is mixed Hodge structure as:

- There is decreasing filtration $\{F_p\}_{p\in\mathbb{Z}}$ on $H^i(X'_{\Gamma},\mathbb{Q})\otimes\mathbb{C}$,
- There is an increasing weight filtration $\{W_k\}_{k\in\mathbb{Z}}$ on $H^2(X_\Gamma',\mathbb{Q})$ as
 - $W_k H^2(X'_{\Gamma}, \mathbb{Q}) = 0$ $k \le 1$
 - $W_2H^2(X_{\Gamma}^{'}, \mathbb{Q}) = W_3H^2(X_{\Gamma}^{'}, \mathbb{Q}) = j^*H^2(Z_{\Gamma}, \mathbb{Q})$
 - $W_k H^2(X'_{\Gamma}, \mathbb{Q}) = H^2(X'_{\Gamma}, \mathbb{Q})$ $k \geq 4$
- **Remark**: There exists a pure hodge structure of weight k on $W_kH^2(X'_{\Gamma},\mathbb{Q})/W_{k-1}H^2(X'_{\Gamma},\mathbb{Q})$.

Recall

$$j^*H^2(Z_{\Gamma},\mathbb{Q})=j^*\left(\left(\bigoplus_{\sigma}E_{\sigma}^{\vee}\right)\oplus\pi^*H^2(X_{\Gamma},\mathbb{Q})\right).$$

Since $j^*E_{\sigma}^{\vee}=0$ for all cusps,

Proposition

There is pure Hodge structure of weight 2 on

$$\mathbb{H}^2(X_{\Gamma},\mathbb{C}) := j^* \pi^* H^2(X_{\Gamma},\mathbb{C})$$

• Remark: Notice that

$$\mathbb{I}^2(X_{\Gamma},\mathbb{Q}) = Im\{H_c^2(X_{\Gamma}^{'},\mathbb{Q})
ightarrow H^2(X_{\Gamma}^{'},\mathbb{Q})\}$$

Recall

$$j^*H^2(Z_{\Gamma},\mathbb{Q})=j^*\left(\left(\bigoplus_{\sigma}E_{\sigma}^{\vee}\right)\oplus\pi^*H^2(X_{\Gamma},\mathbb{Q})\right).$$

Since $j^*E_{\sigma}^{\vee}=0$ for all cusps,

Proposition

There is pure Hodge structure of weight 2 on

$$\mathbb{H}^2(X_{\Gamma},\mathbb{C}):=j^*\pi^*H^2(X_{\Gamma},\mathbb{C}).$$

• Remark: Notice that $\Pi^2(Y, \mathbb{Q}) = Im(H^2)$

$$(X_{\Gamma},\mathbb{Q})=Im\{H_c^2(X_{\Gamma}',\mathbb{Q})
ightarrow H^2(X_{\Gamma}',\mathbb{Q})\}$$

Recall

$$j^*H^2(Z_{\Gamma},\mathbb{Q})=j^*\left(\left(\bigoplus_{\sigma}E_{\sigma}^{\vee}\right)\oplus\pi^*H^2(X_{\Gamma},\mathbb{Q})\right).$$

Since $j^*E_{\sigma}^{\vee}=0$ for all cusps,

Proposition

There is pure Hodge structure of weight 2 on

$$\mathbb{H}^2(X_{\Gamma},\mathbb{C}):=j^*\pi^*H^2(X_{\Gamma},\mathbb{C}).$$

Remark: Notice that

$$\mathbb{H}^{2}(X_{\Gamma},\mathbb{Q}) = Im\{H_{c}^{2}(X_{\Gamma}^{'},\mathbb{Q}) \rightarrow H^{2}(X_{\Gamma}^{'},\mathbb{Q})\}$$

Let $f = (..., f_j, ...)$ be Hilbert modular form of weight 2. This defines a 2-form ω_f by

$$\omega_f = (2\pi i)^2 f_j(z) dz_1 \wedge dz_2$$
 on $\Gamma_j \backslash \mathbb{H}^2$.

