
EXERCISES FOR HIGHER ALGEBRA I, FALL 2009

NOTE: although I do my best to make sure no typos occur, they still do occur sometimes.

If you think there’s an error, please discuss it with me. You may be right.

(1) Let R be a division ring. Prove that every module over R is free. You will need to use

Zorn’s lemma:

Recall that a partially order set (=poset) S is a set with a relation x ≤ y defined between

some pairs of elements x, y ∈ S, such that: (i) x ≤ x ; (ii) x ≤ y and y ≤ x implies x = y ;

(iii) x ≤ y , y ≤ z ⇒ x ≤ z . A chain in S is a subset T ⊂ S such that for all t, t ′ in T , either

t ≤ t ′ or t ′ ≤ t. We say that a chain has an upper bound if there’s an element s ∈ S (we

don’t require s ∈ T ) such that s ≥ t for all t ∈ T . Zorn’s lemma states for a non-empty

poset S that if every chain in S has an upper bound than S has a maximal element, namely

an element s0 ∈ S such that if s ∈ S and s ≥ s0 then s = s0 (note that we do not require

that s0 ≥ s for all s ∈ S). If you have never seen Zorn’s lemma in action, try to use it to

prove that any ring R has a maximal left ideal. Take S to be the set of ideals I 6= R of R

with the partial order I ≤ J if I ⊆ J.

(2) Analyze the structure of the rings Q[G], C[G], where G is the cyclic group Z/nZ.

(3) We define a ring R[S−1] as follows: consider symbols r
s where r ∈ R and s ∈ S and define

a relation:
r1
s1
∼
r2
s2

⇐⇒ ∃t ∈ S t(r1s2 − r2s1) = 0.

Prove that this is an equivalence relation. Prove that the operations

r1
s1

+
r2
s2

=
r1s2 + r2s1

s1s2
,

r1
s1
·
r2
s2

=
r1r2
s1s2

,

make R[S−1] into a commutative ring and that the natural map

R→ R[S−1], r 7→
r

1

is a ring homomorphism. Find its kernel. Give examples when the kernel is trivial and when

the kernel is not trivial.

(4) Let I be an ideal of R then I[S−1] is an ideal of R[S−1], which is the ideal generated

by I in R[S−1]. Conversely, if ϕ : R→ R[S−1] is the natural map and J is an ideal of

R[S−1] then ϕ−1(J) is an ideal of R. Prove that (ϕ−1(J))[S−1] = J and if I ∩ S = ∅ then

ϕ−1(I[S−1]) ⊇ I.
Prove that if I is a prime ideal and S = R− I then these constructions provide a bijection

between the prime ideals of R contained in I and the prime ideals of R[S−1]. In particular,

R[S−1] is a local ring whose maximal ideal is I[S−1].
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(5) Let S be a multiplicative set and 0→ M1 → M2 → M3 → 0 an exact sequence of R-

modules. Prove that the sequence 0→ M1[S
−1]→ M2[S

−1]→ M3[S
−1]→ 0 is also exact.

(6) Let C be a category. An object A of C is called initial (resp. final) if for every object B

there is a unique morphism A→ B (resp., B → A). Prove that if C has an initial (resp.

final) object then it is unique, up to unique isomorphism. Give examples of categories C

such that:

(a) C has an initial object and doesn’t have a final object.

(b) C doesn’t have an initial object and has a final object.

(c) C doesn’t have an initial object and doesn’t have a final object.

(d) C has an initial object and has a final object, but they are non-isomorphic.

(e) C has object that is both initial and final. (Such an object is sometimes called a zero

object.)

(7) Let n be a positive integer and k a field. Consider the category V whose objects are

finite dimensional k-vector spaces V , equipped with n-linear maps T1, . . . , Tn : V → V that

commute with each other. A morphism

H : (V ;T1, . . . , Tn)→ (V ′;T ′1, . . . , T
′
n)

is a linear map H : V → V ′ such that H ◦ Ti = T ′i ◦H.

