Hilbert modular forms and cohomology

Shervin Shahrokhi Tehrani

University of Toronto

April 9th, 2011

Shervin Shahrokhi Tehrani Hilbert modular forms and cohomology



Notations

Notations

Shervin Shahrokhi Tehrani Hilbert modular forms and cohomology

F is totally real quadratic field extension.
Opg is the ring of integers of F.

a is a fractional ideal of Ox.

CI(F) is the ideal class group of F.

CI(F)™ is the narrow ideal class group of F.
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Notations

F is totally real quadratic field extension.
Opg is the ring of integers of F.

a is a fractional ideal of Ox.

CI(F) is the ideal class group of F.

CI(F)™ is the narrow ideal class group of F.
H is upper half plane.

PYF) = FUU{oc}.

e(w) = e?™iw,
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Notations

Notations

F is totally real quadratic field extension.
Opg is the ring of integers of F.

a is a fractional ideal of Ox.

CI(F) is the ideal class group of F.

CI(F)™ is the narrow ideal class group of F.
H is upper half plane.

PYF) = FUU{oc}.

e(w) — e27riw_

If M C F is a Z-module of rank 2, then

MY = {X\ € F;tr(u)) € Z,Yu € M}

@ The A = A Ay is adelic ring over F where Ay is finite part of
A.
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Hilbert Modular Surfaces Hilbert Modular groups
Singularities
Adelic

Further properties

Hilbert Modular Group

Let F be a real quadratic field.

SLa(F) < SLa(R) x SLy(R).
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Further properties

Hilbert Modular Group

Let F be a real quadratic field.
SLy(F) < SLa(R) x SLy(R).

SLy(F) acts on H x H by

a b (21,2) = az1+b a'22+b'
c d 1,22} = czi+d cdn+d
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Hilbert Modular Surfaces Hilbert Modular groups

Hilbert Modular Group

Let F be a real quadratic field.
SLy(F) < SLa(R) x SLy(R).

SLy(F) acts on H x H by
a b (21,2) = az1+b a'22+b'
c d 1,22} = czi+d cdn+d

FOr@a) = {( i 2 ) € SLy(F);a,d € O, bea " ce a}
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Hilbert Modular Surfaces Hilbert Modular groups
Singularities
Adelic version
Further properties

Hilbert Modular Group

The Hilbert full modular group is

Ne=T(Or® Or) = SL(OF)
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Hilbert Modular Surfaces

Further properties

Hilbert Modular Group

The Hilbert full modular group is

Ne=T(Or® Or) = SL(OF)

Any subgroup of SLy(F) which is commensurable with I'¢ is called
an arithmetic subgroup.
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Hilbert Modular Group

The Hilbert full modular group is

Ne=T(Or® Or) = SL(OF)

Definition
Any subgroup of SLy(F) which is commensurable with I'¢ is called
an arithmetic subgroup.

Let I' be an arithmetic subgroup. It acts properly discontinuous on
H? | ie., if W C H? is compact, then {y € [;yW N W # @} is
finite.
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Hilbert Modular Group

The Hilbert full modular group is

Ne=T(Or® Or) = SL(OF)

Definition
Any subgroup of SLy(F) which is commensurable with I'¢ is called
an arithmetic subgroup.

Let I' be an arithmetic subgroup. It acts properly discontinuous on
H? | ie., if W C H? is compact, then {y € [;yW N W # @} is
finite.
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Further properties

Modular Surfaces

The space
X = M\H?

is the modular surface.
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Hilbert Modular Surfaces Hilbert Modular groups
Singularities
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Further properties

Elliptic fixed points

The stabilizer of a € H2
Ma={yelya=a}
is finite subgroup of T.
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Hilbert Modular Surfaces

Adelic version
Further properties

Elliptic fixed points

The stabilizer of a € H2
fa={yemlya=a}
is finite subgroup of T.

Definition

a is called elliptic fixed point if
F,=Tr,/{%1}

is not trivial.
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Hilbert Modular Surfaces

Further properties

Elliptic fixed points

The stabilizer of a € H2
fa={yemlya=a}
is finite subgroup of T.