lemma

$$F^2\mathbb{H}^2(X_{\Gamma},\mathbb{C}) = \{\omega_f : f \in S_2\}$$

Let
$$arepsilon_1=(\left(egin{array}{cc}-1&0\\0&1\end{array}
ight),1$$
), $arepsilon_2=(1,\left(egin{array}{cc}1&0\\0&-1\end{array}
ight)$) acts on

$$\varepsilon_1:(z_1,z_2)\longmapsto (\overline{z}_1,z_2),\quad \varepsilon_1:(z_1,z_2)\longmapsto (z_1,\overline{z}_2)$$

Let $f = (..., f_j, ...)$ be Hilbert modular form of weight 2. This defines a 2-form ω_f by

$$\omega_f = (2\pi i)^2 f_j(z) dz_1 \wedge dz_2$$
 on $\Gamma_j \backslash \mathbb{H}^2$.

Lemma

$$F^2\mathbb{H}^2(X_{\Gamma},\mathbb{C})=\{\omega_f:f\in\mathcal{S}_2\}$$

Let
$$\varepsilon_1=\left(\left(\begin{array}{cc}-1&0\\0&1\end{array}\right),1\right)$$
, $\varepsilon_2=\left(1,\left(\begin{array}{cc}1&0\\0&-1\end{array}\right)\right)$ acts on $\mathbb{H}^\pm\times\mathbb{H}^\pm$ by

$$\varepsilon_1:(z_1,z_2)\longmapsto(\overline{z}_1,z_2),\quad \varepsilon_1:(z_1,z_2)\longmapsto(z_1,\overline{z}_2)$$

Let $f = (..., f_j, ...)$ be Hilbert modular form of weight 2. This defines a 2-form ω_f by

$$\omega_f = (2\pi i)^2 f_j(z) dz_1 \wedge dz_2$$
 on $\Gamma_j \backslash \mathbb{H}^2$.

Lemma

$$F^2\mathbb{H}^2(X_{\Gamma},\mathbb{C})=\{\omega_f:f\in\mathcal{S}_2\}$$

Let
$$\varepsilon_1=(\left(\begin{array}{cc}-1&0\\0&1\end{array}\right),1$$
), $\varepsilon_2=\left(1,\left(\begin{array}{cc}1&0\\0&-1\end{array}\right)\right)$ acts on $\mathbb{H}^\pm \times \mathbb{H}^\pm$ by

$$\varepsilon_1:(z_1,z_2)\longmapsto(\overline{z}_1,z_2),\quad \varepsilon_1:(z_1,z_2)\longmapsto(z_1,\overline{z}_2)$$

Let $f = (..., f_j, ...)$ be Hilbert modular form of weight 2. This defines a 2-form ω_f by

$$\omega_f = (2\pi i)^2 f_j(z) dz_1 \wedge dz_2$$
 on $\Gamma_j \backslash \mathbb{H}^2$.

Lemma

$$F^2\mathbb{H}^2(X_{\Gamma},\mathbb{C})=\{\omega_f:f\in\mathcal{S}_2\}$$

Let
$$\varepsilon_1=(\left(\begin{array}{cc}-1&0\\0&1\end{array}\right),1$$
), $\varepsilon_2=\left(1,\left(\begin{array}{cc}1&0\\0&-1\end{array}\right)\right)$ acts on $\mathbb{H}^\pm \times \mathbb{H}^\pm$ by

$$\varepsilon_1:(z_1,z_2)\longmapsto(\overline{z}_1,z_2),\quad \varepsilon_1:(z_1,z_2)\longmapsto(z_1,\overline{z}_2)$$

