
EXERCISES IN MODULAR FORMS I (MATH 726)

EYAL GOREN, MCGILL UNIVERSITY, FALL 2007

(1) We define a (full) lattice L in Rn to be a discrete subgroup of Rn that contains a

basis for Rn. Prove that L is a lattice if and only if L is free of rank n as an abelian

group and contains a basis of Rn.

(2) Prove that a lattice L is integral if and only if its Gram matrix has integer coeffi-

cients.

(3) Prove that the densest lattice packing in R2 is the hexagonal packing obtained from

the lattice L = Z[ω], where ω = 1+
√−3
2

and one uses the usual identification of R2

with C. Prove that ∆(L) = π
2
√

3
= 0.9068 . . . , τ(L) = 6 and ρ(L) = 1/2.

(4) Find the laminated lattice Λ3.

(5) Prove that the Hamming code H7 is a [7, 4, 3] code and calculate its weight enu-

merator polynomial. Conclude that the extended Hamming code H8 = He
7 is an

[8, 4, 4] code with weight enumerator x8 + 14x4y4 + y8.

(6) Discuss self-dual cyclic codes.

(7) For the lattices Λ(C) in Rn, obtained from the codes Z, U, P, R, C24 (the zero code,

the universal code, the parity code, the repetition code and the extended Golay

code) calculate the kissing number, packing radius, determinant and theta function.

In the case of the theta function, I mean to write it in terms of θ2, θ3 but also as

A + Bqa + Cqb + h.o.t. and to find A,B in each case (here a, b are the first powers

that appear, which may be fractional if the lattice is not even integral). Find also

C, if you can!

(8) Let Φ be a root system and r ∈ R such that there is some root in Φ of length r.

Show that {α ∈ Φ : ‖α‖ = r} is a root system.
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(9) Suppose that Φ is a reducible root system, that is Φ = Φ1 ∪Φ2, where each Φi 6= ∅
and Φ1 is perpendicular to Φ2. Prove that each Φi is a root system.

Conversely, let Φi be a root system in the Euclidean space Ei. Prove that Φ =

Φ1 ∪ Φ2 in E1 ⊕ E2 is a root system.

(10) Let M ∈ GLn(Z) be a matrix such that both M and M−1 have non-negative entries.

Prove that M is a permutation matrix (for some σ ∈ Sn we have Mei = eσ(i), i =

1, 2 . . . , n).

(11) Let Φ be a root system. For α, β ∈ Φ prove that σα ◦ σβ is a rotation by angle 2θ,

where θ is the angle between α and β and conclude that σασβ is of order 2, 3, 4 or

6, if θ if 〈α, β〉〈β, α〉 is 0, 1, 2 or 3 respectively.

(12) Let A be an admissible set in an Euclidean space E (as in the proof of the classifi-

cation of Dynkin diagrams). Assume that there is an edge e in ΓA with end points

p, q such that by removing the edge e from Γ (but keeping the vertices p, q) we get

a disconnected diagram Γ′ = Γp

∐
Γq with p ∈ Γp, q ∈ Γq. Let Γ′′ be the diagram

obtained by gluing the diagrams Γp and Γq by identifying p and q (but identifying

no edges or other vertices). Prove that Γ′′ is the diagram of some admissible set

A′′ in some Euclidean space E ′′.

(13) Let C be the Cartan matrix of a Dynkin diagram of type An(n ≥ 1), Dn(n ≥ 4),

E6, E7 or E8. Prove that C is a symmetric positive definite matrix and that there

is a matrix M such that tMM = C. Conclude that C is the Gram matrix of

some lattice C. (Of course, we know that already, because we constructed those C

from root systems. The point is that one doesn’t really need the root systems once

one knows the matrices in order to construct lattices with those matrices as Gram

matrices.) Calculate det(L) directly as det(C).

The root systems An and Dn have nice models.

• The root system Dn. Consider the lattice

{(x1, . . . , xn) : xi ∈ Z,
∑

xi ≡ 0 (mod 2)}.
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Show that

M =




−1 0 . . . . . . 0 0

1 −1
...

...
0 1
... 0

... 0 0
−1 −1

0 0 . . . . . . 1 −1




is a generator matrix for the lattice and that the Gram matrix is the one of

the root system Dn.

• The root system An. Consider the lattice

{(x0, x1, . . . , xn) : xi ∈ Z,
∑

xi = 0}.

It is a lattice in the Euclidean space {(x0, x1, . . . , xn) : xi ∈ R,
∑

xi = 0} (with

inner product obtained by restriction from Rn+1). Show that

M =




−1 0 . . . . . . 0

1 −1
...