Definition
a is called elliptic fixed point if

F,=Tr,/{%1}

is not trivial.

There are finite number of elliptic fixed points, and these are only
singularities of XF.
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Further properties

Cusp points

The Xli is not compact in general, therefore, there are points at
infinity.
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Further properties

Cusp points

The Xli is not compact in general, therefore, there are points at
infinity.
SL(F) acts on P1(F) by

a b aa + bf
(C d>(a’6):
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Cusp points

The Xli is not compact in general, therefore, there are points at
infinity.
SL(F) acts on P1(F) by

a b aa + bf
(C d>(a’6):

M-classes of PX(F) are called cusp points of X;.
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Further properties

Cusp points

The Xli is not compact in general, therefore, there are points at
infinity.
SL(F) acts on P1(F) by

a b aa + bf
(C d>(a’6):

M-classes of PX(F) are called cusp points of X;.
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Hilbert Modular Surfaces Hilbert Modular groups
Singularities
Adelic version
Further properties

Cusp points

@ : TE\PY{(F) — CI(F)
(a:B8) — aOr + O£

is bijective.

Shervin Shahrokhi Tehrani Hilbert modular forms and cohomology



Hilbert Modular Surfaces Hilbert Modular groups
Singularities
Adelic version
Further properties

Cusp points

The map
@ : TE\PY{(F) — CI(F)

(:B) — aOr + BOF

is bijective.

Corollary

The number of cusp points of XéF is the class number of F.
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Further properties

Adelic version

Let G = Rr/gGLa(F) be reductive algebraic group over Q.
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Adelic version

Let G = Rr/gGLa(F) be reductive algebraic group over Q.
Therefore,
G(R) = GLy(R)?
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Further properties

Adelic version

Let G = Rr/gGLa(F) be reductive algebraic group over Q.
Therefore,
G(R) = GLy(R)?

KOO == SO(2)R>O X 50(2)R>0

Shervin Shahrokhi Tehrani Hilbert modular forms and cohomology



Hilbert Modular Surfaces

Further properties

Adelic version

Let G = Rr/gGLa(F) be reductive algebraic group over Q.
Therefore,
G(R) = GLy(R)?

KOO == SO(2)R>O X 50(2)R>0
The quotient G(R)/K is homeomorphic with H* x H*.
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Further properties

Adelic version

Let G = Rr/gGLa(F) be reductive algebraic group over Q.
Therefore,
G(R) = GLy(R)?

KOO == SO(2)R>O X 50(2)R>0
The quotient G(R)/K is homeomorphic with H* x H*.
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Further properties

Adelic version

Let Kr be compact open subgroup of Gr = G(Af). Using Strong
Approximation Theorem, we have
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Adelic version

Let Kr be compact open subgroup of Gr = G(Af). Using Strong
Approximation Theorem, we have

Theorem

There is an identification

G(Q)\G(A)/KsoKr = UFJ\H2

with T; = giG(R)°Krg; ' N G(Q).
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Adelic version

Let Kr be compact open subgroup of Gr = G(Af). Using Strong
Approximation Theorem, we have

Theorem

There is an identification

G(Q)\G(A)/KsoKr = UFJ\H2

with T; = giG(R)°Krg; ' N G(Q).

Shervin Shahrokhi Tehrani Hilbert modular forms and cohomology



Hilbert Modular Surfaces i odular groups
Singularities

Adelic version

Further properties

Adelic version

If Ko = Huesf GL2(O}‘V), then
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Hilbert Modular Surfaces

Further properties

Adelic version

If Ko = Huesf GL2(O}‘V), then

Corollary

G(Q)\G(A)/KxKo can be identified with | J, T(OF & a)\H?,
where a runs over a complete set of representatives of CI(F)™.
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Further properties

@ There is fundamental domain for action of I on H? in terms
of Siegel domains.
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Hilbert Modular Surfaces

A sion
Further properties

Further properties

@ There is fundamental domain for action of I on H? in terms
of Siegel domains.

