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Notation for Hirzebruch-Zagier:

Let p ≡ 1 (mod 4) be a prime.

• Yp := SL2(OQ(
√
p))\H2

• Xp :=
Satake-Baily-Borel

compactification of Yp

• XT
p :=

a particular (smooth) toroidal
compactification of Yp.

Z◦m : = π


(z1, z2) ∈ H2 :

z2 =
γ′z1−b

√
p

a
√
pz1+γ

a, b ∈ Z, γ ∈ OQ(
√
p)

γγ′+ abp = m




where

π : H2 → Yp

is the canonical projection.



Let

Φ :=
∞∑
n=0

[Zn]qn (q := e2πiz).

Theorem (Hirzebruch-Zagier Invent. ‘76)

For each ξ ∈ H2(XT
p ) we have that

〈ξ,Φ〉H :=
∑
n≥0

〈ξ, [Zn]〉H qn

is a weight 2 modular form with nebentypus.



Theorem (Zagier, LNM ’76):

〈[Zm],Φ〉H = c(m)E+
2,p(z)

+ r
∞∑
n=1

∑
f

(∫
Z1
ω(f̂)

)2

(f̂ , f̂)
af(m)af(n)

 qn.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

•
∑
f is over a certain basis of S+

2

(
Γ0(p),

(
p
·
))

.

• E+
2,p := an Eisenstein series for this space.

r := constant

c(m) := constant depending on m.

• (, ) := Petersson inner product.

• f̂ is the Naganuma lift of f

η
f̂

:= (1,1)-form attached to f̂ .



Salient points:

• Subspace of H2(XT
p ) spanned by algebraic

cycles.

• Geometric generating series:

Φ ∈ H2(XT
p )⊗M+

2 (Γ0(p)).

• Explicit description of

Im
(
〈·,Φ〉 : H2(XT

p )∨ −→M+
2 (Γ0(p))

)
.



All three points are consequences of

• Intersection homology.

• Langlands functoriality.

• Distinction.



Notation:

• L/E := quadratic extension of totally real

number fields with Hecke character η.

• Σ(L) := set of embeddings σ : L ↪→ R.

• OL := ring of integers of L.

• c := ideal of OL.

• cE := ideal of OE.

• G := GL := ResL/Q(GL2).



Hilbert modular varieties

Y0(c) : = G(Q)\G(A)/K∞K0(c).

X0(c) : = Satake-Baily-Borel of Y0(c).

• K∞ is the stabilizer of

C× → G(R)

x+ iy 7→
((

x y
−y x

)
, . . . ,

(
x y
−y x

)).

• K0(c) is the compact open{
γ ∈ GL2(ÔL) : γ ≡ ( ∗ ∗0 ∗ ) (mod c)

}
.

Analytic realization:

Y0(c) =
∐
j

Γj\HΣ(L).



Base change:

Tc :=Hecke algebra over L

TcE :=Hecke algebra over E

b : Tc −→ TcE

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

{Newforms on E} −→ {Newforms on L}Gal(L/E)

f 7−→ f̂

λ
f̂
(n) = λf(b(T (n)))



Notation:

Define S+(cE, η) to be{
g ∈ S(K0(cE), η) :

a(m, g) = 0 if η(m) = −1
or m + cE 6= OE

}
.

IHE(X0(c)) :=
⊕

f∈Snew(K0(c)):
λf (mσ)=λf (m)

∀σ∈Gal(L/E)

IH[L:Q](X0(c))(f).

IHη(X0(c)) :=
⊕

nebentypus(g)=η

ĝ∈S(K0(c))

IH[L:Q](X0(c))(ĝ).



The Hecke operators T̂ (m):

For m ⊂ OL, define a Hecke operator

T̂ (NL/E(m)) ∈ Tc ⊗ C.

For example, T̂ (NL/E(P)r) is
1
2

(
T (Pr) + T (Pr)

)
if p splits

T (Pr) + η(p)NE/Q(p)T̂ (p2r−2) if p is inert

0 otherwise.

Thus

TcE −→ Tc

T (n) 7−→ T̂ (n)

is a section of b:

λ
f̂
(T̂ (n)) = λf(n)



Definition of γ(m′):

Let

Q : IHE(X0(c)) −→ IHη(X0(c))

be the projection.

For each γ ∈ IHE(X0(c)), define

γ(m′) :=

T̂ (NL/E(m))∗Qγ if m′ = NL/E(m),

0 otherwise.



Results:

Theorem 1 (G.-Goresky).

Let L/E be quadratic and let γ ∈ IHE(X0(c)).

We then have that

Φγ

((
y x
0 1

))
:= |y|AE

∑
ξ∈E×
0�ξ

γ(ξyDE/Q)q(ξx, ξy)

is an element of

IHE(X0(c))⊗ S+(N (c), η).

For t ∈ Tc one has

〈ψ,Φγ〉



Theorem 2 (G.-Goresky).

Suppose that Z is a subanalytic cycle on X0(c)

admitting a class [Z] ∈ IH[L:Q](X0(c)). If

n + dL/E(c ∩ OE) = m + dL/E(c ∩ OE) = OE
and n,m are norms from OL, then the nth Fourier

coefficient of

〈[Z](m),Φ[Z]〉IH
is

1

4

∑
J⊂Σ(E)

∑
f

∫
Z ωJ(f̂)

∫
Z ωJ(f̂)∫

Y0(c) ωJ(f̂) ∧ ωJ(f̂)
λf(m)λf(n)

where f ranges over newforms of nebentypus

η with f̂ ∈ S(K0(c)).

