# Montreal-Toronto Workshop on Hilbert Modular Varieties

Henri Darmon
Fields Institute, Toronto
April 2011

Cycles on Hilbert modular varieties

Cycles on Hilbert modular surfaces

This is partly a survey of joint work with

Pierre Charollois (Paris),

Adam Logan (Ottawa),

Victor Rotger (Barcelona),

(Montreal).

Cycles on Hilbert modular varieties

Cycles on Hilbert modular surfaces

This is partly a survey of joint work with

Pierre Charollois (Paris),

Adam Logan (Ottawa),

Victor Rotger (Barcelona),

Yu Zhao (Montreal).



Cycles on Hilbert modular varieties

Cycles on Hilbert modular surfaces

This is partly a survey of joint work with

Pierre Charollois (Paris),

Adam Logan (Ottawa),

Victor Rotger (Barcelona),

Yu Zhao (Montreal).



Cycles on Hilbert modular varieties

Cycles on Hilbert modular surfaces

This is partly a survey of joint work with

Pierre Charollois (Paris),

Adam Logan (Ottawa),

Victor Rotger (Barcelona),

Yu Zhao (Montreal).



#### Special cycles on modular curves

Modular curves (and Shimura curves) are equipped with a rich supply of *arithmetically interesting* topological cycles.

Let 
$$X_0(N)$$
= modular curve of level  $N$ ,

$$X_0(N)(\mathbb{C}) = \Gamma_0(N) \backslash \mathcal{H}^*.$$

#### Special cycles on modular curves

Modular curves (and Shimura curves) are equipped with a rich supply of *arithmetically interesting* topological cycles.

Let 
$$X_0(N)$$
= modular curve of level  $N$ ,

$$X_0(N)(\mathbb{C})=\Gamma_0(N)\backslash \mathcal{H}^*.$$

The cycles are naturally indexed by embeddings

$$\Psi: K \longrightarrow M_2(\mathbb{Q}),$$

where K is a commutative (quadratic) subring of  $\mathbb{C}$ .

$$\Sigma := \{ \Psi : K \longrightarrow M_2(\mathbb{Q}) \} / \Gamma_0(N).$$

$$\mathsf{Disc}(\Psi) = \mathsf{Disc}(\Psi(K) \cap M_0(N)).$$

$$\Sigma_D := \{ \Psi \in \Sigma : \mathsf{Disc}(\Psi) = D \}$$



The cycles are naturally indexed by embeddings

$$\Psi: K \longrightarrow M_2(\mathbb{Q}),$$

where K is a commutative (quadratic) subring of  $\mathbb{C}$ .

$$\Sigma:=\{\Psi: K \longrightarrow \textit{M}_2(\mathbb{Q})\}/\Gamma_0(N).$$

$$\mathsf{Disc}(\Psi) = \mathsf{Disc}(\Psi(K) \cap M_0(N)).$$

$$\Sigma_D := \{ \Psi \in \Sigma : \mathsf{Disc}(\Psi) = D \}$$

The cycles are naturally indexed by embeddings

$$\Psi: K \longrightarrow M_2(\mathbb{Q}),$$

where K is a commutative (quadratic) subring of  $\mathbb{C}$ .

$$\Sigma:=\{\Psi: K \longrightarrow \textit{M}_2(\mathbb{Q})\}/\Gamma_0(N).$$

$$\mathsf{Disc}(\Psi) = \mathsf{Disc}(\Psi(K) \cap M_0(N)).$$

$$\Sigma_D := \{ \Psi \in \Sigma : \mathsf{Disc}(\Psi) = D \}$$



The cycles are naturally indexed by embeddings

$$\Psi: K \longrightarrow M_2(\mathbb{Q}),$$

where K is a commutative (quadratic) subring of  $\mathbb{C}$ .

$$\Sigma:=\{\Psi: K \longrightarrow \textit{M}_2(\mathbb{Q})\}/\Gamma_0(N).$$

$$\mathsf{Disc}(\Psi) = \mathsf{Disc}(\Psi(K) \cap M_0(N)).$$

$$\Sigma_D := \{ \Psi \in \Sigma : \mathsf{Disc}(\Psi) = D \}.$$



#### Some Key Facts

- The (narrow) class group  $G_D = \operatorname{cl}(D)$  acts naturally on  $\Sigma_D$ , without fixed points.

**Goal**: Associate to each  $\Psi \in \Sigma$  a (topological) cycle

$$\Delta_{\Psi} \subset X_0(N)(\mathbb{C}).$$

#### Some Key Facts

- The (narrow) class group  $G_D = \operatorname{cl}(D)$  acts naturally on  $\Sigma_D$ , without fixed points.

**Goal**: Associate to each  $\Psi \in \Sigma$  a (topological) cycle

$$\Delta_{\Psi} \subset X_0(N)(\mathbb{C}).$$

#### Some Key Facts

- The (narrow) class group  $G_D = \operatorname{cl}(D)$  acts naturally on  $\Sigma_D$ , without fixed points.

**Goal**: Associate to each  $\Psi \in \Sigma$  a (topological) cycle

$$\Delta_{\Psi} \subset X_0(N)(\mathbb{C}).$$

#### The cycle $\Delta_{\Psi}$ when D < 0: CM points.

The rational torus

$$\Psi({{\mathsf K}}^\times) \subset {\textbf{GL}}_2({\mathbb Q}) \circlearrowleft {\mathcal H}$$

has a unique fixed point  $\tau_{\Psi} \in \mathcal{H}$ . We set

$$\Delta_{\Psi} := \{ \tau_{\Psi} \}.$$

 $ullet^{ au\psi}$ 

The point  $\tau_{\Psi}$  is a *CM point* on  $X_0(N)$  (of discriminant D).

#### The cycle $\Delta_{\Psi}$ when D < 0: CM points.

The rational torus

$$\Psi({\mathcal K}^\times)\subset \textbf{GL}_2({\mathbb Q})\circlearrowleft {\mathcal H}$$

has a unique fixed point  $\tau_{\Psi} \in \mathcal{H}$ . We set

$$\Delta_{\Psi} := \{ \tau_{\Psi} \}.$$

 $ullet^{ au \psi}$ 

The point  $\tau_{\Psi}$  is a *CM point* on  $X_0(N)$  (of discriminant D).

#### The cycle $\Delta_{\Psi}$ when D < 0: CM points.

The rational torus

$$\Psi({\mathcal K}^\times)\subset \textbf{GL}_2({\mathbb Q})\circlearrowleft {\mathcal H}$$

has a unique fixed point  $\tau_{\Psi} \in \mathcal{H}$ . We set

$$\Delta_{\Psi} := \{ \tau_{\Psi} \}.$$

 $\bullet^{\tau_{\textstyle \Psi}}$ 

The point  $\tau_{\Psi}$  is a *CM point* on  $X_0(N)$  (of discriminant D).

#### The cycle $\Delta_{\Psi}$ when $D=m^2$ : modular symbols.

When  $D=m^2$ , the  $\mathbb{Q}$ -split torus  $\Psi(K^{\times})$  has two fixed points  $\tau_{\Psi}$  and  $\tau'_{\Psi}$  in  $\mathbb{P}_1(\mathbb{Q}) \subset \mathcal{H}^*$ .

$$\Delta_{\Psi} := \text{Geodesic joining } \tau_{\Psi} \text{ to } \tau_{\Psi}'.$$



The cycle  $\Delta_{\Psi} \subset X_0(N)(\mathbb{C})$  of real dimension one is called a *modular symbol* (of conductor m).

#### The cycle $\Delta_{\Psi}$ when $D=m^2$ : modular symbols.

When  $D=m^2$ , the  $\mathbb{Q}$ -split torus  $\Psi(K^{\times})$  has two fixed points  $\tau_{\Psi}$  and  $\tau'_{\Psi}$  in  $\mathbb{P}_1(\mathbb{Q}) \subset \mathcal{H}^*$ .

$$\Delta_{\Psi} := \text{Geodesic joining } \tau_{\Psi} \text{ to } \tau'_{\Psi}.$$



The cycle  $\Delta_{\Psi} \subset X_0(N)(\mathbb{C})$  of real dimension one is called a *modular symbol* (of conductor m).

### The cycle $\Delta_{\Psi}$ when $D=m^2$ : modular symbols.

When  $D=m^2$ , the  $\mathbb{Q}$ -split torus  $\Psi(K^{\times})$  has two fixed points  $\tau_{\Psi}$  and  $\tau_{\Psi}'$  in  $\mathbb{P}_1(\mathbb{Q})\subset\mathcal{H}^*$ .

 $\Delta_{\Psi} := \text{Geodesic joining } \tau_{\Psi} \text{ to } \tau'_{\Psi}.$ 



The cycle  $\Delta_{\Psi} \subset X_0(N)(\mathbb{C})$  of real dimension one is called a *modular symbol* (of conductor m).