0 1
... 0

... 0
−1

0 0 . . . . . . 1




is a generator matrix for the lattice and that the Gram matrix is the one of

the root system An.

• Conclude the following table

det ρ τ δ

An n + 1 1√
2

n(n + 1) 2−n/2(n + 1)−1/2

Dn 4 1√
2

2n(n− 1) 2−(n+2)/2

(14) Let f be a C∞
C ([0, 1]n) be a periodic function. I.e, a complex valued function whose

mixed partial derivatives of all orders exist and f(x1, . . . , 0
i
, . . . , xn) = f(x1, . . . , 1

i
, . . . , xn)

for every i. Prove that f is equal to its Fourier series.

(15) Let T = SO2(R) be the unit circle group.
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(a) Prove that every continuous homomorphism R→ T is of the form x 7→ e2πiax

for some fixed a ∈ R.

(b) Prove that every continuous homomorphism T → T is of the form x 7→ xn for

some fixed integer n.

(16) Let Γ be a discrete subgroup of SL2(R). Prove that for every x, y ∈ H there exist

open sets x ∈ Ux, y ∈ Uy such that for every γ ∈ Γ, if γ(Ux) ∩ Uy 6= 0 then γx = y.

(17) An example of a discrete infinite non-abelian subgroup of SL2(R) with no cusps.

(a) Prove that the rational quadratic form

x2 + y2 − 3z2 − 3w2

does not represent zero. You may use that an integer m is a sum of squares if

and only if every prime p ≡ 3 (mod 4) divides n to an even power.

(b) Consider the Q-vector space,

B = Q⊕Qi⊕Qj ⊕Qk,

with multiplication determined by,

i2 = −1, j2 = 3, k2 = 3, ij = k = −ji,

and with Q being in the center. Prove that it can be realized as a subalgebra

of M2(Q[
√

3]) as follows:

a + bj + ci + dk 7→
(

a + b
√

3 −(c− d
√

3)

c + d
√

3 a− b
√

3

)
.

Note that this matrix has determinant a2 + c2− 3b2− 3d2. We call this deter-

minant the norm of a + bj + ci + dk.

(c) Prove that B is a division algebra. Prove that B∗ ⊂ GL2(Q[
√

3]) ⊂ GL2(R)

does not contain a parabolic element.

(d) Let O = {a + bj + ci + dk : a, b, c, d ∈ Z}. Prove that O is a ring and that the

elements of norm 1 in it are a non-commutative infinite discrete subgroup of

SL2(R).

Remarks: B is an example of a quaternion algebra which is split at infinity. A

quaternion algebra over Q is a Q-algebra of dimension 4 over Q, which is central

simple (that is, its center is Q and it does not split as a direct sum of algebras). Any

quaternion algebra over Q which is not isomorphic to M2(Q) is in fact a division

algebra. (This follows from the Artin-Wedderburn theorem.) A division algebra B

is called split at infinity if B⊗QR is isomorphic to M2(R). A division algebra B has
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a natural norm map to Q, which, if B is split and we embed B → B⊗QR ∼= M2(R),

is just the determinant.

An order in a quaternion algebra over Q is a subring which is free of rank 4 as

an abelian group. The ring O above is an example. It is in fact true that given

any quaternion division algebra over Q, split at infinity, and any order R in it, the

elements of norm 1 in R, R1, form a discrete infinite subgroup of SL2(R) that has

no cusps and, moreover, R1\H is a compact Riemann surface.

(18) Horocircles.

Define the following sets:

D∞ := {z : Im(z) ≥ 1} ∪ {∞}, D−
∞ := {z : Im(z) > 1} ∪ {∞}.

Also, for every rational number p/q in reduced form:

Dp/q = {τ ∈ H : |τ−(
p

q
+i· 1

2q2
)| ≤ 1

2q2
}, D−

p/q = {τ ∈ H : |τ−(
p

q
+i· 1

2q2
)| < 1

2q2
}∪{p

q
}.

• Prove that if γ ∈ SL2(Z) is such that γ∞ = p/q then γD∞ = Dp/q and

γD−
∞ = D−

p/q. Conclude that SL2(Z) acts on the sets {Dp/q} ∪ {D∞} and

{D−
p/q} ∪ {D−

∞}.
• Prove that if x 6= y are points of P1(Q) then D−

x ∩D−
y = ∅ and Dx∩Dy consists

at most of a single point.

