Integral models of Shimura varieties Zavosh Amir-Khosravi April 9, 2011 #### Motivation Let $n \geq 3$ be an integer, S a scheme, and let (E, α_n) denote an elliptic curve E over S with a level-n structure $\alpha_n : (\mathbb{Z}/n\mathbb{Z})^2 \to E_n$. #### Motivation Let $n \geq 3$ be an integer, S a scheme, and let (E, α_n) denote an elliptic curve E over S with a level-n structure $\alpha_n : (\mathbb{Z}/n\mathbb{Z})^2 \to E_n$. The functor $S \rightsquigarrow \text{isomorphism classes of pairs } (E, \alpha_n)$ is representable by a scheme M_n defined over $\operatorname{\mathsf{Spec}}(\mathbb{Z}[1/n])$ and $$\mathbb{H}/\Gamma_0(n) \cong M_n(\mathbb{C})$$ #### Motivation Let $n \geq 3$ be an integer, S a scheme, and let (E, α_n) denote an elliptic curve E over S with a level-n structure $\alpha_n : (\mathbb{Z}/n\mathbb{Z})^2 \to E_n$. The functor $S \rightsquigarrow \text{isomorphism classes of pairs } (E, \alpha_n)$ is representable by a scheme M_n defined over $\operatorname{\mathsf{Spec}}(\mathbb{Z}[1/n])$ and $$\mathbb{H}/\Gamma_0(n)\cong M_n(\mathbb{C})$$ Here is a prototypical theorem: #### Theorem (Igusa, 1959) The scheme M_n can be compactified by a smooth projective scheme M_n^* over $Spec(\mathbb{Z}[1/n])$, in such a way that $M_n^* \setminus M_n$ is an étale cover of $Spec(\mathbb{Z}[1/n])$ ### Abelian schemes with real multiplication - K a totally real number field of degree g over \mathbb{Q} with ring of integers R. - Fix a level $n \ge 3$, and let the n^{th} roots of unity generate $\mathbb{Z}[\zeta_n] \subset \mathbb{C}$ ## Abelian schemes with real multiplication - K a totally real number field of degree g over \mathbb{Q} with ring of integers R. - Fix a level $n \ge 3$, and let the n^{th} roots of unity generate $\mathbb{Z}[\zeta_n] \subset \mathbb{C}$ Rapoport (1978) considered a moduli problem of abelian varieties of dimension g, with multiplication by R, plus extra data. He showed that this is representable by an algebraic space \mathcal{M}^R over $\operatorname{Spec}(\mathbb{Z}[\zeta_n][1/n])$. ## Abelian schemes with real multiplication - K a totally real number field of degree g over \mathbb{Q} with ring of integers R. - Fix a level $n \ge 3$, and let the n^{th} roots of unity generate $\mathbb{Z}[\zeta_n] \subset \mathbb{C}$ Rapoport (1978) considered a moduli problem of abelian varieties of dimension g, with multiplication by R, plus extra data. He showed that this is representable by an algebraic space \mathscr{M}^R over $\mathrm{Spec}(\mathbb{Z}[\zeta_n][1/n])$. Over the complex numbers, $\mathscr{M}^R(\mathbb{C}) \cong \mathbb{H}^g/\Gamma(n)$. Where $$\Gamma(n) := \operatorname{Ker}(SL(2,R) \to SL(2,R/nR))$$ acts on each $\mathbb H$ via a separate embedding $$SL(2,K) \hookrightarrow SL(2,\mathbb{R}).$$ ## Rapoport's moduli problem ■ By choosing some extra combinatorial data in the moduli problem, Rapoport defined a compactification $\overline{\mathcal{M}^R}$ of \mathcal{M}^R , and showed that over $\mathbb C$ this is the toroidal compactification of Mumford et al. # Rapoport's moduli problem - By choosing some extra combinatorial data in the moduli problem, Rapoport defined a compactification $\overline{\mathcal{M}^R}$ of \mathcal{M}^R , and showed that over $\mathbb C$ this is the toroidal compactification of Mumford et al. - An expectation was that $\overline{\mathscr{M}^R}$ would be smooth and proper over $\operatorname{Spec}(\mathbb{Z}[\zeta_n][1/n])$, but this turned out not to be true. This would have implied that the geometric fibres of \mathscr{M}^R are irreducible. # Rapoport's moduli problem - By choosing some extra combinatorial data in the moduli problem, Rapoport defined a compactification $\overline{\mathcal{M}^R}$ of \mathcal{M}^R , and showed that over $\mathbb C$ this is the toroidal compactification of Mumford et al. - An expectation was that $\overline{\mathscr{M}^R}$ would be smooth and proper over $\operatorname{Spec}(\mathbb{Z}[\zeta_n][1/n])$, but this turned out not to be true. This would have implied that the geometric fibres of \mathscr{M}^R are irreducible. - To prove the desired properties of \mathcal{M}^R , Deligne and Pappas (1994) introduced