#### The cycle $\Delta_{\Psi}$ when D > 0, $D \neq m^2$ : Shintani cycles.

In the remaining cases where D>0, the torus  $\Psi(K^{\times})$  has two fixed points  $\tau_{\Psi}, \tau'_{\Psi}$  in  $\mathbb{P}_1(\mathbb{R}) - \mathbb{P}_1(\mathbb{Q})$ .

 $\Delta_{\Psi} := \mathsf{Image} \; \mathsf{of} \; \mathsf{geodesic} \; \mathsf{joining} \; au_{\Psi} \; \mathsf{to} \; au_{\Psi}'.$ 



The cycle  $\Delta_{\Psi} \subset X_0(N)(\mathbb{C})$  is closed, of real dimension one.

It is called a *Shintani cycle* (of discriminant *D*).

### The cycle $\Delta_{\Psi}$ when D > 0, $D \neq m^2$ : Shintani cycles.

In the remaining cases where D>0, the torus  $\Psi(K^{\times})$  has two fixed points  $\tau_{\Psi}, \tau'_{\Psi}$  in  $\mathbb{P}_1(\mathbb{R}) - \mathbb{P}_1(\mathbb{Q})$ .

 $\Delta_{\Psi} := \mathsf{Image} \,\, \mathsf{of} \,\, \mathsf{geodesic} \,\, \mathsf{joining} \,\, \tau_{\Psi} \,\, \mathsf{to} \,\, \tau_{\Psi}'.$ 



The cycle  $\Delta_{\Psi} \subset X_0(N)(\mathbb{C})$  is closed, of real dimension one.

It is called a *Shintani cycle* (of discriminant *D*).

### The cycle $\Delta_{\Psi}$ when D > 0, $D \neq m^2$ : Shintani cycles.

In the remaining cases where D>0, the torus  $\Psi(K^{\times})$  has two fixed points  $\tau_{\Psi}, \tau'_{\Psi}$  in  $\mathbb{P}_1(\mathbb{R}) - \mathbb{P}_1(\mathbb{Q})$ .

 $\Delta_{\Psi} := \mathsf{Image} \,\, \mathsf{of} \,\, \mathsf{geodesic} \,\, \mathsf{joining} \,\, \tau_{\Psi} \,\, \mathsf{to} \,\, \tau_{\Psi}'.$ 



The cycle  $\Delta_{\Psi} \subset X_0(N)(\mathbb{C})$  is closed, of real dimension one.

It is called a *Shintani cycle* (of discriminant *D*).

#### Some more definitions

Let  $\chi: G_D \longrightarrow \mathbb{C}^{\times}$  be a (not necessarily quadratic!) character.

$$\Delta_{D,\chi} := \left\{ egin{array}{ll} 0 & ext{if } \Sigma_D = \emptyset \ & \sum_{\sigma \in \mathcal{G}_D} \chi(\sigma) \Delta_{\Psi^\sigma} & ext{with } \Psi \in \Sigma_D. \end{array} 
ight.$$

**Important special case**:  $\chi$  is quadratic, i.e., a genus character. It cuts out a bi-quadratic extension  $\mathbb{Q}(\sqrt{D_1}, \sqrt{D_2})$  where  $D = D_1D_2$ .

$$\Delta_{D_1,D_2} := \Delta_{D,\chi}$$

#### Some more definitions

Let  $\chi: G_D \longrightarrow \mathbb{C}^{\times}$  be a (not necessarily quadratic!) character.

$$\Delta_{D,\chi} := \left\{ egin{array}{ll} 0 & ext{if } \Sigma_D = \emptyset \ \\ \sum_{\sigma \in \mathcal{G}_D} \chi(\sigma) \Delta_{\Psi^\sigma} & ext{with } \Psi \in \Sigma_D. \end{array} 
ight.$$

**Important special case**:  $\chi$  is quadratic, i.e., a genus character. It cuts out a bi-quadratic extension  $\mathbb{Q}(\sqrt{D_1}, \sqrt{D_2})$  where  $D = D_1D_2$ .

$$\Delta_{D_1,D_2} := \Delta_{D,\chi}.$$

#### Periods attached to $\Delta_{D,\gamma}$ when D>0

Let  $f \in S_2(\Gamma_0(N))$  be a newform of weight two.

$$\omega_f := 2\pi i f(z) dz = f(q) \frac{dq}{q} \in \Omega^1(X_0(N)/K_f).$$

We attach to f and the cycle  $\Delta_{D,\chi}$  a period

$$\int_{\Delta_{D,\chi}} \omega_f \in \Lambda_{f,\chi}.$$

Let  $L(f/K_D, \chi, s)$ = Hasse-Weil L-series attached to f and  $\chi \in G_D^{\vee}$ .

$$L(f/K_D,\chi,s)=L(f,\chi,s)L(f,\bar{\chi},s)$$

#### Periods attached to $\Delta_{D,\gamma}$ when D>0

Let  $f \in S_2(\Gamma_0(N))$  be a newform of weight two.

$$\omega_f := 2\pi i f(z) dz = f(q) \frac{dq}{q} \in \Omega^1(X_0(N)/K_f).$$

We attach to f and the cycle  $\Delta_{D,\chi}$  a period

$$\int_{\Delta_{D,\chi}} \omega_f \in \Lambda_{f,\chi}.$$

Let  $L(f/K_D, \chi, s)$ = Hasse-Weil L-series attached to f and  $\chi \in G_D^{\vee}$ .

$$L(f/K_D,\chi,s)=L(f,\chi,s)L(f,\bar{\chi},s).$$

#### Periods attached to $\Delta_{D,\gamma}$ when D>0

Let  $f \in S_2(\Gamma_0(N))$  be a newform of weight two.

$$\omega_f := 2\pi i f(z) dz = f(q) \frac{dq}{q} \in \Omega^1(X_0(N)/K_f).$$

We attach to f and the cycle  $\Delta_{D,\chi}$  a period

$$\int_{\Delta_{D,\chi}} \omega_f \in \Lambda_{f,\chi}.$$

Let  $L(f/K_D, \chi, s)$ = Hasse-Weil L-series attached to f and  $\chi \in G_D^{\vee}$ .

$$L(f/K_D, \chi, s) = L(f, \chi, s)L(f, \bar{\chi}, s)$$



#### Periods attached to $\Delta_{D,\gamma}$ when D > 0

Let  $f \in S_2(\Gamma_0(N))$  be a newform of weight two.

$$\omega_f := 2\pi i f(z) dz = f(q) \frac{dq}{q} \in \Omega^1(X_0(N)/K_f).$$

We attach to f and the cycle  $\Delta_{D,\chi}$  a period

$$\int_{\Delta_{D,\chi}} \omega_f \in \Lambda_{f,\chi}.$$

Let  $L(f/K_D, \chi, s)$ = Hasse-Weil L-series attached to f and  $\chi \in G_D^{\vee}$ .

$$L(f/K_D, \chi, s) = L(f, \chi, s)L(f, \bar{\chi}, s).$$

### Relation with special values of *L*-series (the case D > 0).

#### **Theorem**

Let D be a positive discriminant.

- If  $\Sigma_D \neq \emptyset$ , then  $L(f/K_D, \chi, s)$  vanishes to even order at s = 1 for all  $\chi \in G_D^{\vee}$ .
- 2 In that case,

$$\left| \int_{\Delta_{D,\chi}} \omega_f \right|^2 = L(f/K_D,\chi,1) \pmod{(K_f K_\chi)^\times}.$$

#### Heegner points attached to $\Delta_{D,\gamma}$ when D < 0

The zero-dimensional cycles  $\Delta_{D,\chi}$  are homologically trivial when  $\chi \neq 1$ .

$$J_{D,\chi} := \mathsf{AJ}(\Delta_{D,\chi}) = \int_{\partial^{-1}(\Delta_{D,\chi})} \omega_f \in \mathbb{C}/(\Lambda_f \otimes \mathbb{Z}(\chi)).$$

Assume for simplicity that  $K_f = \mathbb{Q}$ . Then f corresponds to a modular elliptic curve  $E_f/\mathbb{Q}$  and  $\mathbb{C}/\Lambda_f \sim E_f(\mathbb{C})$ . We can view  $J_{D,\chi}$  as a point, denoted  $P_{D,\chi}$ , in  $E_f(\mathbb{C}) \otimes_{\mathbb{Z}} \mathbb{Z}[\chi]$ .