@ The form w = wy A wy where

i dx1 A dyr . i dxo A dyo

w1 = , W2

27 % - 2r %

. !/
is volume form on X.
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Compactification Baily-Borel Compactification
Toroidal compactification and de singularization

Compactification

We have
P(F) < PY(R) x P(R)
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Compactification Baily-Borel Compactification
Toroidal compactification and de s arization

Compactification

We have
P(F) < PY(R) x P(R)
Let
(H?)* = H? UPY(F)
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Compactification Baily-Borel Compactification
Toroidal compactification and de singularization

Compactification

We have
PY(F) — PY(R) x P}(R)
Let
(H?)* = H? UP'(F)
The group I acts on (H?)*.

Shervin Shahrokhi Tehrani Hilbert modular forms and cohomology



Compactification Baily-Borel Compactification
Toroidal compactification and de singularization

Compactification

We have
P'(F) < PY(R) x P(R)
Let
(H?)* = H? UP'(F)
The group I acts on (H?)*. let
Xr = I\ (H?)*
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Compactification Baily-Borel Compactification
Toroidal compactification and de singularization

Compactification

We have
P'(F) < PY(R) x P(R)
Let
(H?)* = H? UPY(F)
The group I acts on (H?)*. let
Xr = I\ (H?)*
then we have

Theorem (Baily-Borel)

On (H?)* there is unique topology such that the I'\(H?)* with
quotient topology is a compact Hausdorff space. Moreover, there
is a sheaf of functions Ox, on Xr such that (Xr, Ox;) is complex

normal space.
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Compactification Baily-Borel Compactification
Toroidal compactification and de s arization

Compactification

e Remark: Using the line bundle of modular forms (in
sufficiently large weights) on Xr, gives an embedding into
projective space, therefore, Xr is projective algebraic variety
and Xé is quasi-projective.
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Compactification Baily-Borel Compactification
Toroidal compactification and de singularization

Toroidal compactification and de singularization

@ There is smooth compactification of X,i using Toroidal
Theory. Therefore, we can resolve the singularities at
boundary of Baily-Borel compactification.
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Compactification Baily-Borel Compactification
Toroidal compactification and de singularization

Toroidal compactification and de singularization

@ There is smooth compactification of X,i using Toroidal
Theory. Therefore, we can resolve the singularities at
boundary of Baily-Borel compactification.

@ Also, by using the theory of Hironaka, we are able to resolve
the singularities caused by Elliptic fixed points.
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Compactification Baily-Borel Compactification
Toroidal compactification and de singularization

Toroidal compactification and de singularization

@ There is smooth compactification of X,i using Toroidal
Theory. Therefore, we can resolve the singularities at
boundary of Baily-Borel compactification.

@ Also, by using the theory of Hironaka, we are able to resolve
the singularities caused by Elliptic fixed points.

We are going to use the adelic version and fix following spaces:
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Compactification Baily-Borel Compactification
Toroidal compactification and de singularization

Toroidal compactification and de singularization

@ There is smooth compactification of X,i using Toroidal
Theory. Therefore, we can resolve the singularities at
boundary of Baily-Borel compactification.

@ Also, by using the theory of Hironaka, we are able to resolve
the singularities caused by Elliptic fixed points.

We are going to use the adelic version and fix following spaces:

° Xy, = G(Q)\G(Ag)/KrKux
e Xk, is its Baily-Borel compactification.
@ Zk, be the minimal resolution of the cusps.

@ Yk, be the minimal resolution of all singularities.

Shervin Shahrokhi Tehrani Hilbert modular forms and cohomology



Hilbert modular forms : _
0 ishing conditions

Hilbert modular forms

Definition
A holomorphic function f : H?> — C is called Hilbert modular
forms of weight k = (k1, ko) € Z? on T if for all

a b
’y—<c d>€ronehas

f(vz) = (cz1 + d) 1 (c 2 + d )2 f(2).
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0 hing conditions

Hilbert modular forms

Definition
A holomorphic function f : H?> — C is called Hilbert modular
forms of weight k = (k1, ko) € Z? on T if for all

a b
’y—<c d>€ronehas

f(vz) = (cz1 + d) 1 (c 2 + d )2 f(2).

o If k = ki = ky then k is called the weight of f.
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Definition
Fourier expansion