Prove that this category is equivalent to the category M whose objects are n-tuples of

commuting m ×m-matrices (M1, . . . ,Mn) and a morphism

H : (m;M1, . . . ,Mn)→ (m′;M ′1, . . . ,M
′
n)

is an m′ ×m matrix H such that HMi = M ′iH for all i .

Prove further that these categories are equivalent to the category of modules over

k [x1, . . . , xn] that are finite dimensional k-vector spaces. To which data does k [x1, x2]/(x21 , x
2
2 )

correspond?

(8) Let R be a ring and define a ring Rop to be the same underlying abelian group of R, but

where multiplication is defined by a ∗ b := ba, where ba is the product of b and a in R.

(a) Prove that Rop is a ring.

(b) Prove that the category of left R-modules RMod is equivalent to the category of right

Rop-modules.

(c) Bonus question: Give an example of a ring that is not isomorphic to its opposite ring.

(9) Let K be a category and define the opposite category Kop to be the category K with the

same objects and MorKop(A,B) := MorK(B,A). We define f ◦ g in Kop to be g ◦ f as

performed in K. Prove that Kop is a category and note that (Kop)op = K.

Prove that if A is an initial (resp. final) object then A is a final (resp. initial) object

in Kop. Prove that if K has products (resp. coproducts) then Kop has coproducts (resp.

products).

(10) Prove that Z/2Z ∗ Z/2Z is an infinite group.
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(11) Prove that in the category of linearly ordered sets co-products A
∐
B need not exists, but

that co-products A
∐
B exists in the category of posets.

(12) Prove that injective limits exist in the category Sets.

(13) For all m|n we have 1mZ/Z ↪→
1
nZ/Z. Prove that this gives a direct system and lim

−→ n

1
nZ/Z ∼=

Q/Z.

(14) Let I be a poset (the index set). I is called directed if ∀i , j ∈ I there exists k ∈ I such that

i ≤ k and j ≤ k .

Given an injective system {Mi , fi j} of R-modules indexed by a directed set I, let us say that

mi ∈ Mi is equivalent to mj ∈ Mj if there k such that i ≤ k, j ≤ k and fik(mi) = fjk(mj).

Check that this defines an equivalence relation on the disjoint union of the Mi and denote

an equivalence class by [mi ]. Give the equivalence classes a structure of an R-module by

r [mi ] = [rmi ], [mi ] + [nj ] = [fik(mi) + fjk(mj)],

where k is any element such that i ≤ k, j ≤ k . Show that this is well-defined and that this

R-module is isomorphic to lim
←− I

Mi .

(15) Let k be a field. Prove that lim
←− n

k [t]/(tn) ∼= k [[t]].

(16) The projective limit of . . . → Z/p2Z→ Z/pZ→ {0} is denoted Zp. Prove that Zp is a

commutative integral domain containing Z. Define a metric on Z by

d(m, n) = p−valp(m−n),

where, for x ∈ Z, we let,

valp(x) = highest power of p dividing x.

Define also a valuation on Zp by valp((mi)) = max{i : mi = 0}. Show that this extends the

definition of valp on Z and that d(x, y) = p−valp(x−y) is a metric on Zp. Prove that Zp is

the completion of Z relative to this metric. Prove that Zp is compact.

(17) Let F : TopSp→ Set be the forgetful functor. Show that F has both a left adjoint and a

right adjoint.

(18) Let (F,G), F : C → D,G : D → C, be an adjoint pair. Suppose that A,B are object in

D having a product AΠB. Prove that G(AΠB) is a product for G(A), G(B). Similarly, F

takes co-products to co-products.

(19) Let R be a commutative ring and I1, I2 two ideals of R. Prove that

R/I1 ⊗ R/I2 ∼= R/(I1 + I2).

(20) Prove that Q/Z⊗Z Q/Z ∼= {0}.
(21) Let V/k be a finite dimensional vector space over a field k of characteristic different from

2. The tensor algebra T (V ) of V is the direct sum

⊕∞I=0V ⊗i = k ⊕ V ⊕ (V ⊗k V )⊕ (V ⊗k V ⊗k V )⊕ . . .