#### Heegner points attached to $\Delta_{D,\gamma}$ when D < 0

The zero-dimensional cycles  $\Delta_{D,\chi}$  are homologically trivial when  $\chi \neq 1$ .

$$J_{D,\chi} := \mathsf{AJ}(\Delta_{D,\chi}) = \int_{\partial^{-1}(\Delta_{D,\chi})} \omega_f \in \mathbb{C}/(\Lambda_f \otimes \mathbb{Z}(\chi)).$$

Assume for simplicity that  $K_f = \mathbb{Q}$ . Then f corresponds to a modular elliptic curve  $E_f/\mathbb{Q}$  and  $\mathbb{C}/\Lambda_f \sim E_f(\mathbb{C})$ . We can view  $J_{D,\chi}$  as a point, denoted  $P_{D,\chi}$ , in  $E_f(\mathbb{C}) \otimes_{\mathbb{Z}} \mathbb{Z}[\chi]$ .

#### Heegner points attached to $\Delta_{D,\chi}$ when D < 0

The zero-dimensional cycles  $\Delta_{D,\chi}$  are homologically trivial when  $\chi \neq 1$ .

$$J_{D,\chi} := \mathsf{AJ}(\Delta_{D,\chi}) = \int_{\partial^{-1}(\Delta_{D,\chi})} \omega_f \in \mathbb{C}/(\Lambda_f \otimes \mathbb{Z}(\chi)).$$

Assume for simplicity that  $K_f = \mathbb{Q}$ . Then f corresponds to a modular elliptic curve  $E_f/\mathbb{Q}$  and  $\mathbb{C}/\Lambda_f \sim E_f(\mathbb{C})$ . We can view  $J_{D,\chi}$  as a point, denoted  $P_{D,\chi}$ , in  $E_f(\mathbb{C}) \otimes_{\mathbb{Z}} \mathbb{Z}[\chi]$ .

#### Heegner points attached to $\Delta_{D,\chi}$ when D < 0

The zero-dimensional cycles  $\Delta_{D,\chi}$  are homologically trivial when  $\chi \neq 1$ .

$$J_{D,\chi} := \mathsf{AJ}(\Delta_{D,\chi}) = \int_{\partial^{-1}(\Delta_{D,\chi})} \omega_f \in \mathbb{C}/(\Lambda_f \otimes \mathbb{Z}(\chi)).$$

Assume for simplicity that  $K_f = \mathbb{Q}$ . Then f corresponds to a modular elliptic curve  $E_f/\mathbb{Q}$  and  $\mathbb{C}/\Lambda_f \sim E_f(\mathbb{C})$ . We can view  $J_{D,\chi}$  as a point, denoted  $P_{D,\chi}$ , in  $E_f(\mathbb{C}) \otimes_{\mathbb{Z}} \mathbb{Z}[\chi]$ .

#### Heegner points attached to $\Delta_{D,\chi}$ when D < 0

The zero-dimensional cycles  $\Delta_{D,\chi}$  are homologically trivial when  $\chi \neq 1$ .

$$J_{D,\chi} := \mathsf{AJ}(\Delta_{D,\chi}) = \int_{\partial^{-1}(\Delta_{D,\chi})} \omega_f \in \mathbb{C}/(\Lambda_f \otimes \mathbb{Z}(\chi)).$$

Assume for simplicity that  $K_f = \mathbb{Q}$ . Then f corresponds to a modular elliptic curve  $E_f/\mathbb{Q}$  and  $\mathbb{C}/\Lambda_f \sim E_f(\mathbb{C})$ . We can view  $J_{D,\chi}$  as a point, denoted  $P_{D,\chi}$ , in  $E_f(\mathbb{C}) \otimes_{\mathbb{Z}} \mathbb{Z}[\chi]$ .

#### Relation with derivatives of L-series (the case D < 0).

#### Theorem (Gross-Zagier, Zhang)

Let D be a negative discriminant.

- If  $\Sigma_D \neq \emptyset$ , then  $L(f/K_D, \chi, s)$  vanishes to odd order at s = 1 for all  $\chi \in G_D^{\vee}$ .
- 2 In that case,

$$\langle P_{D,\chi}, P_{D,\bar{\chi}} \rangle = L'(f/K_D, \chi, 1) \pmod{(K_f K_\chi)^\times}.$$

### Application to elliptic curves

Let E be a modular elliptic curve, attached to an eigenform  $f \in S_2(\Gamma_0(N))$ .

Theorem (Kolyvagin)

Assume that D < 0 and that  $\Sigma_D \neq \emptyset$ . If  $P_{D,\chi} \neq 0$  in  $E(H_D) \otimes \mathbb{Q}(\chi)$ , then  $(E(H_D) \otimes \mathbb{Q}(\chi))^{\chi}$  is spanned by  $P_{D,\chi}$  and the corresponding  $(\chi$  part of) the Shafarevich-Tate group is finite.

**Conclusion**: Heegner points give us a *tight control* on the arithmetic of elliptic curves over class fields of *imaginary quadratic fields* 

### Application to elliptic curves

Let E be a modular elliptic curve, attached to an eigenform  $f \in S_2(\Gamma_0(N))$ .

### Theorem (Kolyvagin)

Assume that D < 0 and that  $\Sigma_D \neq \emptyset$ . If  $P_{D,\chi} \neq 0$  in  $E(H_D) \otimes \mathbb{Q}(\chi)$ , then  $(E(H_D) \otimes \mathbb{Q}(\chi))^{\chi}$  is spanned by  $P_{D,\chi}$  and the corresponding  $(\chi$  part of) the Shafarevich-Tate group is finite.

**Conclusion**: Heegner points give us a *tight control* on the arithmetic of elliptic curves over class fields of *imaginary quadratic fields* 

### Application to elliptic curves

Let E be a modular elliptic curve, attached to an eigenform  $f \in S_2(\Gamma_0(N))$ .

### Theorem (Kolyvagin)

Assume that D < 0 and that  $\Sigma_D \neq \emptyset$ . If  $P_{D,\chi} \neq 0$  in  $E(H_D) \otimes \mathbb{Q}(\chi)$ , then  $(E(H_D) \otimes \mathbb{Q}(\chi))^{\chi}$  is spanned by  $P_{D,\chi}$  and the corresponding  $(\chi$  part of) the Shafarevich-Tate group is finite.

**Conclusion**: Heegner points give us a *tight control* on the arithmetic of elliptic curves over class fields of *imaginary quadratic fields*.

### Question

$$\int_{\Delta_{D,\chi}} \omega_f \neq 0 \stackrel{?}{\Longrightarrow} (E(H_D) \otimes \mathbb{Z}[\chi])^{\chi}, \mathbb{U}(E/H_D)^{\chi} < \infty.$$

Possible strategy (ongoing work in progress with V. Rotger and I. Sols; cf. my AWS lectures) based on

- Diagonal "Gross-Kudla-Schoen" cycles on triple products of modular curves:
- ② p-adic deformations (à la Hida) of the images of these cycles under p-adic étale Abel-Jacobi maps.



### Question

$$\int_{\Delta_{D,\chi}} \omega_f \neq 0 \stackrel{?}{\Longrightarrow} (E(H_D) \otimes \mathbb{Z}[\chi])^{\chi}, \text{III}(E/H_D)^{\chi} < \infty.$$

Possible strategy (ongoing work in progress with V. Rotger and I. Sols; cf. my AWS lectures) based on

- Diagonal "Gross-Kudla-Schoen" cycles on triple products of modular curves;
- P-adic deformations (à la Hida) of the images of these cycles under p-adic étale Abel-Jacobi maps.



### Question

$$\int_{\Delta_{D,\chi}} \omega_f \neq 0 \stackrel{?}{\Longrightarrow} (E(H_D) \otimes \mathbb{Z}[\chi])^{\chi}, \mathbb{U}(E/H_D)^{\chi} < \infty.$$

Possible strategy (ongoing work in progress with V. Rotger and I. Sols; cf. my AWS lectures) based on

- Diagonal "Gross-Kudla-Schoen" cycles on triple products of modular curves:
- P-adic deformations (à la Hida) of the images of these cycles under p-adic étale Abel-Jacobi maps.



### Question

$$\int_{\Delta_{D,\chi}} \omega_f \neq 0 \stackrel{?}{\Longrightarrow} (E(H_D) \otimes \mathbb{Z}[\chi])^{\chi}, \mathbb{U}(E/H_D)^{\chi} < \infty.$$

Possible strategy (ongoing work in progress with V. Rotger and I. Sols; cf. my AWS lectures) based on

- Diagonal "Gross-Kudla-Schoen" cycles on triple products of modular curves;
- ${\it 2}$  p-adic deformations (à la Hida) of the images of these cycles under p-adic étale Abel-Jacobi maps.



#### Question

$$\int_{\Delta_{D,\chi}} \omega_f \neq 0 \stackrel{?}{\Longrightarrow} (E(H_D) \otimes \mathbb{Z}[\chi])^{\chi}, \mathbb{U}(E/H_D)^{\chi} < \infty.$$

Possible strategy (ongoing work in progress with V. Rotger and I. Sols; cf. my AWS lectures) based on

- Diagonal "Gross-Kudla-Schoen" cycles on triple products of modular curves;
- ${\it 2}$  p-adic deformations (à la Hida) of the images of these cycles under p-adic étale Abel-Jacobi maps.

