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What are Hermitian Symmetric Spaces?

A Riemannian manifold M is called a Riemannian symmetric space if
for each point x € M there exists an involution s, which is an
isometry of M and a neighbourhood N, of x where x is the unique
fixed point of s, in N,.

A Riemannian symmetric space M is said to be Hermitian if M has a

complex structure making the Riemannian structure a Hermitian
structure.
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What are they concretely?

Let M be a Riemannian symmetric space and x € M be any point.
Furthermore, let G = Isom(M) and K = Stabg(x). Then G is a real
Lie group, K is a compact subgroup and G/K ~ M. Moreover, we
have that the involution s, extends to an involution of G with
(G*)° Cc K C G*.

If in particular M is a Hermitian symmetric space, then
SO2(R) C Z(K). If moreover M is irreducible and Z(G) = {e} then
Z(K) = SOz (R).

We remark that because Isom(M) acts transitively, it suffices to
specifty s, for a single point x.
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Example - The Upper half plane

The upper half plane
1
H = {x + iy € Cly > 0}, with metric P(dx2 + dy?)

is a Hermitian Symmetric space. The isometry group is
G = Isom(H) ~ PSL,(R) ~ PSO(2,1)(R).
The action on H is through fractional linear transformation

(2§) o7 =255

Fixing i € H as the base point, the compact subgroup is
K = Stabg(i) = PSO2(R) ~ SO2(R).

At the point / € H the involution is 7 — %1 The extension of this
involution to G is

sitg—(gT) L
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The Lie Algebra Structures

Given that M = G /K we are naturally drawn to look at the Lie
algebra structure of g = Lie(G). The Killing form on g is
B(X,Y) = Tr(Ad(X) o Ad(Y)). We make several observations:

© The Lie algebra decomposes as g = € + p, where £ is the Lie
algebra for K and p = & relative to B.

@ The involution s, on M induces an involution on g such that:
S E+pr—Et—p.

@ Since K is compact it follows that Bl is negative-definite.

Definition

A Cartan involution 6 : g — g is an R-linear map such that
B(X,6(Y)) is negative-definite.

A decomposition of g into the +1, —1 eigenspaces for a Cartan
involution is called a Cartan decomposition.
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Decomposition of Symmetric Spaces

A symmetric space M is said to be:
e Compact Type if B|, negative-definite (if and only if g is
compact).

e Non-Compact Type if B|, positive-definite (if and only if s, is a
Cartan involution).

e Euclidean Type if B|, = 0.

Every symmetric space M can be decomposed into a product

M= M. x My x Mg
where the factors are of compact, non-compact and Euclidean types
respectively.
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Dual Symmetric Pairs

Studying modular forms on G/K requires constructing interesting
vector bundles. In the non-compact case this is done via an
embedding into a projective variety. We shall now work towards
obtaining such an embedding.

Definition

Given a Riemannian symmetric space M with associated Lie algebra
g = ¢+ p, we define the dual Lie algebra (for the pair (g, £)) to be:

gh=t+ipcgxC.

If g was compact (resp non-compact, resp Euclidean) type then g* is
non-compact (resp compact, resp Euclidean) type.

One typically can associate to this dual Lie algebra an associated Lie
real group G C Gc such that K C G and symmetric space G/K.
For the remainder of this talk, G/K will be a Hermitian symmetric
space of the non-compact type with G/K the dual symmetric space
of the compact type.
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Embedding into the Compact Dual

Let U be the center of K and u be its Lie algebra. The action of uc
on gc decomposes g¢ into three eigenspaces: the 0-eigenspace tc and
two others we shall denote p* and p~. The Lie algebrat @ C +p~ is
then parabolic. Moreover

(txC+p )Ng=¢t

Let P~ C Gg¢ be the parabolic subgroup associated to ¢t ® C + p~—.
Then:

G/K — Go/P~ ~G/K
This is an open immersion of G/K into the complex projective variety

Gc/ P~ ,which is isomorphic to the compact dual M = G/K. The
maps are induced by the inclusions G — G¢ and G — Gg¢

We have that Gg/P~ is a “generalized flag manifold”.



The O(2,n) Case

Definition

Let (V, x.y) be a rational quadratic space of signature (2, n). We
define the Grassmannian by

Gr(V) = {positive-definite planes in V(R)}
and the quadric by
Q = {v € P(V(C)) with X.X = 0 and X.X > 0}.

The group G = PSO(2, n)(IR) acts transitively on positive-definite
planes in V(R) and thus on Gr(V). Likewise it acts transitively on Q.
The kernal of these actions is K = PS(O(2) x O(n)). Moreover,
Gr(V) ~ Q.

Removing the conditions ‘positive-definite’ equivalently X.X > 0 we
shall obtain the compact dual and the map M — M.
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The O(2,n) Case (Lie Algebra)

Fix a plane x € Gr(V). Define s to be the map of V(R) which acts
as the identity on x and as —1 on x*. This gives a map s, on Gr(V)
which lifts to an involution of PSO(2, n)(R) via conjugation by $.
One can then check that

PSO(2, n)(R)> = PS(O(2) x O(n)) = Stabg(x) = K.
The Lie algebra of G is
g = Lie(G) ~ {( Jr ¥) |A, C skew-symmetric}
with g decomposing into
e={(g8) ca} andp={(Jro)}
The Killing form on p is given by B|,(Uz, Uz) = Tr(U1 U).

Identifying p = pyx with the tangent space at x € Gr(V) the Killing
form induces a G-invariant Riemannian metric on Gr(V).
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The O(2,n) Case (The Dual)

The Compact Dual dual group is G = PSO(2 4 n)(R). lts Lie algebra
is given by:

gt = Lie(é) ~ {(737 g) |A, C skew—symmetric} .

. . 0 v
with p’ the subspace given by {(—UT 0 )}
The group G has a natural transitive action on {planes in V/(R)}.
The stabilizer of the plane x for ths action of G is again K.

The inclusion of Gr(V) into {planes in V(R)} thus realizes the
embedding of G/K into the compact dual G/K.

The boundary components of Gr(V) in this larger space come from
isotropic subspaces, we remark that G acts transitively on these.
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Locally Symmetric Spaces

Definition

Let M = G/K be a symmetric space and I be a discrete subgroup of
G then X = T\M is a locally symmetric space.
(One is often interested in the cases where [ is ‘torsion free’ and has
finite covolume so that X is more manageable)

For the case of the orthogonal group, let L be a full lattice in V then
SO, € G =SOy(R) is discrete and and has finite co-volume. We
may thus consider the locally symmetric space X = SO; \G/K.

In general there exists a natural compactification X which may be
realized by adjoining to M its ‘rational’ boundary components in M.
In the orthogonal case, these boundary components correspond to
rational isotropic subspaces.
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Modular Forms

Definition
Let Q be the image of M = G/K in some projective space embedding
of M= Gc/P~ and let O be the cone over Q. A modular form f for
I" of weight kK on M can be thought of as any of the equivalent
notions:

@ A section of MN\(Oy,(—k)|m) on T\M.

@ A function on O homogeneous of degree k which is invariant
under the action of T.

@ A function on Q which transforms with respect to the k" power
of the factor of automorphy under I'.

To be a meromorphic (resp. holomorphic) modular form we require
that f extends to the boundary and that it be meromorphic (resp.
holomorphic). One may also consider forms which are holomorphic on
the space but are only meromorphic on the boundary.
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The End

Thank you.