Hilbert modular forms AR i e
Non-vanishing conditions

Fourier expansion

If f is Hilbert modular form then it has Fourier expansion at the
cusp oo as:
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Definition
Fourier expansion

Hilbert modular forms ~ _ i e
Non-vanishing conditions

Fourier expansion

If f is Hilbert modular form then it has Fourier expansion at the
cusp oo as:
There is M C F, Z-module of rank 2, such that

flz+u)="Ff(z) VueM, and
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Definition
Fourier expansion

Hilbert modular forms AR i e
Non-vanishing conditions

Fourier expansion

If f is Hilbert modular form then it has Fourier expansion at the
cusp oo as:
There is M C F, Z-module of rank 2, such that

flz+u)="Ff(z) VueM, and

f= Z aye(tr(vz)) where

veMV
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Definition
Fourier expansion

Hilbert modular forms - = s
Non-vanishing conditions

Fourier expansion

If f is Hilbert modular form then it has Fourier expansion at the
cusp oo as:
There is M C F, Z-module of rank 2, such that

flz+u)="Ff(z) VueM, and

f= Z aye(tr(vz)) where

veMV

1
a, = Vol(R/M) /RZ/M f(z)e(—tr(vz))dxidxy.
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Definition
Fourier expansion

Hilbert modular forms - = s
Non-vanishing conditions

Fourier expansion

If f is Hilbert modular form then it has Fourier expansion at the
cusp oo as:
There is M C F, Z-module of rank 2, such that

flz+u)="Ff(z) VueM, and

f= Z aye(tr(vz)) where

veMV

1
a, = Vol(R/M) /RZ/M f(z)e(—tr(vz))dxidxy.

In contrast to the one dimensional case, we have
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Definition
Fourier expansion

Hilbert modular forms AR i e
Non-vanishing conditions

Hilbert modular forms

Theorem (Koecher principle)

Let f : H2 — C Hilbert modular form, then

a, #0 implies v=20 or v > 0.
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Definition
Fourier

Hilbert modular forms v i e
Non-vanishing conditions

Hilbert modular forms

Theorem (Koecher principle)

Let f : H2 — C Hilbert modular form, then

a, #0 implies v=20 or v > 0.

We denote the space of all Hilbert modular forms of weight k by
M. This has an interpretation as global section of line bundles
over modular surface, and by using sheaf cohomology, M, is finite
dimensional.
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Definition
Fourier
Non-vanishing conditions

Hilbert modular forms

Hilbert modular forms

Theorem (Koecher principle)

Let f : H2 — C Hilbert modular form, then

a, #0 implies v=20 or v > 0.

We denote the space of all Hilbert modular forms of weight k by
M. This has an interpretation as global section of line bundles
over modular surface, and by using sheaf cohomology, M, is finite
dimensional.

Definition
A Hilbert modular form is called cusp form if it vanishes at all
cusps of I'. Sy is the space of all cusp forms of weight k.
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Hilbert modular forms Nemeveriikiing @ iiems

Non-vanishing conditions
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Definition

. Fourier expansion
Hilbert modular forms "XPE -
Non-vanishing conditions

Non-vanishing conditions

Theorem

Let f be Hilbert modular form of weight k = (ky, kp) for I'. The f

vanishes identically unless ki, ko are both positive or k1 = ko = 0.
In latter case f is constant.
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Definition
Fourier expansion
Non-vanishing conditions

Hilbert modular forms

Non-vanishing conditions

Theorem

Let f be Hilbert modular form of weight k = (ky, kp) for I'. The f
vanishes identically unless ki, ko are both positive or k1 = ko = 0.
In latter case f is constant.