F= real quadratic field.  $v_1, v_2 : F \longrightarrow \mathbb{R}$ . Set  $x_j := v_j(x)$ .

X=associated Hilbert modular surface.

$$X(\mathbb{C}) = (Compactification of) \mathbf{SL}_2(\mathcal{O}_F) \backslash \mathcal{H} \times \mathcal{H}.$$

The surface X contains an interesting supply of algebraic cycles.

- ① Codimension 2: CM points.
- 2 Codimension 1: Hirzebruch-Zagier divisors.



F= real quadratic field.  $v_1, v_2 : F \longrightarrow \mathbb{R}$ . Set  $x_j := v_j(x)$ .

X=associated Hilbert modular surface.

$$X(\mathbb{C}) = (Compactification of) \mathbf{SL}_2(\mathcal{O}_F) \backslash \mathcal{H} \times \mathcal{H}.$$

The surface X contains an interesting supply of *algebraic cycles*.

- Odimension 2: CM points.
- 2 Codimension 1: Hirzebruch-Zagier divisors.



F= real quadratic field.  $v_1, v_2 : F \longrightarrow \mathbb{R}$ . Set  $x_j := v_j(x)$ .

X=associated Hilbert modular surface.

$$X(\mathbb{C}) = (Compactification of) \mathbf{SL}_2(\mathcal{O}_F) \setminus \mathcal{H} \times \mathcal{H}.$$

The surface X contains an interesting supply of algebraic cycles.

- Codimension 2: CM points.
- 2 Codimension 1: Hirzebruch-Zagier divisors.



F= real quadratic field.  $v_1, v_2 : F \longrightarrow \mathbb{R}$ . Set  $x_j := v_j(x)$ .

X=associated Hilbert modular surface.

$$X(\mathbb{C}) = (Compactification of) \mathbf{SL}_2(\mathcal{O}_F) \setminus \mathcal{H} \times \mathcal{H}.$$

The surface X contains an interesting supply of algebraic cycles.

- Codimension 2: CM points.
- 2 Codimension 1: Hirzebruch-Zagier divisors.



F= real quadratic field.  $v_1, v_2 : F \longrightarrow \mathbb{R}$ . Set  $x_j := v_j(x)$ .

X=associated Hilbert modular surface.

$$X(\mathbb{C}) = (Compactification of) \mathbf{SL}_2(\mathcal{O}_F) \backslash \mathcal{H} \times \mathcal{H}.$$

The surface X contains an interesting supply of *algebraic cycles*.

- Codimension 2: CM points.
- 2 Codimension 1: Hirzebruch-Zagier divisors.



I will focus on cycles that are very analogous to Shintani cycles, in the four-manifold  $X(\mathbb{C})$ . They are indexed by F-algebra embeddings

$$\Psi: K \longrightarrow M_2(F),$$

where  $K = F(\sqrt{D})$  is a quadratic extension of F.

- 1.  $D_1, D_2 > 0$ : the totally real case.
- 2.  $D_1, D_2 < 0$ : the complex multiplication (CM) case.
- 3.  $D_1 < 0, D_2 > 0$ : the "almost totally real" (ATR) case.

I will focus on cycles that are very analogous to Shintani cycles, in the four-manifold  $X(\mathbb{C})$ . They are indexed by F-algebra embeddings

$$\Psi: K \longrightarrow M_2(F),$$

where  $K = F(\sqrt{D})$  is a quadratic extension of F.

- 1.  $D_1, D_2 > 0$ : the totally real case.
- 2.  $D_1, D_2 < 0$ : the complex multiplication (CM) case.
- 3.  $D_1 < 0, D_2 > 0$ : the "almost totally real" (ATR) case.

I will focus on cycles that are very analogous to Shintani cycles, in the four-manifold  $X(\mathbb{C})$ . They are indexed by F-algebra embeddings

$$\Psi: K \longrightarrow M_2(F),$$

where  $K = F(\sqrt{D})$  is a quadratic extension of F.

- 1.  $D_1, D_2 > 0$ : the totally real case.
- 2.  $D_1, D_2 < 0$ : the complex multiplication (CM) case.
- 3.  $D_1 < 0, D_2 > 0$ : the "almost totally real" (ATR) case.



I will focus on cycles that are very analogous to Shintani cycles, in the four-manifold  $X(\mathbb{C})$ . They are indexed by F-algebra embeddings

$$\Psi: K \longrightarrow M_2(F),$$

where  $K = F(\sqrt{D})$  is a quadratic extension of F.

- 1.  $D_1, D_2 > 0$ : the totally real case.
- 2.  $D_1, D_2 < 0$ : the complex multiplication (CM) case.
- 3.  $D_1 < 0, D_2 > 0$ : the "almost totally real" (ATR) case.



I will focus on cycles that are very analogous to Shintani cycles, in the four-manifold  $X(\mathbb{C})$ . They are indexed by F-algebra embeddings

$$\Psi: K \longrightarrow M_2(F),$$

where  $K = F(\sqrt{D})$  is a quadratic extension of F.

- 1.  $D_1, D_2 > 0$ : the totally real case.
- 2.  $D_1, D_2 < 0$ : the complex multiplication (CM) case.
- 3.  $D_1 < 0, D_2 > 0$ : the "almost totally real" (ATR) case.



# The totally real case

For 
$$i = 1, 2,$$

$$\Psi(K \otimes_{v_j} \mathbb{R})^{\times}$$
 has two fixed points  $\tau_j, \tau_j' \in \mathbb{R}$ .

Let  $\Upsilon_j := \text{geodesic from } \tau_j \text{ to } \tau_j'.$ 



### The totally real case

For 
$$j = 1, 2$$
,

$$\Psi(K \otimes_{v_j} \mathbb{R})^{\times}$$
 has two fixed points  $\tau_j, \tau_j' \in \mathbb{R}$ .

Let  $\Upsilon_j := \text{geodesic from } \tau_j \text{ to } \tau_j'.$ 



### The CM case

For 
$$j = 1, 2$$
,

 $(\Psi(K) \otimes_{v_j} \mathbb{R})^{\times}$  has a single fixed point  $\tau_j \in \mathcal{H}$ .

$$\Delta_{\Psi} := \{(\tau_1, \tau_2)\}$$

### The CM case

For 
$$j=1,2,$$
 
$$(\Psi(K)\otimes_{v_i}\mathbb{R})^{\times} \text{ has a single fixed point } \tau_i\in\mathcal{H}.$$

$$\boxed{\Delta_{\Psi} := \{(\tau_1, \tau_2)\}}$$

### The ATR case

$$au_1 := ext{ fixed point of } \Psi(K^{ imes}) \circlearrowleft \mathcal{H}_1;$$
 
$$au_2, au_2' := ext{ fixed points of } \Psi(K^{ imes}) \circlearrowleft (\mathcal{H}_2 \cup \mathbb{R});$$

$$\Delta_{\Psi} = \{\tau_1\} \times \operatorname{geodesic}(\tau_2 \to \tau_2').$$



**Key fact**: The cycles  $\Delta_{\Psi} \subset X(\mathbb{C})$  are *null-homologous*.

### The ATR case

$$au_1:= ext{ fixed point of }\Psi(K^ imes)\circlearrowleft \mathcal{H}_1;$$
  $au_2, au_2':= ext{ fixed points of }\Psi(K^ imes)\circlearrowleft (\mathcal{H}_2\cup\mathbb{R});$  
$$\Delta_\Psi=\{ au_1\} imes ext{ geodesic}( au_2 o au_2').$$

**Key fact**: The cycles  $\Delta_{\Psi} \subset X(\mathbb{C})$  are *null-homologous*.

### The ATR case

$$au_1:= ext{ fixed point of }\Psi({\mathcal K}^ imes)\circlearrowleft {\mathcal H}_1;$$
  $au_2, au_2':= ext{ fixed points of }\Psi({\mathcal K}^ imes)\circlearrowleft ({\mathcal H}_2\cup{\mathbb R});$  
$$\Delta_\Psi=\{ au_1\} imes ext{geodesic}( au_2 o au_2').$$

$$\begin{array}{c}
\bullet^{\tau_1} \\
\hline
\end{array}$$
 $\begin{array}{c}
\bullet \\
\hline
\tau_2 \\
\hline
\tau_2'
\end{array}$ 

**Key fact**: The cycles  $\Delta_{\Psi} \subset X(\mathbb{C})$  are *null-homologous*.

### Let E be an elliptic curve over F, of conductor 1.

**Simplifying Assumptions**:  $h^+(F) = 1$ , N = 1.

Counting points mod  $\mathfrak{p}$  yields  $\mathfrak{n}\mapsto a(\mathfrak{n})\in\mathbb{Z}$ , on the integral ideals of  $\mathcal{O}_F$ .

