Integral models of Shimura varieties

Zavosh Amir-Khosravi

April 9, 2011

Motivation

Let $n \geq 3$ be an integer, S a scheme, and let (E, α_n) denote an elliptic curve E over S with a level-n structure $\alpha_n : (\mathbb{Z}/n\mathbb{Z})^2 \to E_n$.

Motivation

Let $n \geq 3$ be an integer, S a scheme, and let (E, α_n) denote an elliptic curve E over S with a level-n structure $\alpha_n : (\mathbb{Z}/n\mathbb{Z})^2 \to E_n$. The functor

 $S \rightsquigarrow \text{isomorphism classes of pairs } (E, \alpha_n)$

is representable by a scheme M_n defined over $\operatorname{\mathsf{Spec}}(\mathbb{Z}[1/n])$ and

$$\mathbb{H}/\Gamma_0(n) \cong M_n(\mathbb{C})$$

Motivation

Let $n \geq 3$ be an integer, S a scheme, and let (E, α_n) denote an elliptic curve E over S with a level-n structure $\alpha_n : (\mathbb{Z}/n\mathbb{Z})^2 \to E_n$. The functor

 $S \rightsquigarrow \text{isomorphism classes of pairs } (E, \alpha_n)$

is representable by a scheme M_n defined over $\operatorname{\mathsf{Spec}}(\mathbb{Z}[1/n])$ and

$$\mathbb{H}/\Gamma_0(n)\cong M_n(\mathbb{C})$$

Here is a prototypical theorem:

Theorem (Igusa, 1959)

The scheme M_n can be compactified by a smooth projective scheme M_n^* over $Spec(\mathbb{Z}[1/n])$, in such a way that $M_n^* \setminus M_n$ is an étale cover of $Spec(\mathbb{Z}[1/n])$

Abelian schemes with real multiplication

- K a totally real number field of degree g over \mathbb{Q} with ring of integers R.
- Fix a level $n \ge 3$, and let the n^{th} roots of unity generate $\mathbb{Z}[\zeta_n] \subset \mathbb{C}$

Abelian schemes with real multiplication

- K a totally real number field of degree g over \mathbb{Q} with ring of integers R.
- Fix a level $n \ge 3$, and let the n^{th} roots of unity generate $\mathbb{Z}[\zeta_n] \subset \mathbb{C}$

Rapoport (1978) considered a moduli problem of abelian varieties of dimension g, with multiplication by R, plus extra data. He showed that this is representable by an algebraic space \mathcal{M}^R over $\operatorname{Spec}(\mathbb{Z}[\zeta_n][1/n])$.

Abelian schemes with real multiplication

- K a totally real number field of degree g over \mathbb{Q} with ring of integers R.
- Fix a level $n \ge 3$, and let the n^{th} roots of unity generate $\mathbb{Z}[\zeta_n] \subset \mathbb{C}$

Rapoport (1978) considered a moduli problem of abelian varieties of dimension g, with multiplication by R, plus extra data. He showed that this is representable by an algebraic space \mathscr{M}^R over $\mathrm{Spec}(\mathbb{Z}[\zeta_n][1/n])$. Over the complex numbers,

 $\mathscr{M}^R(\mathbb{C}) \cong \mathbb{H}^g/\Gamma(n)$. Where

$$\Gamma(n) := \operatorname{Ker}(SL(2,R) \to SL(2,R/nR))$$

acts on each $\mathbb H$ via a separate embedding

$$SL(2,K) \hookrightarrow SL(2,\mathbb{R}).$$

Rapoport's moduli problem

■ By choosing some extra combinatorial data in the moduli problem, Rapoport defined a compactification $\overline{\mathcal{M}^R}$ of \mathcal{M}^R , and showed that over $\mathbb C$ this is the toroidal compactification of Mumford et al.

Rapoport's moduli problem

- By choosing some extra combinatorial data in the moduli problem, Rapoport defined a compactification $\overline{\mathcal{M}^R}$ of \mathcal{M}^R , and showed that over $\mathbb C$ this is the toroidal compactification of Mumford et al.
- An expectation was that $\overline{\mathscr{M}^R}$ would be smooth and proper over $\operatorname{Spec}(\mathbb{Z}[\zeta_n][1/n])$, but this turned out not to be true. This would have implied that the geometric fibres of \mathscr{M}^R are irreducible.