It is a k-vector space, being a direct sum of k-vector spaces, of infinite dimension. It has a

well-defined multiplication induced by

v1 ⊗ · · · ⊗ va · w1 ⊗ · · · ⊗ wb = v1 ⊗ · · · ⊗ va ⊗ w1 ⊗ · · · ⊗ wb.
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This makes T (V ) into a (non-commutative, in general) ring containing k . This ring is

graded: T (V ) = ⊕∞i=0V ⊗i , the weight i elements are V ⊗i , and we have under multiplication

V ⊗i × V ⊗j → V ⊗i+j .

Let now q : V → k be a quadratic form, i.e., the pairing B(x, y) = q(x+y)−q(x)−q(y)

is bilinear. Let I be the two-sided ideal of T (V ) generated by all expressions of the form

v ⊗ v − q(v) where v runs over V . The Clifford algebra is defined to be

Cliff(V, q) = T (V )/I.

There is a natural map V → Cliff(V, q) which is injective.

(a) Prove that Cliff(V, q) has a natural Z/2Z-grading. Namely, we can write Cliff(V, q) =

Cliff(V, q)0 ⊕ Cliff(V, q)1 such that under multiplication Cliff(V, q)i × Cliff(V, q)j ⊆
Cliff(V, q)i+j (mod 2). In particular, Cliff(V, q)0 is an algebra, called the even Clifford

algebra.

(b) Prove that Cliff(V, q) has the following universal property. Any map f of k-vector

spaces from V to a k-algebra W , f : V → W , such that f (v)2 = q(v) for all v ∈ V ,

factors uniquely through Cliff(V, q):

V
f

$$IIIIIIIIIII
can.// Cliff(V, q)

∃!
��
W

.

(c) Deduce from (b) an isomorphism Cliff(V, q)→ Cliff(V, q)op, which is the identity on

V , between the Clifford algebra and its opposite algebra. Deduce that Cliff(V, q) has

an anti-automorphism ε, whose effect on generators is ε(v1 · · · vm) = vm · · · v1, where

vi ∈ V .

(d) Show that the map V → V , v 7→ −v , induces an automorphism of V as well. We denote

it by σ. Write the action of σ on elements v1 · · · vm as above. Let α = σ ◦ ε = ε ◦ σ.

(e) Show that if x ∈ Cliff(V, q) is invertible so is α(x) and that x acts on Cliff(V, q) by

“twisted conjugation”

y 7→ cx(y) := xyα(x)−1.

The invertible elements x ∈ Cliff(V, q) with the property that cx(V ) ⊆ V form a group,

called the Clifford group. Prove that indeed this is a group. Denote it by Γ . One can

prove (but this is not easy, and not required here) that there’s an exact sequence,

1→ k∗ → Γ → O(V, q)→ 1.

This forms the first step in constructing the Spin group and the Spin representation,

which play a role in physics.

(f) Suppose that dim(V ) = n. Prove that dim(Cliff(V, q)) = 2n. This may prove a little

difficult. Try doing first the cases n = 1, 2. In general, show that V has an orthogonal

basis: namely, a basis x1, . . . , xn such that B(xi , xj) = 0 for i 6= j . Note that since q is

allowed to be identically zero we cannot expect to find a basis such that q(xi) = 1 or

even not equal to zero. Show in general that xa11 · · · xann , where ai ∈ {0, 1} is a spanning

set for Cliff(V, q) as a k-vector space. The difficult part is to show it’s independent

(although you can probably do it).
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(22) Suppose that G is a finite group, H < G a subgroup and that (]H, char(k)) = 1. Let W

be a representation of H. Given f : G → W , which is an element of IndGH(W ), show that

its image under the isomorphism IndGH(W ) ∼= k [G]⊗k[H] W is 1
]H

∑
g∈G g ⊗ f (g).