### **Generating series**

$$G(z_1, z_2) := \sum_{n >> 0} a((n)) e^{2\pi i \left(\frac{n_1}{d_1} z_1 + \frac{n_2}{d_2} z_2\right)},$$

where d := totally positive generator of the different of F

Let E be an elliptic curve over F, of conductor 1.

Simplifying Assumptions:  $h^+(F) = 1$ , N = 1.

Counting points mod  $\mathfrak{p}$  yields  $\mathfrak{n} \mapsto a(\mathfrak{n}) \in \mathbb{Z}$ , on the integral ideals of  $\mathcal{O}_F$ .

**Generating series** 

$$G(z_1, z_2) := \sum_{n>>0} a((n)) e^{2\pi i \left(\frac{n_1}{d_1} z_1 + \frac{n_2}{d_2} z_2\right)},$$

where d := totally positive generator of the different of F

Let E be an elliptic curve over F, of conductor 1.

Simplifying Assumptions:  $h^+(F) = 1$ , N = 1.

Counting points mod  $\mathfrak{p}$  yields  $\mathfrak{n}\mapsto a(\mathfrak{n})\in\mathbb{Z}$ , on the integral ideals of  $\mathcal{O}_F$ .

**Generating series** 

$$G(z_1, z_2) := \sum_{n>>0} a((n)) e^{2\pi i \left(\frac{n_1}{d_1} z_1 + \frac{n_2}{d_2} z_2\right)},$$

where d := totally positive generator of the different of F

Let E be an elliptic curve over F, of conductor 1.

Simplifying Assumptions:  $h^+(F) = 1$ , N = 1.

Counting points mod  $\mathfrak{p}$  yields  $\mathfrak{n} \mapsto a(\mathfrak{n}) \in \mathbb{Z}$ , on the integral ideals of  $\mathcal{O}_F$ .

### **Generating series**

$$G(z_1,z_2):=\sum_{n>>0}a((n))e^{2\pi i\left(\frac{n_1}{d_1}z_1+\frac{n_2}{d_2}z_2\right)},$$

where d := totally positive generator of the different of F.

# Modularity

#### **Definition**

The elliptic curve E is said to be *modular* if G is a Hilbert modular form of weight (2,2):

$$G(\gamma_1 z_1, \gamma_2 z_2) = (c_1 z_1 + d_2)^2 (c_2 z_2 + d_2)^2 G(z_1, z_2),$$

for all

$$\gamma = \left( egin{array}{cc} a & b \ c & d \end{array} 
ight) \in \mathbf{SL}_2(\mathcal{O}_F).$$

We will assume that E is modular in this sense. (This is known to be true, in many cases.)

# Modularity

#### **Definition**

The elliptic curve E is said to be *modular* if G is a Hilbert modular form of weight (2,2):

$$G(\gamma_1 z_1, \gamma_2 z_2) = (c_1 z_1 + d_2)^2 (c_2 z_2 + d_2)^2 G(z_1, z_2),$$

for all

$$\gamma = \left( egin{array}{cc} a & b \ c & d \end{array} 
ight) \in \mathbf{SL}_2(\mathcal{O}_F).$$

We will assume that E is modular in this sense. (This is known to be true, in many cases.)

# Geometric formulation of modularity

The differential form

$$\alpha_{\mathsf{G}} := \mathsf{G}(\mathsf{z}_1, \mathsf{z}_2) \mathsf{d} \mathsf{z}_1 \mathsf{d} \mathsf{z}_2$$

is a holomorphic (hence closed) 2-form on

$$X(\mathbb{C}) := \mathsf{SL}_2(\mathcal{O}_F) \backslash (\mathcal{H} \times \mathcal{H}).$$

We will also work with the harmonic form

$$\omega_G := G(z_1, z_2) dz_1 dz_2 + G(\epsilon_1 z_1, \epsilon_2 \overline{z}_2) dz_1 d\overline{z}_2,$$

where  $\epsilon \in \mathcal{O}_F^{\times}$  satisfies  $\epsilon_1 > 0$ ,  $\epsilon_2 < 0$ .

**Claim**: The periods of  $\omega_G$  against the cycles  $\Delta_{\Psi}$  encode information about the arithmetic of E.



# Geometric formulation of modularity

The differential form

$$\alpha_{\mathsf{G}} := \mathsf{G}(\mathsf{z}_1, \mathsf{z}_2) \mathsf{d} \mathsf{z}_1 \mathsf{d} \mathsf{z}_2$$

is a holomorphic (hence closed) 2-form on

$$X(\mathbb{C}) := \mathsf{SL}_2(\mathcal{O}_F) \backslash (\mathcal{H} \times \mathcal{H}).$$

We will also work with the harmonic form

$$\omega_{G} := G(z_1, z_2)dz_1dz_2 + G(\epsilon_1 z_1, \epsilon_2 \bar{z}_2)dz_1d\bar{z}_2,$$

where  $\epsilon \in \mathcal{O}_F^{\times}$  satisfies  $\epsilon_1 > 0$ ,  $\epsilon_2 < 0$ .

**Claim**: The periods of  $\omega_G$  against the cycles  $\Delta_{\Psi}$  encode information about the arithmetic of E.



# Geometric formulation of modularity

The differential form

$$\alpha_{\mathsf{G}} := \mathsf{G}(\mathsf{z}_1, \mathsf{z}_2) \mathsf{d} \mathsf{z}_1 \mathsf{d} \mathsf{z}_2$$

is a holomorphic (hence closed) 2-form on

$$X(\mathbb{C}) := \mathsf{SL}_2(\mathcal{O}_F) \backslash (\mathcal{H} \times \mathcal{H}).$$

We will also work with the harmonic form

$$\omega_{G} := G(z_1, z_2)dz_1dz_2 + G(\epsilon_1 z_1, \epsilon_2 \bar{z}_2)dz_1d\bar{z}_2,$$

where  $\epsilon \in \mathcal{O}_F^{\times}$  satisfies  $\epsilon_1 > 0$ ,  $\epsilon_2 < 0$ .

**Claim**: The periods of  $\omega_G$  against the cycles  $\Delta_{\Psi}$  encode information about the arithmetic of E.



# Periods of $\omega_G$ : the totally real case.

#### **Theorem**

$$\left| \int_{\Delta_{D,\chi}} \omega_{\mathcal{G}} \right|^2 = L(E/K, \chi, 1) \pmod{K(\chi)^{\times}}.$$

Shimura-Oda period relations: It is conjectured that

$$\Lambda_G:=\left\langle \int_{\Delta_W} \omega_G, \quad \Psi \in \Sigma_D \text{ with } D \gg 0 \right\rangle \subset \mathbb{C}$$

is a lattice in  $\mathbb C$  which is commensurable with the Weierstrass lattice of F

# Periods of $\omega_G$ : the totally real case.

#### **Theorem**

$$\left| \int_{\Delta_{D,\chi}} \omega_{G} \right|^{2} = L(E/K, \chi, 1) \pmod{K(\chi)^{\times}}.$$

Shimura-Oda period relations: It is conjectured that

$$\Lambda_G := \left\langle \int_{\Delta_\Psi} \omega_G, \quad \Psi \in \Sigma_D \text{ with } D \ggg 0 \right\rangle \subset \mathbb{C}$$

is a lattice in  $\mathbb C$  which is commensurable with the Weierstrass lattice of E.

Since  $\Delta_{D,\chi}$  is 0-dimensional, expressions like

$$\int_{\Delta_{D,\chi}} \omega_{G}, \qquad \int_{\partial^{-1}\Delta_{D,\chi}} \omega_{G}$$

do not make sense!

**Question**: Can CM cycles on X be used to construct points on E?

**Related Question** (Eyal Goren's thesis). Can CM cycles on X be used to construct canonical units in abelian extensions of CM fields, generalising elliptic units?

Since  $\Delta_{D,\chi}$  is 0-dimensional, expressions like

$$\int_{\Delta_{D,\chi}} \omega_{G}, \qquad \int_{\partial^{-1}\Delta_{D,\chi}} \omega_{G}$$

do not make sense!

**Question**: Can CM cycles on X be used to construct points on E?

**Related Question** (Eyal Goren's thesis). Can CM cycles on X be used to construct canonical units in abelian extensions of CM fields, generalising elliptic units?

Since  $\Delta_{D,\chi}$  is 0-dimensional, expressions like

$$\int_{\Delta_{D,\chi}} \omega_{G}, \qquad \int_{\partial^{-1}\Delta_{D,\chi}} \omega_{G}$$

do not make sense!

**Question**: Can CM cycles on X be used to construct points on E?

**Related Question** (Eyal Goren's thesis). Can CM cycles on X be used to construct canonical units in abelian extensions of CM fields, generalising elliptic units?