another moduli space \mathcal{M} in which \mathcal{M}^R is open and dense at every fibre. They then glued \mathcal{M} and $\overline{\mathcal{M}^R}$ along \mathcal{M}^R to get a proper (but not smooth) scheme over Spec($\mathbb{Z}[\zeta_n][1/n]$). Let L be an invertible R-module with a choice of orientation on $L \otimes_{R,\sigma} \mathbb{R}$ for each $\sigma : K \hookrightarrow \mathbb{R}$. Let L be an invertible R-module with a choice of orientation on $L \otimes_{R,\sigma} \mathbb{R}$ for each $\sigma : K \hookrightarrow \mathbb{R}$. An L-polarised abelian scheme over S with real multiplication by R is: \blacksquare An abelian scheme A over S of relative dimension g Let L be an invertible R-module with a choice of orientation on $L \otimes_{R,\sigma} \mathbb{R}$ for each $\sigma : K \hookrightarrow \mathbb{R}$. - An abelian scheme A over S of relative dimension g - A ring homomorphism $R \to End(A)$, i.e. an R-module structure on A Let L be an invertible R-module with a choice of orientation on $L \otimes_{R,\sigma} \mathbb{R}$ for each $\sigma : K \hookrightarrow \mathbb{R}$. - An abelian scheme A over S of relative dimension g - A ring homomorphism $R \to End(A)$, i.e. an R-module structure on A - An R-linear map $L \to Hom_R(A, A^*)^{sym}$, $\lambda \mapsto \phi_{\lambda}$, such that Let L be an invertible R-module with a choice of orientation on $L \otimes_{R,\sigma} \mathbb{R}$ for each $\sigma : K \hookrightarrow \mathbb{R}$. - An abelian scheme A over S of relative dimension g - A ring homomorphism $R \to End(A)$, i.e. an R-module structure on A - An R-linear map $L o Hom_R(A, A^*)^{sym}$, $\lambda \mapsto \phi_{\lambda}$, such that - $A \otimes_R L \to A^*$ is an isomorphism, Let L be an invertible R-module with a choice of orientation on $L \otimes_{R,\sigma} \mathbb{R}$ for each $\sigma : K \hookrightarrow \mathbb{R}$. - An abelian scheme A over S of relative dimension g - A ring homomorphism $R \rightarrow End(A)$, i.e. an R-module structure on A - An R-linear map $L o Hom_R(A, A^*)^{sym}$, $\lambda \mapsto \phi_{\lambda}$, such that - $\blacksquare A \otimes_R L \to A^*$ is an isomorphism, - $\lambda > 0$ maps to a polarisation $\phi_{\lambda} \in \text{Hom}(A, A^*)$ Let L be an invertible R-module with a choice of orientation on $L \otimes_{R,\sigma} \mathbb{R}$ for each $\sigma : K \hookrightarrow \mathbb{R}$. An L-polarised abelian scheme over S with real multiplication by R is: - An abelian scheme A over S of relative dimension g - A ring homomorphism $R \rightarrow End(A)$, i.e. an R-module structure on A - An R-linear map $L o Hom_R(A, A^*)^{sym}$, $\lambda \mapsto \phi_{\lambda}$, such that - $A \otimes_R L \to A^*$ is an isomorphism, - $\lambda > 0$ maps to a polarisation $\phi_{\lambda} \in \text{Hom}(A, A^*)$ In addition, a *level n structure* is an isomorpism $(R/nR)^2 \stackrel{\sim}{\longrightarrow} A_n$ over S. ### Moduli of L-polarised abelian schemes with RM The functor that associates to a scheme S, the isomorphism classes of L-polarised abelian schemes over S with real multiplication by R and level n structure, is representable by an algebraic space \mathcal{M}_n^L over $\operatorname{Spec}(\mathbb{Z}[1/n])$. ### Moduli of L-polarised abelian schemes with RM The functor that associates to a scheme S, the isomorphism classes of L-polarised abelian schemes over S with real multiplication by R and level n structure, is representable by an algebraic space \mathcal{M}_n^L over $\operatorname{Spec}(\mathbb{Z}[1/n])$. The only purpose of the level structure is to kill automorphisms. It's possible to avoid it entirely, at the cost of having to work with algebraic stacks. ### Moduli of L-polarised abelian schemes with RM The functor that associates to a scheme S, the isomorphism classes of L-polarised abelian schemes over S with real multiplication by R and level n structure, is representable by an algebraic space \mathcal{M}_n^L over $\operatorname{Spec}(\mathbb{Z}[1/n])$. The only purpose of the level structure is to kill automorphisms. It's possible to avoid it entirely, at the cost of having to work with algebraic stacks. Rapoport's space \mathcal{M}_n is one of