Corollary

If: Zx, — Xk, is the natural map, then any holomorphic
I-form on Zi, vanishes identically, i.e

HY(Zk,,0k,) =0
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Definition
Fourie pansion

Hilbert modular forms Nemeveriikiing @ iiems

Non-vanishing conditions

Let w be 1-form, and 7 be pullback on regular points of X,. We
have
n = f(z)dz; + f2(z)dz
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Definition
Fouri xpansion
Non-vanishing conditions

Hilbert modular forms

Non-vanishing conditions

Let w be 1-form, and 7 be pullback on regular points of X,. We
have

n = f(z)dz; + f2(z)dz

where fi, f, are Hilbert modular form of weight (2,0), and (0, 2).
Using last theorem, we can say n vanishes. Therefore, w is

Zero. L]
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Definition

. expansion
Hilbert modular forms "XPE -
nishing conditions

Non-vanishing conditions

Let w be 1-form, and 7 be pullback on regular points of X,. We
have

n = f(z)dz; + f2(z)dz

where fi, f, are Hilbert modular form of weight (2,0), and (0, 2).

Using last theorem, we can say n vanishes. Therefore, w is
zero. []

Remark: Using Hodge theory we can show H!(Zj,,C) vanishes.
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Definition
Fourier expansion
Non-vanishing conditions

Hilbert modular forms

Non-vanishing conditions

Let w be 1-form, and 7 be pullback on regular points of X,. We
have
n = f(z)dz; + f2(z)dz

where fi, f, are Hilbert modular form of weight (2,0), and (0, 2).
Using last theorem, we can say n vanishes. Therefore, w is
zero. []

Remark: Using Hodge theory we can show H!(Zj,,C) vanishes.
This means that the interesting part of cohomology of Hilbert
modular surfaces is in degree 2.
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Cohomology

We are looking at H2(Zr, Q).
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Structure
Structure

Cohomology

We are looking at H?(Zr, Q).Using Poincare duality, we have a
non-degenerate pairing

HQ(Zr) X Hz(Zr) — Q
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Structure

Cohomology

We are looking at H?(Zr, Q).Using Poincare duality, we have a
non-degenerate pairing

HQ(Zr) X Hz(Zr) — Q

Let E, be the subspace of Hy(Zr,Q) generated by the classes of
the curves S, in the resolving of cusp o.
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Cohomology

We are looking at H?(Zr, Q).Using Poincare duality, we have a
non-degenerate pairing

HQ(Zr) X Hz(Zr) — Q

Let E, be the subspace of Hy(Zr,Q) generated by the classes of
the curves S, in the resolving of cusp o.
We have the decomposition

Hao(Zr, Q) = (@E > @Im{ L Ha(X), Q) —» HQ(Zr,Q)}.

where j : Xli — Zr.
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Cohomology

We are looking at H?(Zr, Q).Using Poincare duality, we have a
non-degenerate pairing

HQ(Zr) X Hz(Zr) — Q

Let E, be the subspace of Hy(Zr,Q) generated by the classes of
the curves S, in the resolving of cusp o.
We have the decomposition

Hao(Zr, Q) = (@E > @Im{ L Ha(X), Q) —» HQ(Zr,Q)}.

where j : Xli — Zr.
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Structure
Structure

Cohomology

By duality for cohomology we have
H*(Zr,Q) = | PE) | @ m"H* (X, Q).

where 7 : Zr — Xr.
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Structure

Cohomology

By duality for cohomology we have
H*(Zr,Q) = (@ E:) & 7 H(Xr, Q).

where 7 : Zr — Xr.
There is an exact sequence

0 = HY(Xr—Xr,Q) — H*(X{, Q) — H*(Xr,Q) — H>(Xr—X¢, Q) = 0.
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Cohomology

By duality for cohomology we have

H?(Zr,Q) = (@ Eav> ® 7 H*(Xr, Q).

where 7 : Zr — Xr.
There is an exact sequence

0 = HY(Xr—Xr,Q) — H*(X{, Q) — H*(Xr,Q) — H>(Xr—X¢, Q) = 0.