We define

$$\eta_f = \varepsilon_2^* \omega_f \qquad \eta_f' = \varepsilon_1^* \omega_f$$

Theorem

 $\mathbb{H}^2(X_{\Gamma},\mathbb{C})$ is direct sum of

- ① it is (2,0)- component $\{\omega_f : f \in S_2\}$
- \bigcirc it is (0,2)- component $\{\overline{\omega}_f : f \in S_2\}$
- lacksquare it is (1,1)-component $\{\eta_f+\eta_g^{'}:f,g\in S_2\}\oplus W$, where W i.i.
- the space generated by the forms $\omega_1,\,\omega_2$ on all components of \mathbf{x}_-

We define

$$\eta_f = \varepsilon_2^* \omega_f \qquad \eta_f' = \varepsilon_1^* \omega_f$$

$\mathsf{Theorem}$

 $\mathbb{H}^2(X_{\Gamma},\mathbb{C})$ is direct sum of

- **1** it is (2,0)- component $\{\omega_f : f \in S_2\}$
- 2 it is (0,2)- component $\{\overline{\omega}_f : f \in S_2\}$
- ⓐ it is (1,1)-component $\{\eta_f + \eta_g' : f,g \in S_2\} \oplus W$, where W is the space generated by the forms ω_1 , ω_2 on all components of X_{Γ} .

We define

$$\eta_f = \varepsilon_2^* \omega_f \qquad \eta_f' = \varepsilon_1^* \omega_f$$

$\mathsf{Theorem}$

 $\mathbb{H}^2(X_{\Gamma},\mathbb{C})$ is direct sum of

- **1** it is (2,0)- component $\{\omega_f : f \in S_2\}$
- 2 it is (0,2)- component $\{\overline{\omega}_f: f \in S_2\}$
- **3** it is (1,1)-component $\{\eta_f + \eta_g' : f,g \in S_2\} \oplus W$, where W is the space generated by the forms ω_1 , ω_2 on all components of X_{Γ} .

Cuspidal Cohomology

Definition

 $\mathbb{H}^2_{cusp}(X_{\Gamma},\mathbb{C})$ is the orthogonal complement of W in $\mathbb{H}^2(X_{\Gamma},\mathbb{C})$.

Hecke ring

Let

$$B = G(\mathbb{A}_{\mathbb{Q}}) \cap \left(G(\mathbb{R})^0 imes \prod_{
u \in S_f} GL_2(\mathcal{O}_{\mathcal{F}_{
u}})\right)$$

and

$$R = G(\mathbb{R})^0 \times K_0$$

Definition

Let H_K be the algebra over \mathbb{Q} generated by

$$T(\mathfrak{m}) = \sum_{b} RbR$$
 where $det(b)\mathcal{O}_{\mathcal{F}} = \mathfrak{m}$.

where m is an integral ideal.

Hecke ring

Let

$$B = G(\mathbb{A}_{\mathbb{Q}}) \cap \left(G(\mathbb{R})^0 imes \prod_{
u \in S_f} GL_2(\mathcal{O}_{\mathcal{F}_{
u}})\right)$$

and

$$R = G(\mathbb{R})^0 \times K_0$$

Definition

Let H_K be the algebra over $\mathbb Q$ generated by

$$T(\mathfrak{m}) = \sum_{b} RbR$$
 where $det(b)\mathcal{O}_{\mathcal{F}} = \mathfrak{m}$

where m is an integral ideal

Hecke ring

Let

$$B = G(\mathbb{A}_{\mathbb{Q}}) \cap \left(G(\mathbb{R})^0 imes \prod_{
u \in S_f} GL_2(\mathcal{O}_{\mathcal{F}_{
u}})\right)$$

and

$$R = G(\mathbb{R})^0 \times K_0$$

Definition

Let H_K be the algebra over \mathbb{Q} generated by

$$T(\mathfrak{m}) = \sum_{b} RbR$$
 where $det(b)\mathcal{O}_{\mathcal{F}} = \mathfrak{m}$.

where \mathfrak{m} is an integral ideal.