the connected components of \mathcal{M}_n^L , for $L=D^{-1}$, the inverse different of R over \mathbb{Z} . To study the smoothness of \mathcal{M}_n , Deligne and Pappas introduce local models at its closed points. To study the smoothness of \mathcal{M}_n , Deligne and Pappas introduce local models at its closed points. Such a local model \mathcal{N} , is a moduli space for certain filtrations of $(\mathcal{O}_S \otimes R)^2$. Locally the spaces $$Lie(A^*)^{\vee} \subset H_1^{DR}(A/\mathscr{M})$$ form such a filtration. This induces an étale map $U \to \mathscr{N}$. To study the smoothness of \mathcal{M}_n , Deligne and Pappas introduce local models at its closed points. Such a local model \mathcal{N} , is a moduli space for certain filtrations of $(\mathcal{O}_S \otimes R)^2$. Locally the spaces $$Lie(A^*)^{\vee} \subset H_1^{DR}(A/\mathscr{M})$$ form such a filtration. This induces an étale map $U \to \mathscr{N}$. Using this local model, other moduli spaces \mathcal{N}_i of filtrations which stratify \mathcal{N} , and explicit charts for those \mathcal{N}_i , Deligne-Pappas describe the non-smooth locus of M_n^L . #### Theorem (1994 Deligne-Pappas) Let Δ be the discriminant of R over \mathbb{Z} . The scheme \mathcal{M}_n^L is smooth over $Spec(\mathbb{Z}[1/n\Delta])$, flat of relative complete intersection over $Spec(\mathbb{Z}[1/n])$, and for p prime to n, $p|\Delta$, the non-smooth locus of \mathcal{M}_n^L in characteristic p has codimension p in the fibre at p. #### Theorem (1994 Deligne-Pappas) Let Δ be the discriminant of R over \mathbb{Z} . The scheme \mathcal{M}_n^L is smooth over $Spec(\mathbb{Z}[1/n\Delta])$, flat of relative complete intersection over $Spec(\mathbb{Z}[1/n])$, and for p prime to n, $p|\Delta$, the non-smooth locus of \mathcal{M}_n^L in characteristic p has codimension p in the fibre at p. #### Corollary The fibres of $\mathcal{M}_n^L \to Spec(\mathbb{Z}[1/n])$ are normal. #### Theorem (1994 Deligne-Pappas) Let Δ be the discriminant of R over \mathbb{Z} . The scheme \mathcal{M}_n^L is smooth over $Spec(\mathbb{Z}[1/n\Delta])$, flat of relative complete intersection over $Spec(\mathbb{Z}[1/n])$, and for p prime to n, $p|\Delta$, the non-smooth locus of \mathcal{M}_n^L in characteristic p has codimension p in the fibre at p. #### Corollary The fibres of $\mathcal{M}_n^L \to Spec(\mathbb{Z}[1/n])$ are normal. This corollary in turn implies that $\mathcal{M}_n^L \to \operatorname{Spec}(\mathbb{Z}[1/n])$ factors through a scheme T which is étale over $\operatorname{Spec}(\mathbb{Z}[1/n])$. #### Theorem (1994 Deligne-Pappas) Let Δ be the discriminant of R over \mathbb{Z} . The scheme \mathcal{M}_n^L is smooth over $Spec(\mathbb{Z}[1/n\Delta])$, flat of relative complete intersection over $Spec(\mathbb{Z}[1/n])$, and for p prime to n, $p|\Delta$, the non-smooth locus of \mathcal{M}_n^L in characteristic p has codimension p in the fibre at p. #### Corollary The fibres of $\mathcal{M}_n^L \to Spec(\mathbb{Z}[1/n])$ are normal. This corollary in turn implies that $\mathcal{M}_n^L \to \operatorname{Spec}(\mathbb{Z}[1/n])$ factors through a scheme T which is étale over $\operatorname{Spec}(\mathbb{Z}[1/n])$. The geometric fibres of $\mathcal{M}_n^L \to T$ are irreducible. ## Another angle: the supersingular locus Given an integral model of a moduli space of abelian schemes, one can reduce modulo a good prime p, and ask for a description of the supersingular locus. ## Another angle: the supersingular locus Given an integral model of a moduli space of abelian schemes, one can reduce modulo a good prime p, and ask for a description of the supersingular locus. There is a general definition of a supersingular abelian scheme, which for g < 3 coincides with the p-rank being 0. An abelian variety is called supersingular if it is isogenous to a product of supersingular elliptic curves. ## Another angle: the supersingular locus Given an integral model of a moduli space of abelian schemes, one can reduce modulo a good prime p, and ask for a description of the supersingular locus. There is a general definition of a supersingular abelian scheme, which for g < 3 coincides with the p-rank being 