Proposition

2 ~ L2(v'
H (XD Q) = HC (Xr7 Q)



H?(—,)
Mixed Hodge Structure

Pure Hodge Structure
Cohomology =

Mixed Hodge Structure

XF is quasi-projective algebraic variety, therefore by Deligne Hodge
Theory, there is mixed Hodge structure as:
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H?(—,)
Mixed Hodge Structure

Pure Hodge Structure
Cohomology =

Mixed Hodge Structure

XF is quasi-projective algebraic variety, therefore by Deligne Hodge
Theory, there is mixed Hodge structure as:

o There is decreasing filtration {F,},cz on H'(X{,Q) ® C,

@ There is an increasing weight filtration { Wy} ez on
H?(X{,Q) as
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H3(—,)

Mixed Hodge Structure

Pure Hodge Structure
Cohomology =

Mixed Hodge Structure

X' is quasi-projective algebraic variety, therefore by Deligne Hodge
Theory, there is mixed Hodge structure as:

o There is decreasing filtration {F,},cz on H'(X{,Q) ® C,

@ There is an increasing weight filtration { Wy} ez on

H?(X{,Q) as

’

o W(H(X/,Q) = k<1
o WaH?(X[, Q) = WsH(X;, Q) = j"H(Zr,Q)
o Wi H2(X[,Q) = H2(Xr,@) k>4
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H3(—,)

Mixed Hodge Structure

Pure Hodge Structure
Cohomology =

Mixed Hodge Structure

XF is quasi-projective algebraic variety, therefore by Deligne Hodge
Theory, there is mixed Hodge structure as:
o There is decreasing filtration {F,},cz on H'(X{,Q) ® C,
@ There is an increasing weight filtration { Wy} ez on
H?(X{,Q) as

@ Remark: There exists a pure hodge structure of weight k on
Wi H?(Xr, Q) Wi—1H* (X, Q).
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H2(—,
Mixed Hodge Structure

Cohomology Pure Hodge Structure

Pure Hodge Structure

Recall

JH(Zr,Q) = j* ((@ E;) @ T HA(Xr, Q)) :

Since j*E,/ = 0 for all cusps,
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H2(—,
Mixed Hodge Structure

Cohomology Pure Hodge Structure

Pure Hodge Structure

Recall

JH*(Zr,Q) = j* ((EB E; ) ® 7 HA (X, Q)) :
Since j*E,/ = 0 for all cusps,

There is pure Hodge structure of weight 2 on

H?(Xr,C) := j*7*H?*(X, C).

Shervin Shahrokhi Tehrani Hilbert modular forms and cohomology



H2(—,
Mixed Hodge Structure

Cohomology Pure Hodge Structure

Pure Hodge Structure

Recall

JH*(Zr,Q) = j* ((EB E; ) ® 7 HA (X, @)) :
Since j*E,/ = 0 for all cusps,

There is pure Hodge structure of weight 2 on
H?(Xr,C) := j*7*H?*(X, C).

@ Remark: Notice that
H2(Xr, Q) = Im{H2(X{,Q) — H*(X;,Q)}
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H2(—,
Mixed Hodge Structure

Cohomology Pure Hodge Structure

Pure Hodge Structure

Let f = (..., f;,...) be Hilbert modular form of weight 2. This
defines a 2-form wy by

wr = (2mi)?f(2)dz1 A dzy  on T, \H2.
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Pure Hodge Structure

Let f = (..., f;,...) be Hilbert modular form of weight 2. This
defines a 2-form wy by

wr = (2mi)?f(2)dz1 A dzy  on T, \H2.

F2H2(Xr,((:) = {w,c f e 52}
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H2(—,
Mixed Hodge Structure

Cohomology Pure Hodge Structure

Pure Hodge Structure

Let f = (..., f;,...) be Hilbert modular form of weight 2. This
defines a 2-form wy by

wr = (2mi)?f(2)dz1 A dzy  on T, \H2.

F2H2(Xr,(:) = {w,c f e 52}

-1 0 1 0
Let€1:(< 0 1),1),52:(1,<0 _1>)actson
H* x H* by

e1: (21, ) — (Z1,22), e1:(21,22) — (21,22)
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Pure Hodge Structure

Let f = (..., f;,...) be Hilbert modular form of weight 2. This
defines a 2-form wy by

wr = (2mi)?f(2)dz1 A dzy  on T, \H2.