• Let 0 ≤ x < y ≤ 1 be rational numbers. Prove that Dx ∩Dy 6= ∅ if and only

if x and y are consecutive elements in some Farey series.1

(19) Let Γ ⊂ PSL2(Z) be a subgroup of finite index and let d = [PSL2(Z) : Γ]. Let

X(Γ) = Γ\H∗. Let ε2 be the number of inequivalent elliptic points of Γ of order

2 (resp. 3), that is, the number of points in Γ\H whose stabilizer in Γ is cyclic of

order 2 (resp. 3). Let ε∞ be the number of inequivalent cusps of Γ, i.e., the number

of orbits of Γ in P1(Q). Prove that the genus of X(Γ) is given by

1 +
d

12
− 1

4
ε2 − 1

3
ε3 − 1

2
ε∞.

(20) This exercise deals with the genus formula for the modular curve X0(p).

(a) Find coset representatives for Γ0(p) in SL2(Z) and in particular obtain again

that [PSL2(Z) : Γ0(p)] = p + 1.

1The Farey series of level n consists of the numbers in {i/j : 0 ≤ i ≤ j, 1 ≤ j ≤ n} with their natural
order. For example: the Farey series of level 1 is 0, 1, of level 2 is 0, 1/2, 1, of level 3 is 0, 1/3, 1/2, 2/3, 1,
of level 4 is 0, 1/4, 1/3, 1/2, 2/3, 3/4, 1, of level 5 is 0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 3/4, 4/5, 1 and so on. It
is known, and you can use that, that two fractions n/k, n′/k′ (in reduced form and between 0 and 1) are
consecutive elements of a Farey series if and only if |nk′ − kn′| = 1.
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(b) Prove that Γ0(p) has two cusps, represented by 0 and ∞.

(c) Calculate the number of elliptic points of order 2 or 3 for Γ0(p). This can be

done using the representatives you have found above.

(d) Deduce that the genus of X0(p) is zero for p = 2, 3 and otherwise is given by

the formula

p + 1

12
− 1

4

(
1 +

(−1
p

))− 1

3

(
1 +

(−3
p

))
.

(e) Using this, find all p such that X0(p) has genus 0 or 1.

(21) Let y2 = f(x), f(x) = x2g+1 + a2gx
2g + · · ·+ a0 be a separable polynomial over C.

It defines an affine curve C ′ in C2 and the map

π : C ′ → C, π((x, y)) = x,

is a degree 2 holomorphic map. One can prove that C ′ can be compactified to a

Riemann surface C and that the map π : C ′ → C extends to a map of Riemann

surfaces

π : C → P1.

(One has to go outside P2 to construct the compactification, which is why I am not

giving it explicitly.)

(a) Prove that C \ C ′ consists of a single point that we now denote ∞.

(b) Prove that the map π has 2g + 2 ramification points and find them.

(c) Prove that C has genus g. It is called a hyperelliptic curve.

(d) Calculate the divisor of the functions x and y on C. Calculate the divisor of

the differential dx.

(e) Construct g independent holomorphic differentials on C.

(f) Given any two ramification points P, Q show that there exists a function on

C whose divisor is 2[P ]− 2[Q].

(22) Let Γ ⊆ SL2(Z) be a subgroup of finite index and let f1, . . . , fn be modular forms

of weights w1 < w2 < · · · < wn, respectively. Prove that {f1, f2, . . . , fn} are linearly

independent as functions on the upper half plane.

The following exercises deal with the ring of modular forms on X(2).

(23) (a) Prove that any modular form for X(2) of negative or odd weight is identically

zero.

(b) Calculate the dimension m(2k) of the modular forms of weight 2k for X(2),

for every k ≥ 0, and the dimension s(2k) of cusp forms. Prove, in particular,

that m(2)− s(2) = 2 and m(2k)− s(2k) = 3 for k > 1.
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(c) Let Γ ⊆ SL2(Z) be of finite index. Prove that two modular forms on X(Γ) of

the same weight and the same divisor are a scalar multiple of each other.

(d) Prove that the cusps of X(2) are∞, 0, 1. Prove that ∆ (the cusp form of weight

12 on SL2(Z)), considered as a modular form on X(2), vanishes to second order

at every cusp of X(2). Prove that there is a unique cusp form δ of weight 6

(up to a scalar) on X(2). Prove that for an appropriate normalization of δ,

δ2 = ∆.

(e) Denote two linearly independent modular forms of weight 2 for X(2) by F, G.

Show we may choose F, G such that they receive the following values at the

cusps: F (∞) = 1, F (0) = 0, F (1) = −1, G(∞) = 0, G(0) = 1, G(1) = −1.

Prove that this determines F, G uniquely. (Hint: you may want to use the

Residue Theorem for Riemann surfaces.)

(f) The Galois group of the cover X(2) → X(1) is SL2(Z/2Z) ∼= S3. Calculate the

representation

SL2(Z/2Z) → Aut(M2),

on the space of modular forms of weight 2 obtained by f 7→ f |2γ.