0. An abelian variety is called supersingular if it is isogenous to a product of supersingular elliptic curves. For a moduli problem, the supersingular points have to be defined separately. In the following, we will call an isogeny supersingular, if either its source or target are supersingular. Let $M_{n,p}$ be the moduli scheme of p-isogenies between elliptic curves with level-n structure, and M_n as before. Then we have: Let $M_{n,p}$ be the moduli scheme of p-isogenies between elliptic curves with level-n structure, and M_n as before. Then we have: Modulo p, the Frobenius and the Verschiebung provide sections for the projections. Let $M_{n,p}$ be the moduli scheme of p-isogenies between elliptic curves with level-n structure, and M_n as before. Then we have: Modulo p, the Frobenius and the Verschiebung provide sections for the projections. It is a theorem of Deligne and Rapoport that the images of Fr and Ver inside $M_{n,p} \otimes \mathbb{F}_p$ are transveral, with intersection exactly the supersingular points of $M_{n,p}$. It is a theorem of Deligne and Rapoport that the images of Fr and Ver inside $M_{n,p} \otimes \mathbb{F}_p$ are transveral, with intersection exactly the supersingular points of $M_{n,p}$. Hellmuth Stamm in 1997 studied this situation in higher dimensions, and generalized this phenomenon to Hilbert-Blumenthal varieties for g=2. ### The supersingular locus: Hilbert-Blumenthal varieties Stamm considers a moduli space of p^g -isogenies between D^{-1} -polarized abelian schemes, and shows that these have a model over $\mathbb{Z}_{(p)}$. ### The supersingular locus: Hilbert-Blumenthal varieties Stamm considers a moduli space of p^g -isogenies between D^{-1} -polarized abelian schemes, and shows that these have a model over $\mathbb{Z}_{(p)}$. As in the case of modular curves, by projecting to the source and target of an isogeny, one gets morphisms to the moduli space of D^{-1} -polarized abelian schemes with RM. The Frobenius and Verschiebung are sections for these morphisms mod p. ## The supersingular locus: Hilbert-Blumenthal varieties Stamm considers a moduli space of p^g -isogenies between D^{-1} -polarized abelian schemes, and shows that these have a model over $\mathbb{Z}_{(p)}$. As in the case of modular curves, by projecting to the source and target of an isogeny, one gets morphisms to the moduli space of D^{-1} -polarized abelian schemes with RM. The Frobenius and Verschiebung are sections for these morphisms mod p. For the special case when g=2, Stamm gives a description of the global structure of supersingular abelian varieties inside the fibre at p. ### Theorem (Stamm (1997)) ■ The \mathbb{F}_p scheme \mathbb{N}^s is purely one-dimensional ### Theorem (Stamm (1997)) - The \mathbb{F}_p scheme \mathbb{N}^s is purely one-dimensional - The irreducible components of $N^s \otimes \mathbb{F}_{p^2}$ are isomorphic to $\mathbb{P}^1_{\mathbb{F}_{n^2}}$. ### Theorem (Stamm (1997)) - The \mathbb{F}_p scheme \mathbb{N}^s is purely one-dimensional - The irreducible components of $N^s \otimes \mathbb{F}_{p^2}$ are isomorphic to $\mathbb{P}^1_{\mathbb{F}_{p^2}}$. - The set of these irreducible components are a union of two subsets which are interchanged under the action of $Gal(\mathbb{F}_{p^2}/\mathbb{F}_p)$. ### Theorem (Stamm (1997)) - The \mathbb{F}_p scheme \mathbb{N}^s is purely one-dimensional - The irreducible components of $N^s \otimes \mathbb{F}_{p^2}$ are isomorphic to $\mathbb{P}^1_{\mathbb{F}_{p^2}}$. - The set of these irreducible components are a union of two subsets which are interchanged under the action of $Gal(\mathbb{F}_{p^2}/\mathbb{F}_p)$. - The components in each subset are disjoint. Those that intersect, do it transversally, and at one point, defined over \mathbb{F}_{p^2} . Every \mathbb{F}_{p^2} point of N^s is such an intersection. ### The following picture is from page 5 of Stamm's paper: #### Some other work on the supersingular include: - Work Chai-Fu Yu on Hilbert-Blumenthal 4-folds. Mass formula for supersingular abelian surfaces. - Work of Goren and Bachmat on the non-ordinary locus. - Work of Ke-Zheng Li, Frans Oort on moduli of supersingular varieties