F2H2(Xr,(:) = {w,c f e 52}

-1 0 1 0
Let€1:(< 0 1),1),52:(1,<0 _1>)actson
H* x H* by

e1: (21, ) — (Z1,22), e1:(21,22) — (21,22)

Shervin Shahrokhi Tehrani Hilbert modular forms and cohomology



H 2 ))
Mixed Hodge Structure

Cohomology Pure Hodge Structure

Pure Hodge Structure

We define
!/
nfF=exwr  1f = e wr

H2(Xr, C) is direct sum of
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Cohomology Pure Hodge Structure

Pure Hodge Structure

We define
!/
nfF=exwr  1f = e wr

H2(Xr, C) is direct sum of
Q it is (2,0)- component {wr : f € Sy}
@ it is (0,2)- component {wr : f € Sy}
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H?(=,)
Mixed Hodge Structure

Cohomology Pure Hodge Structure

Pure Hodge Structure

We define
!/
nfF=exwr  1f = e wr

H2(Xr, C) is direct sum of
Q it is (2,0)- component {wr : f € Sy}
@ it is (0,2)- component {wr : f € Sy}
Q itis (1,1)-component {n¢ —1—77;, :f,g €S} @ W, where W is

the space generated by the forms wi, wy on all components of
Xr.
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H2(—,)
Mixed Hodge Structure

Cohomology Pure Hodge Structure

Cuspidal Cohomology

H2,.,(Xr, C) is the orthogonal complement of W in H?(Xr, C).

cusp
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Hecke ring

Let
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Action on Cohomology
Sy Str as Hy-module
Decomposition of

The action of Hecke operators

Hecke ring

Let
B=G(Ag)n | GR)® x [] GL2(0%,)
vESr
and
R = G(R)° x Ky
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Action on Cohomology
S, Structure as Hi-module
Decomposition of H

The action of Hecke operators

Hecke ring

B=G(Ag)n | GR)® x [] GL2(0%,)
vESr
and
R = G(R)° x Ky

Definition

Let Hk be the algebra over Q generated by
T(m) =) RbR where  det(b)Or =m.
b
where m is an integral ideal.
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The action of Hecke operators

The action of Hecke operators on Modular Forms

@ Note: There is a version of action of Hecke operators on
Modular forms, we are going to use this fact that S, i. e the
space of cusp forms has basis of of eigenforms for all Hecke
operators and Multiplicity one principle, i. e two eigenforms
with same eigenvalus are multiple of each other.
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Ire -module

The action of Hecke operators

The action of Hecke operators on Cohomology

We have

H2(Xk,, Q) = H2,,(Xip» Q) @ (Q(—1))"".

where Q(—1) is the rational hodge structure of type (1,1) of
(2mi)Q.
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Ire Hy-module

The action of Hecke operators

The action of Hecke operators on Cohomology

We have

H2(Xk,, Q) = H2,,(Xip» Q) @ (Q(—1))"".

where Q(—1) is the rational hodge structure of type (1,1) of
(2mi)Q.

Recall that HZ,,(Xk,, Q) has Hodge decomposition where each

term is isomorphic with a space of cusp forms.
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Cohomology
Ire -module

The action of Hecke operators

The action of Hecke operators on Cohomology

We have

H2(Xk,, Q) = H2,,(Xip» Q) @ (Q(—1))"".

where Q(—1) is the rational hodge structure of type (1,1) of
(2mi)Q.

Recall that HZ,,(Xk,, Q) has Hodge decomposition where each
term is isomorphic with a space of cusp forms.

Therefore, Hy acts on H2,.,(Xr,C) which is compatible with

action on modular forms.
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Sy Structure as Hyc-module
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The action of Hecke operators

The action of Hecke operators on H?( X, C)

For any T € Hyk we can attach T*, an endomorphism of
H2(Xk,, Q) such that preserves the Hodge decomposition, and

/ w:/T*w Ve € Ha(Xy,, Q), w € HA(X',Q)
Ts«c c

where T, is its dual endomorphism on Hy(Xj,, Q). Also,

< wq, T*(,UQ >=< T*wl,WQ >
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The action of Hecke operators

Decomposition of Hy

Proposition

Hyk is a semi-simple finite dimensional algebra over Q, and S, is an
Hk ® C-module of rank one. Moreover,

Hk = @k

where k; is finite field extension of Q.
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Action on Cohomol
Sy Structure as Hy
Decomposition o

The action of Hecke operators

Decomposition of Hy

Proposition
Hyk is a semi-simple finite dimensional algebra over Q, and S, is an
Hk ® C-module of rank one. Moreover,

Hk = @k

where k; is finite field extension of Q.