Rapoport's moduli problem

- By choosing some extra combinatorial data in the moduli problem, Rapoport defined a compactification $\overline{\mathcal{M}^R}$ of \mathcal{M}^R , and showed that over $\mathbb C$ this is the toroidal compactification of Mumford et al.
- An expectation was that $\overline{\mathscr{M}^R}$ would be smooth and proper over $\operatorname{Spec}(\mathbb{Z}[\zeta_n][1/n])$, but this turned out not to be true. This would have implied that the geometric fibres of \mathscr{M}^R are irreducible.
- To prove the desired properties of \mathcal{M}^R , Deligne and Pappas (1994) introduced another moduli space \mathcal{M} in which \mathcal{M}^R is open and dense at every fibre. They then glued \mathcal{M} and $\overline{\mathcal{M}^R}$ along \mathcal{M}^R to get a proper (but not smooth) scheme over Spec($\mathbb{Z}[\zeta_n][1/n]$).

Let L be an invertible R-module with a choice of orientation on $L \otimes_{R,\sigma} \mathbb{R}$ for each $\sigma : K \hookrightarrow \mathbb{R}$.

Let L be an invertible R-module with a choice of orientation on $L \otimes_{R,\sigma} \mathbb{R}$ for each $\sigma : K \hookrightarrow \mathbb{R}$.

An L-polarised abelian scheme over S with real multiplication by R is:

 \blacksquare An abelian scheme A over S of relative dimension g

Let L be an invertible R-module with a choice of orientation on $L \otimes_{R,\sigma} \mathbb{R}$ for each $\sigma : K \hookrightarrow \mathbb{R}$.

- An abelian scheme A over S of relative dimension g
- A ring homomorphism $R \to End(A)$, i.e. an R-module structure on A

Let L be an invertible R-module with a choice of orientation on $L \otimes_{R,\sigma} \mathbb{R}$ for each $\sigma : K \hookrightarrow \mathbb{R}$.

- An abelian scheme A over S of relative dimension g
- A ring homomorphism $R \to End(A)$, i.e. an R-module structure on A
- An R-linear map $L \to Hom_R(A, A^*)^{sym}$, $\lambda \mapsto \phi_{\lambda}$, such that

Let L be an invertible R-module with a choice of orientation on $L \otimes_{R,\sigma} \mathbb{R}$ for each $\sigma : K \hookrightarrow \mathbb{R}$.

- An abelian scheme A over S of relative dimension g
- A ring homomorphism $R \to End(A)$, i.e. an R-module structure on A
- An R-linear map $L o Hom_R(A, A^*)^{sym}$, $\lambda \mapsto \phi_{\lambda}$, such that
 - $A \otimes_R L \to A^*$ is an isomorphism,

Let L be an invertible R-module with a choice of orientation on $L \otimes_{R,\sigma} \mathbb{R}$ for each $\sigma : K \hookrightarrow \mathbb{R}$.

- An abelian scheme A over S of relative dimension g
- A ring homomorphism $R \rightarrow End(A)$, i.e. an R-module structure on A
- An R-linear map $L o Hom_R(A, A^*)^{sym}$, $\lambda \mapsto \phi_{\lambda}$, such that
 - $\blacksquare A \otimes_R L \to A^*$ is an isomorphism,
 - $\lambda > 0$ maps to a polarisation $\phi_{\lambda} \in \text{Hom}(A, A^*)$

Let L be an invertible R-module with a choice of orientation on $L \otimes_{R,\sigma} \mathbb{R}$ for each $\sigma : K \hookrightarrow \mathbb{R}$.

An L-polarised abelian scheme over S with real multiplication by R is:

- An abelian scheme A over S of relative dimension g
- A ring homomorphism $R \rightarrow End(A)$, i.e. an R-module structure on A
- An R-linear map $L o Hom_R(A, A^*)^{sym}$, $\lambda \mapsto \phi_{\lambda}$, such that
 - $A \otimes_R L \to A^*$ is an isomorphism,
 - $\lambda > 0$ maps to a polarisation $\phi_{\lambda} \in \text{Hom}(A, A^*)$

In addition, a *level n structure* is an isomorpism $(R/nR)^2 \stackrel{\sim}{\longrightarrow} A_n$ over S.

Moduli of L-polarised abelian schemes with RM

The functor that associates to a scheme S, the isomorphism classes of L-polarised abelian schemes over S with real multiplication by R and level n structure, is representable by an algebraic space \mathcal{M}_n^L over $\operatorname{Spec}(\mathbb{Z}[1/n])$.

Moduli of L-polarised abelian schemes with RM

The functor that associates to a scheme S, the isomorphism classes of L-polarised abelian schemes over S with real multiplication by R and level n structure, is representable by an algebraic space \mathcal{M}_n^L over $\operatorname{Spec}(\mathbb{Z}[1/n])$.

The only purpose of the level structure is to kill automorphisms. It's possible to avoid it entirely, at the cost of having to work with algebraic stacks.

Moduli of L-polarised abelian schemes with RM

The functor that associates to a scheme S, the isomorphism classes of L-polarised abelian schemes over S with real multiplication by R and level n structure, is representable by an algebraic space \mathcal{M}_n^L over $\operatorname{Spec}(\mathbb{Z}[1/n])$.