(23) Give examples showing that HomR(A,−) and HomR(−, A) are not right exact. Prove that

they are both left exact.

(24) Let R be a commutative ring and M1,M2 projective R-modules. Give two proofs that

M1 ⊗R M2 is a projective R-module.

(25) Let M be a projective R-module. Prove that there is free R-module F such that M ⊕ F is

free.

(26) Let R be a commutative ring and M an R-module. Let p be a prime ideal and denote by

Rp and Mp the localizations of R and M in the multiplicative set S = R − p, respectively.

Prove that M is zero if and only if each Mp is zero. In fact, show that it is enough to let p

run over maximal ideals.

(27) With the notation above, prove that localization at p (meaning: in S) is an exact functor

from the category of R-modules to the category of Rp-modules.

(28) Assume that M is a finitely presented R-module. Prove that M is a projective R-module if

and only if each Mp is a projective Rp-module. One says that “projective is a local property”.

(Hint: show that Hom and localization commute in a suitable sense.)

(29) Show that projective doesn’t imply injective; that injective doesn’t imply projective.

(30) Show that Q/Z is injective but not flat; Show that Z ⊕ Q is flat but is not injective or

projective.

(31) Let R be a principal ideal domain (for example, a field). Show that R is an injective R-

module if and only if R is divisible (for every non-zero r ∈ R multiplication by r is surjective

map R→ R).

(32) Let R be an integral domain. Prove that R is a field if and only if R is both injective and

projective R-module.

(33) Let B ∈ModR and let its character module B∗ be defined as

B∗ = HomZ(B,Q/Z).

It is a module in RMod. Prove that

0→ A→ B → C → 0

is exact, if and only if

0→ C∗ → B∗ → A∗ → 0

is exact.

Guidance: the direction ⇒ is easy if you use what you should.... For the other direction,

first argue that it’s enough to prove that a diagram A
α→ B

β

→ C with Ker(α∗) = Im(β∗) is

exact (for any A,B, C, α, β). In order to show that, first prove the following lemma

Lemma: If Q is a non-trivial abelian group and q ∈ Q is non-zero, then there is a homo-

morphism h : Q→ Q/Z such that h(q) 6= 0.
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Suppose that Im(α) is not contained in Ker(β) and choose an a ∈ A such that βαa 6=
0. Apply the lemma to get h : C → Q/Z such that h(βαa) 6= 0. Proceed to derive a

contradiction.

After proving that Im(α) ⊂ Ker(β) assume that there is a b ∈ Ker(β)− Im(α). Use the

lemma to construct h : B/Im(α)→ Q/Z such that h(b + Im(α)) 6= 0.

The context of this exercise is the following theorem (which you are NOT required to prove):

Theorem: B ∈ModR is flat if and only if B∗ ∈R Mod is injective.

Note that the case B = R is a consequence of a result we proved in class.

(34) Let {Mi , fi j} be an inverse system in RMod and B a left R-module. Prove that

HomR(B, lim
←−

Mi) ∼= lim
←−

HomR(B,Mi).

(35) Let {Mi , fi j} be a direct system in RMod and B a left R-module. Prove that

Hom(lim
−→

Mi , B) ∼= lim
←−

Hom(Mi , B).

If B is a right R-module, prove that

B ⊗R lim
−→

Mi
∼= lim
−→

(B ⊗R Mi).

(36) Let f : M → M be a surjective homomorphism of R-modules. Prove that if M is noetherian

then f is an isomorphism.

(37) Prove that the following rings are not noetherian: (i) C[t1/n : n ∈ N>0]. (Note that C[t1/n :

n ∈ N>0] = lim
←− m

C[t1/m!] and so a direct limit of noetherian rings need not be noetherian.

(ii) The ring of continuous functions f : [0, 1]→ R. (iii) The ring C[x, x2y , x3y2, . . . , x iy i−1, . . . ].

(Note that this is a subring of C[x, y ] and so a subring of a noetherian ring need not be

noetherian.)