The action of Hecke operators on Modular Forms

• **Note:** There is a version of action of Hecke operators on Modular forms, we are going to use this fact that S_k , i. e the space of cusp forms has basis of of eigenforms for all Hecke operators and **Multiplicity one principle**, i. e two eigenforms with same eigenvalus are multiple of each other.

The action of Hecke operators on Cohomology

We have

$$\mathbb{H}^2(X_{\mathcal{K}_0},\mathbb{Q})=\mathbb{H}^2_{cusp}(X_{\mathcal{K}_0},\mathbb{Q})\oplus (\mathbb{Q}(-1))^{h^+}.$$

where $\mathbb{Q}(-1)$ is the rational hodge structure of type (1,1) of $(2\pi i)\mathbb{Q}$.

Recall that $\mathbb{H}^2_{cusp}(X_{K_0},\mathbb{Q})$ has Hodge decomposition where each term is isomorphic with a space of cusp forms.

Therefore, H_K acts on $\mathbb{H}^2_{cusp}(X_{\Gamma}, \mathbb{C})$ which is compatible with action on modular forms.

The action of Hecke operators on Cohomology

We have

$$\mathbb{H}^2(X_{\mathcal{K}_0},\mathbb{Q})=\mathbb{H}^2_{\mathit{cusp}}(X_{\mathcal{K}_0},\mathbb{Q})\oplus (\mathbb{Q}(-1))^{h^+}.$$

where $\mathbb{Q}(-1)$ is the rational hodge structure of type (1,1) of $(2\pi i)\mathbb{Q}$.

Recall that $\mathbb{H}^2_{cusp}(X_{K_0},\mathbb{Q})$ has Hodge decomposition where each term is isomorphic with a space of cusp forms.

Therefore, H_K acts on $\mathbb{H}^2_{cusp}(X_{\Gamma}, \mathbb{C})$ which is compatible with action on modular forms.

The action of Hecke operators on Cohomology

We have

$$\mathbb{H}^2(X_{\mathcal{K}_0},\mathbb{Q})=\mathbb{H}^2_{cusp}(X_{\mathcal{K}_0},\mathbb{Q})\oplus (\mathbb{Q}(-1))^{h^+}.$$

where $\mathbb{Q}(-1)$ is the rational hodge structure of type (1,1) of $(2\pi i)\mathbb{Q}$.

Recall that $\mathbb{H}^2_{cusp}(X_{K_0},\mathbb{Q})$ has Hodge decomposition where each term is isomorphic with a space of cusp forms.

Therefore, H_K acts on $\mathbb{H}^2_{cusp}(X_{\Gamma},\mathbb{C})$ which is compatible with action on modular forms.

The action of Hecke operators on $\mathbb{H}^2(X_{\Gamma},\mathbb{C})$

Theorem

For any $T \in H_K$ we can attach T^* , an endomorphism of $\mathbb{H}^2(X_{K_0},\mathbb{Q})$ such that preserves the Hodge decomposition, and

$$\int_{T_{*}c}\omega=\int_{c}T^{*}\omega\quad\forall c\in H_{2}(X_{K_{0}}^{'},\mathbb{Q}),\quad\omega\in H^{2}(X^{'},\mathbb{Q})$$

where T_* is its dual endomorphism on $\mathbb{H}_2(X_{K_0},\mathbb{Q})$. Also,

$$<\omega_1, T^*\omega_2> = < T^*\omega_1, \omega_2>$$

Decomposition of H_K

Proposition

 H_K is a semi-simple finite dimensional algebra over \mathbb{Q} , and S_2 is an $H_K \otimes \mathbb{C}$ -module of rank one. Moreover,

$$H_K = \oplus k_i$$

where k_i is finite field extension of \mathbb{Q} .

We can choose set of primitive idempotents $\{e_1, e_2, ..., e_n\}$ such that $k_i = e_i H_K$.

Decomposition of H_K

Proposition

 H_K is a semi-simple finite dimensional algebra over \mathbb{Q} , and S_2 is an $H_K \otimes \mathbb{C}$ -module of rank one. Moreover,

$$H_K = \oplus k_i$$

where k_i is finite field extension of \mathbb{Q} .

