1. REcALL: MODULES

Let R be a ring, always associative and with 1. Recall that a left R-module M over R is an
abelian group M, together with a function,

RxM— M, (r,m) — rm,

such that:

(1) 7(mq + msa) = rmy + rma.

(2) (r+s)m =rm+ sm.

(3) (rs)m =r(sm).

(4) Im =m.
One defines right R-modules similarly where the action now is M x R — R. We have the notion of
a submodule and quotient module: a submodule is a subgroup which is closed under multiplication
by R. If N < M is a submodule then the quotient group M /N is naturally an R-module under
rm =71m.

An R-module homomorphism f: M; — Ms between R-modules My, Mo, is a function,
[ My — Mo,

which is a group homomorphism and satisfies f(rm) = rf(m). The kernel and image of f are then
R-modules. We have the isomorphism theorems for R-modules, the most basic of which is that

given f: My — M>s and a submodule N < Ker(f) there is a canonical R-module homomorphism
F: M/N — My, given by F(m) = f(m), such that the following diagram is commutative:

M1 d M2
N
M/N

Furthermore, the kernel of F is Ker(f)/N.
A short exact sequence of modules is a diagram of modules and homomorphisms

0— My — My — M3 — 0,

such that the image of every map is the kernel of the following one. Namely, M7 — Mo is injective,
My — M3 is surjective and the image of M is the kernel of My — Ms. Thus, M3z = My /Im(M;).

1.1. Free modules. Recall that a module M is a called freeonaset X C M, X = {z, : a € I},
if every function f: X — N (of sets), where N is an R-module, extends uniquely to an R-module
homomorphism F': M — N such that F(x) = f(z), for z € X. Equivalently, every element of
M has a unique expression as m = . TaTa, With 74 € R and r, = 0 except for finitely many
a’s (so there is no issue of convergence). Still equivalently,

M= &ocrR ={(ra)acs : Ta € R,7o =0 for almost all a}.

1.2. Modules over a field. If R is a field, then a module over R is just a vector space. Every
module is free.

Exercise 1. Let R be a division ring. Prove that every module over R is free. You will need to
use Zorn’s lemma:
Recall that a partially order set (=poset) S is a set with a relation z < y defined between
some pairs of elements z,y € S, such that: (i) z < z; (ii) < y and y < z implies z = y; (iii)
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r<y,y<z=x<z Achainin S is a subset T C S such that for all ¢,# in T, either ¢t < ¢/
or t' <t. We say that a chain has an upper bound if there’s an element s € S (we don’t require
s € T') such that s > ¢ for all t € T'. Zorn’s lemma states for a non-empty poset S that if every
chain in S has an upper bound than S has a maximal element, namely an element sy € S such
that if s € S and s > s¢ then s = sy (note that we do not require that sy > s for all s € S). If
you have never seen Zorn’s lemma in action, try to use it to prove that any ring R has a maximal
left ideal. Take S to be the set of ideals I # R of R with the partial order I < J if I C J.

1.3. Group rings. Let G be a finite group and k a field. The group ring k[G] has elements
deG agg, where a4 € k. The operations are

Zag’9+zbg‘922(ag+b9)'ga

geG geG geG

and

Zag-g Zbg-g :Z<Zahbhlg>-g.
9€G geG g€G \heG

We view k as contained in k[G] via a — a - 1.
A k-linear representation of (G, or a representation of G over k, is a homomorphism

p:G— Aut(V),

from G to the automorphism group — invertible k-linear transformations — of a vector space V'
over k. Every such representation p makes V into a k[G]-module, where we let

dagrg|v=> azp(g)v), vEV,

geG geG

and, conversely, if V' is a k[G]-module, then the action of & makes V' into a k-vector space, and
we get a representation of G by

g—rlg),  plg)(v) = go.
Exercise 2. Analyze the structure of the rings Q[G], C|G|, where G is the cyclic group Z/nZ.

1.4. Modules over a PID. Let R be a PID and let M be a finitely generated module over
R, which, recall, means that there is a surjective map of R-modules R™ — M, for some positive
integer n; equivalently, there are elements x1,...,x, of M such that every element in M is of the
form ryz1 + - -+ + rpa, for some r; € R (but such an expression is usually not unique). The main
theorem is that M is isomorphic to R ® @°_; R/a;, where R # a; D --- D a;, # {0} are ideals of
R and r is a non-negative integer. Moreover, such an expression is unique.

Important cases are R = Z, the ring of integers, and R = F|z], the ring of polynomials in the
variable x over a field F. Since an abelian group is the same thing as a Z-module, the first case
gives the classification of finitely generated abelian groups. The second case gives the theory of
Jordan canonical form, when F = C. This requires some more explanation, but the main point
is that given a linear transformation 7' : V' — V, we can make V into a C[z] module by letting
zv =T (v).