The only purpose of the level structure is to kill automorphisms. It's possible to avoid it entirely, at the cost of having to work with algebraic stacks.

Rapoport's space \mathcal{M}_n is one of the connected components of \mathcal{M}_n^L , for $L=D^{-1}$, the inverse different of R over \mathbb{Z} .

To study the smoothness of \mathcal{M}_n , Deligne and Pappas introduce local models at its closed points.

To study the smoothness of \mathcal{M}_n , Deligne and Pappas introduce local models at its closed points.

Such a local model \mathcal{N} , is a moduli space for certain filtrations of $(\mathcal{O}_S \otimes R)^2$. Locally the spaces

$$Lie(A^*)^{\vee} \subset H_1^{DR}(A/\mathscr{M})$$

form such a filtration. This induces an étale map $U \to \mathscr{N}$.

To study the smoothness of \mathcal{M}_n , Deligne and Pappas introduce local models at its closed points.

Such a local model \mathcal{N} , is a moduli space for certain filtrations of $(\mathcal{O}_S \otimes R)^2$. Locally the spaces

$$Lie(A^*)^{\vee} \subset H_1^{DR}(A/\mathscr{M})$$

form such a filtration. This induces an étale map $U \to \mathscr{N}$.

Using this local model, other moduli spaces \mathcal{N}_i of filtrations which stratify \mathcal{N} , and explicit charts for those \mathcal{N}_i , Deligne-Pappas describe the non-smooth locus of M_n^L .

Theorem (1994 Deligne-Pappas)

Let Δ be the discriminant of R over \mathbb{Z} . The scheme \mathcal{M}_n^L is smooth over $Spec(\mathbb{Z}[1/n\Delta])$, flat of relative complete intersection over $Spec(\mathbb{Z}[1/n])$, and for p prime to n, $p|\Delta$, the non-smooth locus of \mathcal{M}_n^L in characteristic p has codimension p in the fibre at p.

Theorem (1994 Deligne-Pappas)

Let Δ be the discriminant of R over \mathbb{Z} . The scheme \mathcal{M}_n^L is smooth over $Spec(\mathbb{Z}[1/n\Delta])$, flat of relative complete intersection over $Spec(\mathbb{Z}[1/n])$, and for p prime to n, $p|\Delta$, the non-smooth locus of \mathcal{M}_n^L in characteristic p has codimension p in the fibre at p.

Corollary

The fibres of $\mathcal{M}_n^L \to Spec(\mathbb{Z}[1/n])$ are normal.

Theorem (1994 Deligne-Pappas)

Let Δ be the discriminant of R over \mathbb{Z} . The scheme \mathcal{M}_n^L is smooth over $Spec(\mathbb{Z}[1/n\Delta])$, flat of relative complete intersection over $Spec(\mathbb{Z}[1/n])$, and for p prime to n, $p|\Delta$, the non-smooth locus of \mathcal{M}_n^L in characteristic p has codimension p in the fibre at p.

Corollary

The fibres of $\mathcal{M}_n^L \to Spec(\mathbb{Z}[1/n])$ are normal.

This corollary in turn implies that $\mathcal{M}_n^L \to \operatorname{Spec}(\mathbb{Z}[1/n])$ factors through a scheme T which is étale over $\operatorname{Spec}(\mathbb{Z}[1/n])$.

Theorem (1994 Deligne-Pappas)

Let Δ be the discriminant of R over \mathbb{Z} . The scheme \mathcal{M}_n^L is smooth over $Spec(\mathbb{Z}[1/n\Delta])$, flat of relative complete intersection over $Spec(\mathbb{Z}[1/n])$, and for p prime to n, $p|\Delta$, the non-smooth locus of \mathcal{M}_n^L in characteristic p has codimension p in the fibre at p.

Corollary

The fibres of $\mathcal{M}_n^L \to Spec(\mathbb{Z}[1/n])$ are normal.

This corollary in turn implies that $\mathcal{M}_n^L \to \operatorname{Spec}(\mathbb{Z}[1/n])$ factors through a scheme T which is étale over $\operatorname{Spec}(\mathbb{Z}[1/n])$.

The geometric fibres of $\mathcal{M}_n^L \to T$ are irreducible.

Another angle: the supersingular locus

Given an integral model of a moduli space of abelian schemes, one can reduce modulo a good prime p, and ask for a description of the supersingular locus.

Another angle: the supersingular locus

Given an integral model of a moduli space of abelian schemes, one can reduce modulo a good prime p, and ask for a description of the supersingular locus.

There is a general definition of a supersingular abelian scheme, which for g < 3 coincides with the p-rank being 0. An abelian variety is called supersingular if it is isogenous to a product of supersingular elliptic curves.