(24) Let F,G be as in the previous exercise.

(a) Write δ as a polynomial in F and G.

(b) Prove that the map of graded rings,

C[F,G] → ⊕∞k=0 M2k(Γ(2)),

is surjective.

(c) Prove that the ring of modular forms on X(2) is a free polynomial ring in F, G.

(25) Prove that the modular forms F, G have no common zeroes. Conclude that the

map,

z 7→ (F (z) : G(z)),

an isomorphism of X(2) with P1 and therefore any meromorphic function on X(2)

is a rational polynomial in µ = F/G.

(26) Find the expression of E4 and E6 in terms of F, G and so the map C[E4, E6] ↪→ C[F,G]S3 .

Find the action of group SL2(Z/2Z) on µ. Write j as a polynomial in µ.

(27) In this exercise we construct two theta series that shall provide (after some manip-

ulations) generators of the weight 2 modular forms on X(2).

(a) Recall the ring H of Hamilton quaternions over Q. It is the vector space

Q ⊕ Qi ⊕ Qj ⊕ Qk with the relations i2 = j2 = −1, ij = −ji = k. If
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z = a + bi + cj + dk, put z̄ = a− bi− cj− dk (this is an anti-involution on H).

Put also Tr(z) = zz̄ = 2a and Norm(z) = zz̄ = a2 + b2 + c2 + d2. There is a Q
rational symmetric bilinear form on H given by

〈x, y〉 = Tr(xȳ).

The quadratic form associated to it is 2(a2 + b2 + c2 + d2). Consider this

bilinear form on the order Z ⊕ Zi ⊕ Zj ⊕ Zk. Show it is given by the matrix

diag(2, 2, 2, 2). Conclude that the associated theta series Θ′ is a modular form

on Γ0(4) with trivial character.

(b) Show that there is a matrix γ ∈ SL2(R) such that γ−1Γ0(4)γ = Γ(2). Prove

that Θ1 := Θ′|2γ is a holomorphic modular form of weight 2 on Γ(2).

(c) Consider the maximal order in H given by Z ⊕ Zi ⊕ Zj ⊕ Z · 1+i+j+k
2

. Show

that the bilinear form is given by



2 0 0 1
0 2 0 1
0 0 2 1
1 1 1 2


 .

Show that the associated theta series Θ2 is a holomorphic modular form on

level 2 on X(2).

(d) Calculate the leading coefficient in the q-expansion of Θ1, Θ2 at each cusp and,

using this, express them in terms of F and G. (Hint: it is enough to check 2

cusps. The involution z 7→ −1/z permutes 0 and ∞).

(28) We write θa,b(τ) for Θ
[

a/2
b/2

]
(0, τ), which was defined in the lecture. It is known

that θ2
0,0, θ

2
0,1 and θ2

1,0 are modular forms of weight 1 for the modular group Γ(4).

Assuming this, prove Jacobi’s identity

θ4
0,0 = θ4

0,1 + θ4
1,0.

(Hint: one way to do that is by computing q-expansions at i∞. One can, in

fact, calculate just finitely many terms (though it is easy enough to compute the

q-expansions entirely); why’s that? and how many terms are needed exactly?)

Prove that the map

ψ : Γ(4)\H → P2, τ 7→ (θ2
0,0(τ), θ2

0,1(τ), θ2
1,0(τ)),

is well-defined and has image in the curve C in P2 given by x2
0 = x2

1 +x2
2. The map

extends in fact to an isomorphism

ψ∗ : Γ(4)\H∗ ∼= C.

Prove this as follows:
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(a) Explain why the map extends to a surjective morphism ψ∗ : Γ(4)\H∗ → C; 2

(b) Find 6 points on C that are not in ψ(Γ(4)\H).

(c) Calculate the number of cusps of Γ(4)\H∗.
(d) Argue that the map ψ∗ must be injective and hence an isomorphism.

(29) Let K ⊂ C be a quadratic imaginary field. Recall that the class group of K,

Cl(K), consists of equivalence classes of fractional ideals. Let E (K) be the set of

isomorphism classes of complex tori C/Λ such that End(C/Λ) = OK (this set can

also be identified with the set of isomorphism classes of elliptic curves E over C
together with an embedding OK → End(E) such that the induced action of OK on

the tangent space to E at the origin is the action of K on C).

Prove that there is a natural bijection

Cl(K) ↔ E (K).

2This is a bit tricky – you can either argue that the map is algebraic which is not immediate, I think,
or consider it at the cusps using some explicit calculations. At the cusp i∞ it’s easy. For the other cusps
note that it’s really enough to show convergence of the theta functions – the exact value is not important
here. This can be done by “brute force”.