We can choose set of primitive idempotents {ej, e, ..., €5} such
that k; = ejHk.
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The action of Hecke operators

Embedding of k;

If f is normalized eigenform f in ;S,, then there is embedding

0','2/(,'—>(C

therefore, ki @y C =P, C.
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Action on Cohomology
Sy Structure as Hy-
Decomposition of cusp

The action of Hecke operators

Embedding of k;

If f is normalized eigenform f in ;S,, then there is embedding

0','2/(,'—>(C

therefore, ki @y C =P, C.
Using above embedding

e,-52 = EBCfU

where the f7 are the normalized eigenforms with t(f7) = o(t)f°.
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Action on Coho
S, Structure as
Decomposition of

The action of Hecke operators

Embedding of k;

If f is normalized eigenform f in ;S,, then there is embedding

0','2/(,'—>(C

therefore, ki @y C =P, C.
Using above embedding

e,-52 = EBCfU

where the f7 are the normalized eigenforms with t(f7) = o(t)f°.

@ Remark: f? is called companion of f.
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S, Structure a
Decomposition of ]HIEUSP(XKO

The action of Hecke operators

Decomposition of H2 . (Xk,, Q)

cusp

Let F = {f1,..., fn} be a set of normalized eigenforms, one for each
ki (i.e fi € e,'Sg).
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Action on Cohon
Sy Structure as Hy

Decomposition of ngsp

(0.9

The action of Hecke operators

Decomposition of H2 . (Xk,, Q)

cusp

Let F = {f1,..., fn} be a set of normalized eigenforms, one for each
ki (i.e fi € e,'Sg).
If f € ¢;S, the we shall write e; = ef and k; = k¢.
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Action on Cohon
Sy Structure as Hy

Decomposition of ngsp

(0.9

The action of Hecke operators

Decomposition of H2 . (Xk,, Q)

cusp

Let F = {f1,..., fn} be a set of normalized eigenforms, one for each
ki (i.e fi € e,'Sg).
If f € ¢;S, the we shall write e; = ef and k; = k¢.
We let
H?(My,Q) == efH2,. (X, Q).

cusp
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Action on Cohomology
S, Structure as Hy-module
Decomposition of H

The action of Hecke operators

Decomposition of H2 . (Xk,, Q)

cusp

Let F = {f1,..., fn} be a set of normalized eigenforms, one for each
ki (i.e f, e e,'52).
If f € ¢;S, the we shall write e; = ef and k; = k¢.
We let
H2(Mf7 Q) := engusp(X7Q)'

Theorem

There is a decomposition of polarized Hodge structure on
ngsp(xv @) as

ngsp(Xv Q) = @ Hz(Mﬁ Q)

feF
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Decomposmon of chsp(XKo

The action of Hecke operators

Further Decomposition of H?(M¢, Q)

Let consider 1, 2 as involutions on H2(X, Q).
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Action on Cohom /
S, Structure a odule
Decomposmon of chsp(XK

The action of Hecke operators

Further Decomposition of H?(M¢, Q)

Let consider 1, 2 as involutions on H2(X, Q).
Because the actions of €1, €0 commutes with Hecke operators,

therefore,
H (M, Q)= B  H (M, Q)ss
s,s’e{+,—}

where €1, €2 act on H?(M¢, Q). as s.Id and s'.Id respectively.
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The action of Hecke operators

Further Decomposition of H?(M¢, Q)

Let consider 1, 2 as involutions on H2(X, Q).
Because the actions of €1, €0 commutes with Hecke operators,
therefore,

Hz(Mf,Q) = @ H2(MfaQ)ss’

S,SIE{-"-,—}

where €1, €2 act on H?(M¢, Q). as s.Id and s'.Id respectively.

Proposition

For every normalized eigenform f € S, we have

ranky, H*(Ms,Q)ss = 1.
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Action on Cohomology
Sp Structu H,\—’)module

Decomposition of HE,,q, (X,

The action of Hecke operators

Thanks
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