Another angle: the supersingular locus

Given an integral model of a moduli space of abelian schemes, one can reduce modulo a good prime p, and ask for a description of the supersingular locus.

There is a general definition of a supersingular abelian scheme, which for g < 3 coincides with the p-rank being 0. An abelian variety is called supersingular if it is isogenous to a product of supersingular elliptic curves.

For a moduli problem, the supersingular points have to be defined separately. In the following, we will call an isogeny supersingular, if either its source or target are supersingular.

Let $M_{n,p}$ be the moduli scheme of p-isogenies between elliptic curves with level-n structure, and M_n as before. Then we have:

Let $M_{n,p}$ be the moduli scheme of p-isogenies between elliptic curves with level-n structure, and M_n as before. Then we have:

Modulo p, the Frobenius and the Verschiebung provide sections for the projections.

Let $M_{n,p}$ be the moduli scheme of p-isogenies between elliptic curves with level-n structure, and M_n as before. Then we have:

Modulo p, the Frobenius and the Verschiebung provide sections for the projections.

It is a theorem of Deligne and Rapoport that the images of Fr and Ver inside $M_{n,p} \otimes \mathbb{F}_p$ are transveral, with intersection exactly the supersingular points of $M_{n,p}$.

It is a theorem of Deligne and Rapoport that the images of Fr and Ver inside $M_{n,p} \otimes \mathbb{F}_p$ are transveral, with intersection exactly the supersingular points of $M_{n,p}$.

Hellmuth Stamm in 1997 studied this situation in higher dimensions, and generalized this phenomenon to Hilbert-Blumenthal varieties for g=2.

The supersingular locus: Hilbert-Blumenthal varieties

Stamm considers a moduli space of p^g -isogenies between D^{-1} -polarized abelian schemes, and shows that these have a model over $\mathbb{Z}_{(p)}$.

The supersingular locus: Hilbert-Blumenthal varieties

Stamm considers a moduli space of p^g -isogenies between D^{-1} -polarized abelian schemes, and shows that these have a model over $\mathbb{Z}_{(p)}$.

As in the case of modular curves, by projecting to the source and target of an isogeny, one gets morphisms to the moduli space of D^{-1} -polarized abelian schemes with RM. The Frobenius and Verschiebung are sections for these morphisms mod p.

The supersingular locus: Hilbert-Blumenthal varieties

Stamm considers a moduli space of p^g -isogenies between D^{-1} -polarized abelian schemes, and shows that these have a model over $\mathbb{Z}_{(p)}$.

As in the case of modular curves, by projecting to the source and target of an isogeny, one gets morphisms to the moduli space of D^{-1} -polarized abelian schemes with RM. The Frobenius and Verschiebung are sections for these morphisms mod p.

For the special case when g=2, Stamm gives a description of the global structure of supersingular abelian varieties inside the fibre at p.

Theorem (Stamm (1997))

■ The \mathbb{F}_p scheme \mathbb{N}^s is purely one-dimensional

Theorem (Stamm (1997))

- The \mathbb{F}_p scheme \mathbb{N}^s is purely one-dimensional
- The irreducible components of $N^s \otimes \mathbb{F}_{p^2}$ are isomorphic to $\mathbb{P}^1_{\mathbb{F}_{n^2}}$.

Theorem (Stamm (1997))

- The \mathbb{F}_p scheme \mathbb{N}^s is purely one-dimensional
- The irreducible components of $N^s \otimes \mathbb{F}_{p^2}$ are isomorphic to $\mathbb{P}^1_{\mathbb{F}_{p^2}}$.
- The set of these irreducible components are a union of two subsets which are interchanged under the action of $Gal(\mathbb{F}_{p^2}/\mathbb{F}_p)$.

Theorem (Stamm (1997))

- The \mathbb{F}_p scheme \mathbb{N}^s is purely one-dimensional
- The irreducible components of $N^s \otimes \mathbb{F}_{p^2}$ are isomorphic to $\mathbb{P}^1_{\mathbb{F}_{p^2}}$.
- The set of these irreducible components are a union of two subsets which are interchanged under the action of $Gal(\mathbb{F}_{p^2}/\mathbb{F}_p)$.
- The components in each subset are disjoint. Those that intersect, do it transversally, and at one point, defined over \mathbb{F}_{p^2} . Every \mathbb{F}_{p^2} point of N^s is such an intersection.

The following picture is from page 5 of Stamm's paper:

Some other work on the supersingular include:

- Work Chai-Fu Yu on Hilbert-Blumenthal 4-folds. Mass formula for supersingular abelian surfaces.
- Work of Goren and Bachmat on the non-ordinary locus.
- Work of Ke-Zheng Li, Frans Oort on moduli of supersingular varieties