1.5. Localization. In this section we assume that R is a commutative ring. Let S C R be a
multiplicative set, i.e., 1 € S and s,t € S = st € S. For example, R can be the ring of complex
analytic functions on C and S can be the functions that do not vanish at zero. Or R can be the
integers Z and S can be all integers not divisible by p. Both these examples are a special case of
the following.

Exercise 3. Let I be a prime ideal in R and S = R — I then S is a multiplicative set. Find the
relevant ideals in the examples just mentioned.

We now define a ring R[S™!] as follows: consider symbols £ where r € R and s € S and define
a relation: . ,
22 = 3Jtes t(r1sg — resy) = 0.
S1 S9

Exercise 4. Prove that this is an equivalence relation. Prove that the operations

1 i T2  T1S52 + 7r9s1 roora2  Trira

s1 S 5182 s1 82 8182

make R[S~ into a commutative ring and that the natural map
r
R — R[S7Y], T
is a ring homomorphism. Find its kernel. Give examples when the kernel is trivial and when the
kernel is not trivial.

Example 1.5.1. Let R be an integral domain and S = R — {0}. The set S is multiplicative
and R[S™!] is actually a field containing R, called its field of fractions. It is the “minimal” field
containing R.

Let M be an R-module and S a multiplicative set. We may then define M[S™1] as the equivalence
classes of elements "*,m € M,s € S where 7:—11 ~ T—; if there exists a t € S such that ¢(semq —

s1mg) = 0. Then M[S™! is an R[S™!] module, where
@+@_32m1+81m2 romp  Tm

51 52 5182 ’ s s $81

It is easy to see that if f: M; — Mj is a homomorphism then the canonical map f : Mi[S™!] — Ms[S™1],
given by f(m/s) = f(m)/s is well-defined homomorphism.
A particular and important case of localization of modules is the following.

Exercise 5. Let I be an ideal of R then I[S™] is an ideal of R[S™Y], which is the ideal generated
by I in R[S™Y]. Conversely, if ¢ : R — R[S™!] is the natural map and J is an ideal of R[S™1]
then p~1(J) is an ideal of R. Prove that (¢~ 1(J))[S™!] = J and if INS = () then =L (I[S7]) =1
(while if IN S # 0 then o~ Y(I[S7']) = R).

Conclude that if I is a prime ideal and S = R— I then there is a bijection between the ideals of
R contained in I and the ideals of R[S™!], which takes prime ideals to prime ideals. In particular,
R[S™Y is a local ring whose mazimal ideal is I[S™"].

Exercise 6. Let S be a multiplicative set and 0 — My — Ms — M3 — 0 an exact sequence of
R-modules. Prove that the sequence 0 — M;[S™Y — My[S™1] — M3[S™1] — 0 is also exact.



1.6. On the notion of rank. Let R be an integral domain and M a module over R. A set
X ={zq :a €I} C M is independent if )" _;7qxq = 0 (where all 7o, = 0 except for finitely
many) implies 7, = 0 for all a. The rank of M is the supremum of the cardinalities of independent
sets X C M.

Still assuming that R is an integral domain, recall that an element m € M is called a torsion
element if Ir € R,r # 0 such that rm = 0. For example, if R = Z, all the element of M that
are of finite order (in the sense of the underlying abelian group) are torsion. One lets tor(M)
denote the collection of all torsion elements of M. This is a submodule of M. This submodule
has rank 0. Indeed, given an element m € tor(M) and r € R,r # 0, such that rm = 0 we find
that the element m is linearly dependent: the non-trivial linear combination rm is equal to zero.
Exercise 7. Let R be an integral domain. Prove that a free R-module M on a set X, has rank
|X|. You may assume this result for vector spaces and reduce to this case. Prove further that a
finitely generated module has finite rank.

Exercise 8. Let R = Z[\/—5] and I the ideal (2,1 + +/=5). Prove that I is not a free R-module
and that it has rank 1.

Exercise 9. Show that rk(M) = rk(M /tor(M)).

Exercise 10. Let R be an integral domain and M an R-module. (i) Show that the rank of M is
equal to the cardinality of a mazximal free submodule of M. (ii) Suppose that this rank is n. Prove
that every n + 1 elements of M are dependent. (iii) Let N C M be a mazximal free submodule.
Prove that M /N is torsion.

Exercise 11. Let 0 — M; — My — M3 — 0 be an exact sequence of finitely generated modules.
Prove that tk(Ms) = rk(My) + rk(Ms).