Since  $\Delta_{D,\chi}$  is 0-dimensional, expressions like

$$\int_{\Delta_{D,\chi}} \omega_{G}, \qquad \int_{\partial^{-1}\Delta_{D,\chi}} \omega_{G}$$

do not make sense!

**Question**: Can CM cycles on X be used to construct points on E?

**Related Question** (Eyal Goren's thesis). Can CM cycles on X be used to construct canonical units in abelian extensions of CM fields, generalising elliptic units?

# Elliptic curves of conductor 1 and the BSD conjecture

Consider the twist  $E_K$  of E by a quadratic extension K/F.

#### **Proposition**

- **1** If K is totally real or CM, then  $E_K$  has even analytic rank.
- ② If K is an ATR (Almost Totally Real) extension, then  $E_K$  has odd analytic rank.

In particular, we do not expect points in E(K) when K is CM...

**Suggestion**: ATR cycles on Hilbert modular surfaces are a more appropriate generalisation of CM cycles on modular curves.

# Elliptic curves of conductor 1 and the BSD conjecture

Consider the twist  $E_K$  of E by a quadratic extension K/F.

#### Proposition

- **1** If K is totally real or CM, then  $E_K$  has even analytic rank.
- ② If K is an ATR (Almost Totally Real) extension, then  $E_K$  has odd analytic rank.

In particular, we do not expect points in E(K) when K is CM...

**Suggestion**: ATR cycles on Hilbert modular surfaces are a more appropriate generalisation of CM cycles on modular curves.

**Recall**: The cycles  $\Delta_{\Psi}$  are homologically trivial (after eventually tensoring with  $\mathbb{Q}$ ), because  $H_1(X(\mathbb{C}), \mathbb{Q}) = 0$ .

$$P_{\Psi} := \int_{\partial^{-1}\Delta_{\Psi}} \omega_{G} \in \mathbb{C}/\Lambda_{G} \simeq E(\mathbb{C}).$$

### Conjecture (Adam Logan,D)

If  $\Psi \in \Sigma_D$ , then the point  $P_{\Psi}$  belongs to  $E(H_D) \otimes \mathbb{Q}$ , where  $H_D$  is the Hilbert class field of the ATR extension  $K = F(\sqrt{D})$ .

**Recall**: The cycles  $\Delta_{\Psi}$  are homologically trivial (after eventually tensoring with  $\mathbb{Q}$ ), because  $H_1(X(\mathbb{C}), \mathbb{Q}) = 0$ .

$$P_{\Psi} := \int_{\partial^{-1}\Delta_{\Psi}} \omega_{G} \in \mathbb{C}/\Lambda_{G} \simeq E(\mathbb{C}).$$

### Conjecture (Adam Logan, D)

If  $\Psi \in \Sigma_D$ , then the point  $P_{\Psi}$  belongs to  $E(H_D) \otimes \mathbb{Q}$ , where  $H_D$  is the Hilbert class field of the ATR extension  $K = F(\sqrt{D})$ .

Elliptic units:  $\alpha \in \mathcal{O}_{Y_0(N)}^{\times}$ ,  $\Delta$  a CM divisor  $\Rightarrow \alpha(\Delta) \in \mathcal{O}_H^{\times}$ .

$$\log \alpha(\Delta) = \int_{\partial^{-1}\Delta} \frac{d\alpha}{\alpha} = \int_{\partial^{-1}\Delta} \omega_{E_{\alpha}}$$

where  $E_{\alpha}=$  an Eisenstein series of weight two.

**ATR** units: Let E=Eisenstein series of weight two on  $SL_2(\mathcal{O}_F)$ ,

$$z_{\Psi} = \int_{\partial^{-1}\Delta_{\Psi}} \omega_{\mathcal{E}} \in \mathbb{C}/(2\pi i \mathbb{Z})$$

### Conjecture (Pierre Charollois, D)

If  $\Psi \in \Sigma_D$ , then  $u_{\Psi} = exp(z_{\Psi})$  belongs to  $\mathcal{O}_{H_D}^{\times}$ . where  $H_D$  is the Hilbert class field of the ATR extension  $K = F(\sqrt{D})$ .

Elliptic units:  $\alpha \in \mathcal{O}_{Y_0(N)}^{\times}$ ,  $\Delta$  a CM divisor  $\Rightarrow \alpha(\Delta) \in \mathcal{O}_H^{\times}$ .

$$\log \alpha(\Delta) = \int_{\partial^{-1}\Delta} \frac{d\alpha}{\alpha} = \int_{\partial^{-1}\Delta} \omega_{\mathsf{E}_{\alpha}},$$

where  $E_{\alpha} =$  an Eisenstein series of weight two.

**ATR** units: Let E=Eisenstein series of weight two on  $SL_2(\mathcal{O}_F)$ ,

$$z_{\Psi} = \int_{\partial^{-1}\Delta_{\Psi}} \omega_{\mathsf{E}} \in \mathbb{C}/(2\pi i \mathbb{Z})$$

### Conjecture (Pierre Charollois, D)

If  $\Psi \in \Sigma_D$ , then  $u_{\Psi} = exp(z_{\Psi})$  belongs to  $\mathcal{O}_{H_D}^{\times}$ . where  $H_D$  is the Hilbert class field of the ATR extension  $K = F(\sqrt{D})$ .

Elliptic units:  $\alpha \in \mathcal{O}_{Y_0(N)}^{\times}$ ,  $\Delta$  a CM divisor  $\Rightarrow \alpha(\Delta) \in \mathcal{O}_H^{\times}$ .

$$\log \alpha(\Delta) = \int_{\partial^{-1}\Delta} \frac{d\alpha}{\alpha} = \int_{\partial^{-1}\Delta} \omega_{\mathsf{E}_{\alpha}},$$

where  $E_{\alpha} =$  an Eisenstein series of weight two.

**ATR units**: Let E=Eisenstein series of weight two on  $SL_2(\mathcal{O}_F)$ ,

$$z_{\Psi} = \int_{\partial^{-1}\Delta_{\Psi}} \omega_{E} \in \mathbb{C}/(2\pi i \mathbb{Z})$$

### Conjecture (Pierre Charollois,D)

If  $\Psi \in \Sigma_D$ , then  $u_{\Psi} = exp(z_{\Psi})$  belongs to  $\mathcal{O}_{H_D}^{\times}$ . where  $H_D$  is the Hilbert class field of the ATR extension  $K = F(\sqrt{D})$ .

200

Elliptic units:  $\alpha \in \mathcal{O}_{Y_0(N)}^{\times}$ ,  $\Delta$  a CM divisor  $\Rightarrow \alpha(\Delta) \in \mathcal{O}_H^{\times}$ .

$$\log \alpha(\Delta) = \int_{\partial^{-1}\Delta} \frac{d\alpha}{\alpha} = \int_{\partial^{-1}\Delta} \omega_{E_{\alpha}},$$

where  $E_{\alpha} =$  an Eisenstein series of weight two.

**ATR units**: Let E=Eisenstein series of weight two on  $SL_2(\mathcal{O}_F)$ ,

$$z_{\Psi} = \int_{\partial^{-1}\Delta_{\Psi}} \omega_{E} \in \mathbb{C}/(2\pi i \mathbb{Z})$$

### Conjecture (Pierre Charollois, D)

If  $\Psi \in \Sigma_D$ , then  $u_{\Psi} = exp(z_{\Psi})$  belongs to  $\mathcal{O}_{H_D}^{\times}$ . where  $H_D$  is the Hilbert class field of the ATR extension  $K = F(\sqrt{D})$ .



Understand the process whereby ATR cycles on  $X(\mathbb{C})$  lead to the construction of global invariants such as algebraic points on elliptic curves and Stark units.

- a) Construction of *Euler systems* attached to elliptic curves.
- b) "Explicit" construction of class fields.
- c) Stark's conjectures for abelian extensions of ATR fields

Understand the process whereby ATR cycles on  $X(\mathbb{C})$  lead to the construction of global invariants such as algebraic points on elliptic curves and Stark units.

- a) Construction of *Euler systems* attached to elliptic curves.
- b) "Explicit" construction of class fields.
- c) Stark's conjectures for abelian extensions of ATR fields

Understand the process whereby ATR cycles on  $X(\mathbb{C})$  lead to the construction of global invariants such as algebraic points on elliptic curves and Stark units.

- a) Construction of Euler systems attached to elliptic curves.
- b) "Explicit" construction of class fields.
- c) Stark's conjectures for abelian extensions of ATR fields

Understand the process whereby ATR cycles on  $X(\mathbb{C})$  lead to the construction of global invariants such as algebraic points on elliptic curves and Stark units.

- a) Construction of Euler systems attached to elliptic curves.
- b) "Explicit" construction of class fields.
- c) Stark's conjectures for abelian extensions of ATR fields.

