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What Is The Question?

When do two elliptic curves, E and E ′, over Q̄ with Complex
Multiplicatin, have the same reduction modulo a prime p of the
field of definition?

I When reduced curves mod p have the same j-invariant.

I This happens when the prime p devides j(E )− j(E ′).

This reduces the question to factoring j(E )− j(E ′) into primes.



Convention and Notation

Let d1 and d2 be two fundamental discriminants with
gcd(d1, d2) = 1. Define

J(d1, d2) =


∏

[τ1],[τ2]
discτi=di

(j(τ1)− j(τ2))


4/w1w2

, (1)

where wi is the number of roots of unity in the quadraic field of
discriminant di .

I If d1, d2 < −4, J(d1, d2) is the absolute norm of the algebraic
integer j(τ1)− j(τ2) and hence is an integer.

I In general J(d1, d2)2 is an integer.

The main result of this article concerns factoring this integer.



Statement of the Theorem

Theorem
J(d1, d2)2 = ±

∏
x ,n,n′∈Z
n.n′>0

x2+4nn′=d1d2

nε(n
′),

where ε is defined as follows; if n=l a prime with (d1d2
l ) 6= −1, let

ε(l) =

{
(d1

l ) if (d1, l) = 1,

(d2
l ) if (d2, l) = 1.

And if n =
∏

i li
ai , with (d1d2

li
) 6= −1, for all i (which covers all

integers, n, occuring in the above product), then we define
ε(n) =

∏
i ε(li )

a
i .



Yet More Notation
For simplicity we assume d1 = −p, but let d2 be any negative
discriminant. Fix the following notation,

τ =
1 +
√
−p

2

K = Q(
√
−p)

O = Z[τ ] ring of integers in K

j = j(τ)

H = K (j) the Hilbert class field of K

ν a finite place in H

Aν the completion of the maximal unramified extension of the ring
of ν-integers in H

Wν an extension of Aν by an element w which satisfies a quadratic
equation of discriminant d2

e ramificition index of Wν/Aν



Algebraic Proof-First Step

In the first step we analyze the algebraic integer

α =
∏
[τ2]

discτ2=d2

(j − j(τ2))
4

w1w2

in H, and calculate its valuation at each finite prime, ν, of H.
To do this, we consider elliptic curves, E and E’, over W = Wν

with complex multiplication by O and Z[w ] respectively, and
j-invariant equal to j and j ′ = j(τ2) and good reduction at ν and
try to realize ordν(α) as a geometric invariant related to these two
curves.



Geometry

E and E’ are elliptic curves over W which is a complete discrete
valuation ring. Its quotient field has characteristic zero and residue
field has characteristic l > 0 and is algebraicaly closed.
We wish to calculate the order of j − j ′ with respect to ν
normalized so that ν(π) = 1 for π a uniformizer of W.
The main tool for proving the theorem is the following proposition,
which interprets ν(j − j ′) geometrically;



Geometry

Theorem
Let Ison(E ,E ′) be the set of isomorphisms from E to E’ defined

over W /πn and i(n) = Card(Ison(E ,E ′))
2 , then we have

ν(j − j ′) =
∑
n≥1

i(n).

This can be proved using the fact that, to find an element of
Ison(E ,E ′) we should solve the following system of congruences
modulo πn

{a4≡u4a′4
a6≡u6a′6,

(2)

for u, unit in W /πn.



Proof; Continued

Next we rewrite the above equation in a manner that is merely
dependant on E;

To every isomorphism f : E → E ′ corresponds an endomorphism of
E, which has the same norm and trace as w and induces the same
action on the tangent space to E at the origin, namely
wf = f −1.w .f .
So wf belongs to the following subset of Endn(E )

Sn = {α0|Tr(α0) = Tr(w),N(α0) = N(w), α0 = w on Lie(E)}

On the other hand, every element in Sn is of the form wf for some
ismorphism f : E → E ′ mod πn, for some elliptic curve E’ with
complex multiplication by the ring Z[w ]. This follows from the
lifting theorem below;



Lifting Theorem

Theorem
Let E0 be an elliptic curve over W /πn and α0 an endomorphism of
E0.Assume that Z[α0] has rank 2 as a Z module and that it is
integrally closed. Assume further that α0 induces multiplication by
a quadratic element w0 on Lie(E0). If there exists w such that
w ≡ w0 mod πn and w2 − Tr(w0)w + N(w0) = 0, Then there
exists an elliptic curve over W and an endomorphism α of E such
that (E , α) ≡ (E0, α0) mod πn, and α induces multiplication by w
on Lie(E)

So we are reduced to counting the elements of Sn.



Counting Sn

We consider several cases;

I If ( l
p ) = 1, then EndnE = O which does not contain any

element of discriminant d2. So Sn is empty in this case.

I If ( l
p ) 6= 1 then End1E is a maximal order in the quaternion

algbera which ramifies at l and infinity. Here, l is the residual
characteristic of ν

Now we investigate more the structure of the Quaternion algebra
mentioned above.
There exists a unique Quaternion algebra, up to isomorphism, over
K which ramifies exactly at the primes l and ∞. This quaternion
algebra can be given by the following subalgebra of 2 by 2 matrices
over K ,

B =

{
[α, β] =

(
α β
−l β̄ ᾱ

)}
.



Case of Supersingular Reduction

Maximal orders of B which can occur as endomorphism ring of E
reduced modulo π, up to isomorphism, are in 1-1 correspondence
with ideal classes of O. More precisely, if the ideal corresponding
to Ẽ , curve given by reducing E mod π, is a then,

End1(E ) = {[α, β]|α ∈ D−1, β ∈ D−1ā/a, α ≡ λβ mod Op},

where D−1 is the inverse different of O and λ is a square root of
−l modulo D.
Again we split to several cases;

I case 1, l does not divide pq in which e = 1

I case 2, l divides q in which e = 2

I case 3, l=p in which e = 1 again.



Case 1

Here we have,

Endn(E ) = {[α, β]|α ∈ D−1, β ∈ D−1ln−1ā/a, α ≡ λβ mod Op}.

every element of Endn with norm and trace equal to norm and

trace of w , is of the form [α, β] where α = x+Tr(w)
√
−p

2
√
−p

and

β = γln−1
√
−p

with γ ∈ ā/a. If we set (b) = (γ)a/ā, b is an integral

ideal in the class of a2. The pair (x , b) satisfies the following
equation,

x2 + 4l2n−1N(b) = pq.

On the other hand, any such pair, with a choice of generator for
bā/a gives an element,[α, β] in B. If it further satisfies α ≡ λβ
mod Op, it would be in Endn(E ) and if it induces multiplication by
w on Lie(E ) then it is in Sn.



Counting Sn

Using these considerations we can count the number of elements of
Sn. Similar considerations also gives the other two cases. We have;

I In the first case, the number of elements of Sn equals w1/2
times the number of solutions (x , b) of

x2 + 4l2n−1N(b) = pq,

where solutions with x ≡ 0 mod p should be counted twice.

I In the second case Sn is empty for n ≥ 2 and #S1 is given the
same way as the first case.

I In the third case also, for n ≥ 2, Sn is empty and #S1 is given
just as above.



Conclusion

Putting together the above results for different (finite) primes, and
letting j vary in the set of j-invariants of all elliptic curves with CM
with an order in a quadratic field of discriminant d1, the proof of
the main theorem is complete.



Thank you!