We can choose set of primitive idempotents $\{e_1, e_2, ..., e_n\}$ such that $k_i = e_i H_K$.

Embedding of k_i

If f is normalized eigenform f in e_iS_2 , then there is embedding

$$\sigma_i: k_i \longrightarrow \mathbb{C}$$

$$t(f) = \sigma_i(t)f$$

therefore, $k_i \bigotimes_{\mathbb{Q}} \mathbb{C} = \bigoplus_{\sigma} \mathbb{C}$.

Using above embedding

$$e_iS_2=igoplus_\sigma\mathbb{C} f^\sigma$$

where the f^{σ} are the normalized eigenforms with $t(f^{\sigma}) = \sigma(t)f^{\sigma}$.

• Remark: f^{σ} is called **companion** of f.

Embedding of k_i

If f is normalized eigenform f in e_iS_2 , then there is embedding

$$\sigma_i: k_i \longrightarrow \mathbb{C}$$

$$t(f) = \sigma_i(t)f$$

therefore, $k_i \bigotimes_{\mathbb{Q}} \mathbb{C} = \bigoplus_{\sigma} \mathbb{C}$. Using above embedding

$$e_iS_2=\bigoplus_{\sigma}\mathbb{C}f^{\sigma}$$

where the f^{σ} are the normalized eigenforms with $t(f^{\sigma}) = \sigma(t)f^{\sigma}$.

• **Remark:** f^{σ} is called **companion** of f.

Embedding of k_i

If f is normalized eigenform f in e_iS_2 , then there is embedding

$$\sigma_i: k_i \longrightarrow \mathbb{C}$$

$$t(f) = \sigma_i(t)f$$

therefore, $k_i \bigotimes_{\mathbb{Q}} \mathbb{C} = \bigoplus_{\sigma} \mathbb{C}$. Using above embedding

$$e_iS_2=\bigoplus_{\sigma}\mathbb{C}f^{\sigma}$$

where the f^{σ} are the normalized eigenforms with $t(f^{\sigma}) = \sigma(t)f^{\sigma}$.

• **Remark:** f^{σ} is called **companion** of f.

Decomposition of $\mathbb{H}^2_{cusp}(X_{K_0},\mathbb{Q})$

Let $F = \{f_1, ..., f_n\}$ be a set of normalized eigenforms, one for each k_i (i.e $f_i \in e_i S_2$).

If $f \in e_i S_2$ the we shall write $e_i = e_f$ and $k_i = k_f$. We let

$$H^2(M_f,\mathbb{Q}):=e_f\mathbb{H}^2_{cusp}(X,\mathbb{Q}).$$

Theorem

There is a decomposition of polarized Hodge structure on $\mathbb{H}^2_{\text{cusp}}(X,\mathbb{Q})$ as

$$\mathbb{H}^2_{cusp}(X,\mathbb{Q}) = \bigoplus_{f \in F} H^2(M_f,\mathbb{Q})$$

Decomposition of $\mathbb{H}^2_{cusp}(X_{K_0},\mathbb{Q})$

Let $F = \{f_1, ..., f_n\}$ be a set of normalized eigenforms, one for each k_i (i.e $f_i \in e_i S_2$).

If $f \in e_i S_2$ the we shall write $e_i = e_f$ and $k_i = k_f$.

We let

$$H^2(M_f,\mathbb{Q}):=e_f\mathbb{H}^2_{cusp}(X,\mathbb{Q}).$$

Theorem

There is a decomposition of polarized Hodge structure on $\mathbb{H}^2_{cusp}(X,\mathbb{Q})$ as

$$\mathbb{H}^2_{cusp}(X,\mathbb{Q}) = \bigoplus_{f \in F} H^2(M_f,\mathbb{Q})$$

Decomposition of $\mathbb{H}^2_{cusp}(X_{K_0},\mathbb{Q})$

Let $F = \{f_1, ..., f_n\}$ be a set of normalized eigenforms, one for each k_i (i.e $f_i \in e_i S_2$).