#### Conjecture (on ATR twists)

Let K be an ATR extension of F and let  $E_K$  be the associated twist of E. If  $L'(E_K/F,1) \neq 0$ , then  $E_K(F)$  has rank one and  $\coprod (E_K/F) < \infty$ .

The BSD conjecture over totally real fields is very well understood in analytic rank  $\leq 1$ , thanks mostly to the work of Zhang and his school

Yet the conjecture on ATR twists continues to present a genuine mystery.

#### Conjecture (on ATR twists)

Let K be an ATR extension of F and let  $E_K$  be the associated twist of E. If  $L'(E_K/F,1) \neq 0$ , then  $E_K(F)$  has rank one and  $\coprod (E_K/F) < \infty$ .

The BSD conjecture over totally real fields is very well understood in analytic rank  $\leq 1$ , thanks mostly to the work of Zhang and his school.

Yet the conjecture on ATR twists continues to present a genuine mystery.



#### Conjecture (on ATR twists)

Let K be an ATR extension of F and let  $E_K$  be the associated twist of E. If  $L'(E_K/F,1) \neq 0$ , then  $E_K(F)$  has rank one and  $\text{III}(E_K/F) < \infty$ .

The BSD conjecture over totally real fields is very well understood in analytic rank  $\leq 1$ , thanks mostly to the work of Zhang and his school.

Yet the conjecture on ATR twists continues to present a genuine mystery.

#### Conjecture (on ATR twists)

Let K be an ATR extension of F and let  $E_K$  be the associated twist of E. If  $L'(E_K/F,1) \neq 0$ , then  $E_K(F)$  has rank one and  $\text{III}(E_K/F) < \infty$ .

The BSD conjecture over totally real fields is very well understood in analytic rank  $\leq 1$ , thanks mostly to the work of Zhang and his school.

Yet the conjecture on ATR twists continues to present a genuine mystery.



### Q-curves

#### **Definition**

A  $\mathbb{Q}$ -curve over F is an elliptic curve E/F which is F-isogenous to its Galois conjugate.

**Pinch, Cremona**: For  $N = \operatorname{disc}(F)$  prime and  $\leq 1000$ , there are exactly 17 isogeny classes of elliptic curves of conductor 1 over  $\mathbb{Q}(\sqrt{N})$ ,

All but two (N = 509,877) are  $\mathbb{Q}$ -curves

### Q-curves

#### **Definition**

A  $\mathbb{Q}$ -curve over F is an elliptic curve E/F which is F-isogenous to its Galois conjugate.

**Pinch, Cremona**: For  $N = \operatorname{disc}(F)$  prime and  $\leq 1000$ , there are exactly 17 isogeny classes of elliptic curves of conductor 1 over  $\mathbb{Q}(\sqrt{N})$ ,

$$N = 29, 37, 41, 109, 157, 229, 257, 337, 349,$$
  
 $397, 461, 509, 509, 877, 733, 881, 997.$ 

All but two (N = 509,877) are  $\mathbb{Q}$ -curves.

# Q-curves and elliptic modular forms

#### Theorem (Ribet)

Let E be a  $\mathbb{Q}$ -curve of conductor 1 over  $F = \mathbb{Q}(\sqrt{N})$ . Then there is an elliptic modular form  $f \in S_2(\Gamma_1(N), \varepsilon_F)$  with fourier coefficients in a quadratic (imaginary) field such that

$$L(E/F, s) = L(f, s)L(f^{\sigma}, s).$$

The Hilbert modular form G on  $GL_2(\mathbb{A}_F)$  is the Doi-Naganuma lift of f. Modular parametrisation defined over F:

$$J_1(N) \longrightarrow E.$$

# Q-curves and elliptic modular forms

#### Theorem (Ribet)

Let E be a  $\mathbb{Q}$ -curve of conductor 1 over  $F = \mathbb{Q}(\sqrt{N})$ . Then there is an elliptic modular form  $f \in S_2(\Gamma_1(N), \varepsilon_F)$  with fourier coefficients in a quadratic (imaginary) field such that

$$L(E/F,s) = L(f,s)L(f^{\sigma},s).$$

The Hilbert modular form G on  $GL_2(\mathbb{A}_F)$  is the Doi-Naganuma lift of f. Modular parametrisation defined over F:

$$J_1(N) \longrightarrow E$$
.

# Birch and Swinnerton-Dyer for Q-curves

#### Theorem (Victor Rotger, Yu Zhao, D)

Let E be a  $\mathbb{Q}$ -curve of conductor 1 over a real quadratic field F, and let M/F be an ATR extension of F. If  $L'(E_M/F,1) \neq 0$ , then  $E_M(F)$  has rank one and  $\mathbb{H}(E_M/F)$  is finite.

**Caveat**: Note the change in notation: the ATR extension is now denoted as M rather than K.

## Birch and Swinnerton-Dyer for Q-curves

#### Theorem (Victor Rotger, Yu Zhao, D)

Let E be a  $\mathbb{Q}$ -curve of conductor 1 over a real quadratic field F, and let M/F be an ATR extension of F. If  $L'(E_M/F,1) \neq 0$ , then  $E_M(F)$  has rank one and  $\mathbb{U}(E_M/F)$  is finite.

**Caveat**: Note the change in notation: the ATR extension is now denoted as M rather than K.

### Some Galois theory

Let  $\mathcal{M}=$  Galois closure of M over  $\mathbb{Q}$ . Then  $\mathrm{Gal}(\mathcal{M}/\mathbb{Q})=D_8$ .

This group contains two copies of the Klein 4-group:

$$V_F = \langle \tau_M, \tau_M' \rangle, \qquad V_K = \langle \tau_L, \tau_L' \rangle.$$



### Some Galois theory

Suppose that 
$$F = \mathcal{M}^{V_F}$$
  $M = \mathcal{M}^{\tau_M}$   $M' = \mathcal{M}^{\tau'_M}$ , and set  $K = \mathcal{M}^{V_K}$   $L = \mathcal{M}^{\tau_L}$   $L' = \mathcal{M}^{\tau'_L}$ .



Let 
$$\left\{ \begin{array}{l} \chi_M: \mathbb{A}_F^\times \longrightarrow \pm 1 \text{ be the quadratic character attached to } M/F; \\ \chi_L: \mathbb{A}_K^\times \longrightarrow \pm 1 \text{ be the quadratic character attached to } L/K. \end{array} \right.$$

- ①  $K = \mathbb{Q}(\sqrt{-d})$  is an imaginary quadratic field, and satisfies a suitable "Heegner hypothesis";
- ② The central character  $\chi_L|_{\mathbb{A}_0^{\times}}$  is equal to  $\varepsilon_F$ .

Let 
$$\left\{ \begin{array}{l} \chi_M: \mathbb{A}_F^\times \longrightarrow \pm 1 \text{ be the quadratic character attached to } M/F; \\[1mm] \chi_L: \mathbb{A}_K^\times \longrightarrow \pm 1 \text{ be the quadratic character attached to } L/K. \end{array} \right.$$

- $K = \mathbb{Q}(\sqrt{-d})$  is an imaginary quadratic field, and satisfies a suitable "Heegner hypothesis";
- ② The central character  $\chi_L|_{\mathbb{A}_0^{\times}}$  is equal to  $\varepsilon_F$ .

Let 
$$\left\{ \begin{array}{l} \chi_M: \mathbb{A}_F^\times \longrightarrow \pm 1 \text{ be the quadratic character attached to } M/F; \\[1mm] \chi_L: \mathbb{A}_K^\times \longrightarrow \pm 1 \text{ be the quadratic character attached to } L/K. \end{array} \right.$$

- $K = \mathbb{Q}(\sqrt{-d})$  is an imaginary quadratic field, and satisfies a suitable "Heegner hypothesis";
- ② The central character  $\chi_L|_{\mathbb{A}^{\times}_{\mathbb{A}}}$  is equal to  $\varepsilon_F$ .

Let 
$$\left\{ \begin{array}{l} \chi_M: \mathbb{A}_F^\times \longrightarrow \pm 1 \text{ be the quadratic character attached to } M/F; \\[1mm] \chi_L: \mathbb{A}_K^\times \longrightarrow \pm 1 \text{ be the quadratic character attached to } L/K. \end{array} \right.$$

- $K = \mathbb{Q}(\sqrt{-d})$  is an imaginary quadratic field, and satisfies a suitable "Heegner hypothesis";
- ② The central character  $\chi_L|_{\mathbb{A}^{\times}_{\mathbb{A}}}$  is equal to  $\varepsilon_F$ .