Otherwise, the nth Fourier coefficient is zero.



Déjà vu:

Theorem (Zagier, LNM ’76):

〈[Zm],Φ〉H = c(m)E2,p(z)

+ r
∞∑
n=1

∑
f

(∫
Z1
η
f̂

)2

(f̂ , f̂)
af(m)af(n)

 qn.



Remark:

Have:

• Geometric generating series:

Φγ ∈ IHη(X0(c))⊗ S+(N (c), η)).

• Explicit description of

Im
(
〈·,Φγ〉 : IHη(X0(c))∨ −→ S+(N (c), η)

)
.

Still need:

• Subspace of IH[L:Q](X0(c)) spanned by al-

gebraic cycles.



Examples of cycles admitting classes in IH:

• Have

ι : GE ↪→ G = GL.

• This gives, for every compact open

K ≤ G(Af), Shimura

subvarieties

Yι−1(K0(c))∩GE(Af) ↪→ Y0(c)

Xι−1(K0(c))∩GE(Af) ↪→ X0(c).

where

YKE := GE(Q)\GE(A)/KE,∞KE.

The associated cycles intersect the cusps

nontrivially.



Theorem 3 (G.-Goresky).

A Shimura subvariety Z ⊂ X0(c) as above ad-

mits a canonical class

[Z] ∈ IH[L:Q](X0(c)).

Moreover

〈[Z], [ω(f)]〉IH =
∫
Z
ω(f).



Let Z be a Shimura subvariety as above. Let

Pnew : IH[L:Q](X0(c)) −→ IHnew
[L:Q](X0(c))

be the projection.

Theorem 4 (G.-Goresky).

The class Pnew([Z]) is an element of IHη(X0(c)).
Moreover, if g ∈ S(K0(c)) is the base change
of a form f of nebentypus η, then

〈[Z], [ω(g)]〉IH =
∫
Z
ω(g)

= L(Ad(f)⊗ η,1).

Otherwise,

〈[Z], [ω(g)]〉IH = 0.

This provides

• Subspace of IHη(X0(c)) ≤ IH[L:Q](X0(c))
spanned by algebraic cycles.



Proofs:

Proof of Theorem 1:

Consequence of the fact that

TcE −→ Tc

T (n) 7−→ T̂ (n)

is a section of

b : Tc −→ TcE

Thus

λ
f̂
(T̂ (n)) = λf(n).

This is where we use

• Langlands functoriality.



Proof of Theorem 2:

Step 1: Prove Theorem 2 up to nonzero

constants:

〈[Z](m),Φγ〉IH =
∑
f

cfλf(m)f(c∩OE)dL/E ,

where cf ∈ C×.



Step 1 is a consequence of:

1. The intersection pairing 〈, 〉IH is

nondegenerate.

2. There is an isomorphism of Hecke modules

Z : H[L:Q]
(2) (X0(c))−̃→IH[L:Q](X0(c))

(the Zucker conjecture, proven by Saper-

Stern and Looijenga).

3. The L2-cohomology has a nice description,

due to work of Harder (rephrased by Hida):

H•(2)(X0(c)) ∼= invariant forms ⊕⊕
J⊂Σ(L)

⊕
f∈S(K0(c))

ωJ(f)



Step 2: Prove compatibilities between

pairings.

E.g.

〈Z[ωJ(f)],Z[ωΣ(L)−J(g)]〉IH
=
∫
Y0(c)

ωJ(f) ∧ ωΣ(L)−J(g)

= ∗〈f, g〉Petersson.

and ∫
Z
ωJ(f) = 〈[Z], [ωJ(f)]〉K.

These statements would be classical if X0(c)

was a manifold, but it is not:

• Y0(c) is only an orbifold.

• X0(c) has isolated singularities.



A proof of these statements involves

• Subanalytic triangulations of spaces with

isolated singularities, and how differential

forms and chains behave with respect to

such triangulations.

• Deligne’s characterization of the

intersection cohomology sheaf on a

pseudomanifold X as an element of Db(X).

Clearly using

• Intersection homology.



Proof of Theorem 3:

We have to show that a Shimura subvariety

Z ⊂ X0(c) admits a canonical class in intersec-

tion homology.

The key input:

Theorem 5 (Saper). The quotient map

Y0(c)RBS → X0(c) induces an isomorphism

IH•(Y0(c)RBS)−̃→IH•(X0(c)).



Proof of Theorem 4:

Use a Rankin-Selberg convolution.

Leads to distinction:

H ′ ≤ H := reductive F -groups.

An automorphic representation π of H(AF ) is

H ′-distinguished if some form in the space of

π has a nonzero period over

H ′(F )\H ′(AF ) ∩H(AF )1.



Summary:

• We produced a Hilbert modular form with

coefficients in intersection homology:

Φγ ∈ IH[L:Q](X0(c))⊗ S(K0(c)).

• The Fourier coefficients of

〈[Z],Φ[Z]〉IH
were then computed in terms of period

integrals for nice cycles Z.

• Constructed cycles in IHL:Q(X0(c)).

Remark 6. In the book, we allow arbitrary weight

and character.



Where to go from here:

General theory of distinction.

• Nonvanishing of cohomological periods.

Questions in geometry.

• Integration formulae of the type

〈[Z], ω(f)〉IH =
∫
Z
ω(f)

for locally symmetric spaces of higher Q-

rank (non-isolated singularities)?

• Construction of canonical classes (also in

étale setting).



Modularity

• Relationship between models of represen-

tations and Hecke algebras.