If $f \in e_i S_2$ the we shall write $e_i = e_f$ and $k_i = k_f$.

We let

$$H^2(M_f,\mathbb{Q}):=e_f\mathbb{H}^2_{cusp}(X,\mathbb{Q}).$$

$\mathsf{Theorem}$

There is a decomposition of polarized Hodge structure on $\mathbb{H}^2_{cusp}(X,\mathbb{Q})$ as

$$\mathbb{H}^2_{cusp}(X,\mathbb{Q}) = \bigoplus_{f \in F} H^2(M_f,\mathbb{Q})$$

Decomposition of $\mathbb{H}^2_{cusp}(X_{\mathcal{K}_0},\mathbb{Q})$

Let $F = \{f_1, ..., f_n\}$ be a set of normalized eigenforms, one for each k_i (i.e $f_i \in e_i S_2$).

If $f \in e_i S_2$ the we shall write $e_i = e_f$ and $k_i = k_f$.

We let

$$H^2(M_f,\mathbb{Q}):=e_f\mathbb{H}^2_{cusp}(X,\mathbb{Q}).$$

$\mathsf{Theorem}$

There is a decomposition of polarized Hodge structure on $\mathbb{H}^2_{cusp}(X,\mathbb{Q})$ as

$$\mathbb{H}^2_{cusp}(X,\mathbb{Q}) = \bigoplus_{f \in F} H^2(M_f,\mathbb{Q})$$

Further Decomposition of $H^2(M_f,\mathbb{Q})$

Let consider ε_1 , ε_2 as involutions on $\mathbb{H}^2(X,\mathbb{Q})$.

Because the actions of ε_1 , ε_2 commutes with Hecke operators, therefore,

$$H^2(M_f,\mathbb{Q}) = \bigoplus_{s,s'\in\{+,-\}} H^2(M_f,\mathbb{Q})_{ss'}$$

where ε_1 , ε_2 act on $H^2(M_f,\mathbb{Q})_{ss'}$ as s.Id and s'.Id respectively.

Proposition

For every normalized eigenform $f \in S_2$ we have

$$rank_{k_f}H^2(M_f,\mathbb{Q})_{ss'}=1$$

Further Decomposition of $H^2(M_f,\mathbb{Q})$

Let consider ε_1 , ε_2 as involutions on $\mathbb{H}^2(X,\mathbb{Q})$. Because the actions of ε_1 , ε_2 commutes with Hecke operators,

therefore,

$$H^2(M_f,\mathbb{Q}) = \bigoplus_{s,s' \in \{+,-\}} H^2(M_f,\mathbb{Q})_{ss'}$$

where ε_1 , ε_2 act on $H^2(M_f, \mathbb{Q})_{ss'}$ as s.Id and s'.Id respectively.

Propositior

For every normalized eigenform $f \in S_2$ we have

$$\operatorname{rank}_{k_f}\operatorname{H}^2(M_f,\mathbb{Q})_{ss'}=1$$

Further Decomposition of $H^2(M_f,\mathbb{Q})$

Let consider ε_1 , ε_2 as involutions on $\mathbb{H}^2(X,\mathbb{Q})$.

Because the actions of ε_1 , ε_2 commutes with Hecke operators, therefore,

$$H^2(M_f,\mathbb{Q}) = \bigoplus_{s,s'\in\{+,-\}} H^2(M_f,\mathbb{Q})_{ss'}$$

where ε_1 , ε_2 act on $H^2(M_f, \mathbb{Q})_{ss'}$ as s.Id and s'.Id respectively.

Proposition

For every normalized eigenform $f \in S_2$ we have

$$rank_{k_f}H^2(M_f,\mathbb{Q})_{ss'}=1.$$

Thanks