#### The Artin formalism

Let  $f \in S_2(\Gamma_0(N), \varepsilon_F)$  and let E/F be associated elliptic curve.

$$L(E_M/F,s) = L(E/F,\chi_M,s)$$

$$= L(f/F,\chi_M,s)$$

$$= L(f \otimes \operatorname{Ind}_F^{\mathbb{Q}}\chi_M,s)$$

$$= L(f \otimes \operatorname{Ind}_K^{\mathbb{Q}}\chi_L,s)$$

$$= L(f/K,\chi_L,s)$$

In particular,  $L'(E_M/F, 1) \neq 0$  implies that  $L'(f/K, \chi_L, 1) \neq 0$ .

#### The Artin formalism

Let  $f \in S_2(\Gamma_0(N), \varepsilon_F)$  and let E/F be associated elliptic curve.

$$L(E_M/F,s) = L(E/F,\chi_M,s)$$

$$= L(f/F,\chi_M,s)$$

$$= L(f \otimes \operatorname{Ind}_F^{\mathbb{Q}}\chi_M,s)$$

$$= L(f \otimes \operatorname{Ind}_K^{\mathbb{Q}}\chi_L,s)$$

$$= L(f/K,\chi_L,s)$$

In particular,  $L'(E_M/F, 1) \neq 0$  implies that  $L'(f/K, \chi_L, 1) \neq 0$ 

#### The Artin formalism

Let  $f \in S_2(\Gamma_0(N), \varepsilon_F)$  and let E/F be associated elliptic curve.

$$L(E_M/F,s) = L(E/F,\chi_M,s)$$

$$= L(f/F,\chi_M,s)$$

$$= L(f \otimes \operatorname{Ind}_F^{\mathbb{Q}}\chi_M,s)$$

$$= L(f \otimes \operatorname{Ind}_K^{\mathbb{Q}}\chi_L,s)$$

$$= L(f/K,\chi_L,s)$$

In particular,  $L'(E_M/F, 1) \neq 0$  implies that  $L'(f/K, \chi_L, 1) \neq 0$ .

The following strikingly general theorem applies to forms on  $\Gamma_1(N)$  with non-trivial nebentype character.

Theorem (Ye Tian, Xinyi Yuan, Shou-Wu Zhang, Wei Zhang)

If  $L'(f/K,\chi_L,1) 
eq 0$ , then  $A_f(L)^- \otimes \mathbb{Q}$  has dimension one over  $T_f$  , and therefore

$$\operatorname{rank}(A_f(L)^-)=2.$$

Furthermore  $\mathbb{H}(A_f/L)^-$  is finite.

$$\operatorname{rank}(A_f(L)^-) = \operatorname{rank}(A_f(M)^-), \qquad A_f(M)^- = E(M)^- \oplus E(M)^-.$$

### Corollary

If  $L'(E_M/F,1) \neq 0$ , then  $\operatorname{rank}(E_M(F)) = 1$  and  $\operatorname{UL}(E_M/F) < \infty$ .



The following strikingly general theorem applies to forms on  $\Gamma_1(N)$  with non-trivial nebentype character.

Theorem (Ye Tian, Xinyi Yuan, Shou-Wu Zhang, Wei Zhang)

If  $L'(f/K, \chi_L, 1) \neq 0$ , then  $A_f(L)^- \otimes \mathbb{Q}$  has dimension one over  $T_f$ , and therefore

$$\operatorname{rank}(A_f(L)^-)=2.$$

Furthermore  $\coprod (A_f/L)^-$  is finite.

$${\sf rank}(A_f(L)^-) = {\sf rank}(A_f(M)^-), \qquad A_f(M)^- = E(M)^- \oplus E(M)^-.$$

### Corollary

If  $L'(E_M/F,1) \neq 0$ , then  $\operatorname{rank}(E_M(F)) = 1$  and  $\operatorname{III}(E_M/F) < \infty$ 



The following strikingly general theorem applies to forms on  $\Gamma_1(N)$  with non-trivial nebentype character.

Theorem (Ye Tian, Xinyi Yuan, Shou-Wu Zhang, Wei Zhang)

If  $L'(f/K, \chi_L, 1) \neq 0$ , then  $A_f(L)^- \otimes \mathbb{Q}$  has dimension one over  $T_f$ , and therefore

$$\operatorname{rank}(A_f(L)^-)=2.$$

Furthermore  $\coprod (A_f/L)^-$  is finite.

$$\operatorname{\mathsf{rank}}(A_f(L)^-) = \operatorname{\mathsf{rank}}(A_f(M)^-), \qquad A_f(M)^- = E(M)^- \oplus E(M)^-.$$

Corollary

If  $L'(E_M/F,1) \neq 0$ , then  $\operatorname{rank}(E_M(F)) = 1$  and  $\operatorname{III}(E_M/F) < \infty$ 



The following strikingly general theorem applies to forms on  $\Gamma_1(N)$  with non-trivial nebentype character.

### Theorem (Ye Tian, Xinyi Yuan, Shou-Wu Zhang, Wei Zhang)

If  $L'(f/K, \chi_L, 1) \neq 0$ , then  $A_f(L)^- \otimes \mathbb{Q}$  has dimension one over  $T_f$ , and therefore

$$\operatorname{rank}(A_f(L)^-)=2.$$

Furthermore  $\coprod (A_f/L)^-$  is finite.

$$\operatorname{rank}(A_f(L)^-) = \operatorname{rank}(A_f(M)^-), \qquad A_f(M)^- = E(M)^- \oplus E(M)^-.$$

### Corollary

If  $L'(E_M/F, 1) \neq 0$ , then  $\operatorname{rank}(E_M(F)) = 1$  and  $\operatorname{UL}(E_M/F) < \infty$ .



In the setting of  $\mathbb{Q}$ -curves, we have two constructions of a point in  $E_M(F)$ , with  $M=F(\sqrt{D})$  ATR:

- **1** A "classical" Heegner point  $P_M(f)$  attached to the elliptic cusp form  $f \in S_2(\Gamma_1(N), \varepsilon_N)$ .
- ② A conjectural ATR point  $P_M^?(G) = P_{D,1}(\omega_G)$  attached to the Hilbert modular form G = DN(f).

### Conjecture (Rotger, Zhao, D)

There exists a constant  $\ell \in \mathbb{Q}^{\times}$ , not depending on M, such that

$$P_M(f) = P_M^?(G).$$

In the setting of  $\mathbb{Q}$ -curves, we have two constructions of a point in  $E_M(F)$ , with  $M=F(\sqrt{D})$  ATR:

- **1** A "classical" Heegner point  $P_M(f)$  attached to the elliptic cusp form  $f \in S_2(\Gamma_1(N), \varepsilon_N)$ .
- ② A conjectural ATR point  $P_M^?(G) = P_{D,1}(\omega_G)$  attached to the Hilbert modular form G = DN(f).

Conjecture (Rotger, Zhao, D)

There exists a constant  $\ell \in \mathbb{Q}^{\times}$ , not depending on M, such that

$$P_M(f) = P_M^?(G).$$

In the setting of  $\mathbb{Q}$ -curves, we have two constructions of a point in  $E_M(F)$ , with  $M=F(\sqrt{D})$  ATR:

- **1** A "classical" Heegner point  $P_M(f)$  attached to the elliptic cusp form  $f \in S_2(\Gamma_1(N), \varepsilon_N)$ .
- **2** A conjectural ATR point  $P_M^?(G) = P_{D,1}(\omega_G)$  attached to the Hilbert modular form G = DN(f).

Conjecture (Rotger, Zhao, D)

There exists a constant  $\ell \in \mathbb{Q}^{\times}$ , not depending on M, such that

$$P_M(f) = P_M^?(G).$$

In the setting of  $\mathbb{Q}$ -curves, we have two constructions of a point in  $E_M(F)$ , with  $M=F(\sqrt{D})$  ATR:

- **1** A "classical" Heegner point  $P_M(f)$  attached to the elliptic cusp form  $f \in S_2(\Gamma_1(N), \varepsilon_N)$ .
- **2** A conjectural ATR point  $P_M^?(G) = P_{D,1}(\omega_G)$  attached to the Hilbert modular form G = DN(f).

### Conjecture (Rotger, Zhao, D)

There exists a constant  $\ell \in \mathbb{Q}^{\times}$ , not depending on M, such that

$$P_M(f) = P_M^?(G).$$

In the setting of  $\mathbb{Q}$ -curves, we have two constructions of a point in  $E_M(F)$ , with  $M=F(\sqrt{D})$  ATR:

- **1** A "classical" Heegner point  $P_M(f)$  attached to the elliptic cusp form  $f \in S_2(\Gamma_1(N), \varepsilon_N)$ .
- **2** A conjectural ATR point  $P_M^?(G) = P_{D,1}(\omega_G)$  attached to the Hilbert modular form G = DN(f).

### Conjecture (Rotger, Zhao, D)

There exists a constant  $\ell \in \mathbb{Q}^{\times}$ , not depending on M, such that

$$P_M(f)=P_M^?(G).$$

### A Big Thank You to

Eyal, Steve,

for organising the Toronto-Montreal workshop!