(38) Show that the number of generators for ideals in C[x, y ] is not bounded. Namely that for

every n ∈ N there is an ideal of C[x, y ] that cannot be generated by less than n elements.

(39) Let P = ∪∞k=1
1
pk
Z/Z. Prove that P is an artinian but not noetherian Z-module.

(40) Let R be a simple R-module. Prove that R is a division ring. (Remark: don’t forget that

for a 6= 0 you need to find b such that ab = ba = 1.)

(41) For a ring R define, J̃(R) to be the intersection of all maximal right ideals of R. In analogy

to J(R) it would be the collection of all element x ∈ R such that for every r ∈ R the

element (1 − xr) has a right inverse. Prove that J̃(R) = J(R). Guidance: For z ∈ J(R)

use that 1− z has a left inverse and right it as (1− z ′)(1− z) = 1. What can you say about

z ′ and therefore about 1− z ′?
(42) Show that in Nakayama’s lemma the condition that the module is finitely generated is

necessary. Hint: take R to be a local ring.

(43) Let R be a commutative ring. Let ni l(R) the collection of nilpotent elements of R. Show

that ni l(R) is an ideal of R and that ni l(R) ⊆ J(R). Show that ni l(R) need not be equal to

J(R). Show that if R is artinian then ni l(R) is a nilpotent ideal (and in fact, ni l(R) = J(R)),

but this need not be the case of a general ring R.

(44) Prove the Hopkins-Levitzky theorem: Every left artinian ring is left noetherian.

Suggestion: consider the series R ⊆ J(R) ⊆ J(R)2 ⊆ · · · ⊆ J(R)m = {0}. Let J = J(R).
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(a) Show that R/J(R) is a semi-simple artinian ring.

(b) Show that each J i/J i+1 is an artinian R/J-module.

(c) Show that each J i/J i+1 has a finite length as an R/J-module, hence as an R-module.

(d) Put everything together to conclude that R is an R-module of finite length. Use the

fact explained in class to finish the proof.

(45) Let k be a field. Prove that every commutative finite dimensional k-algebra is a finite sum

of field extensions of k .

(46) Let G be a finite group and V a finite dimensional complex representation of G, ρ :

G → GL(V ). Prove that there is a hermitian form which is G-invariant:

〈ρ(g)v , ρ(g)w〉 = 〈v , w〉.

Conclude that if U ⊂ V is a subrepresentation then also U⊥ is. Conclude that C[G] is

semi-simple.

(47) Let k be an (algebraically closed) field and G a finite group. The trivial representation of

G, G → GL1(k), g 7→ 1 for all g, is an irreducible representation. Find the corresponding

maximal ideal of k [G].

(48) Let k be an (algebraically closed) field and G a finite abelian group such that char(k) - ]G,

ρ : G → GLn(k) a representation. Prove, directly, that ρ is diagonalizable; there is a

basis relative to which every ρ(g) is a diagonal matrix. Conclude that every irreducible

representation of G is one dimensional.

(49) Use the isomorphism S3 ∼= D3 to find another realization of the irreducible two dimensional

representation of S3.

(50) Find all irreducible representations of D4, including a model for each such representation.

(Note that D4 has a normal subgroup of order 2 such that the quotient is isomorphic to

Z/2Z× Z/2Z.) Write the character table of D4.

(51) Let Q = {±1,±i ,±j,±k} be the non-abelian quaternion group of order 8. (Here i j = k =

−j i , i2 = j2 = k2 = −1.) Find the conjugacy classes of Q and the number of irreducible

representations and their dimension. Find a model for each irreducible representation. Write

the character table of Q.

(52) • Let G be a finite group and (V, ρ) a finite dimensional representation of G over an

algebraically closed field k such that char(k) - ] G. Let V G = {v ∈ V : ρ(g)v =

v ,∀g ∈ G} be the subspace of fixed vectors. Prove from first principles that

dimk(V G) =
1

] G

∑
g∈G

χρ(g).

(Hint: consider the operator 1
] G

∑
g∈G ρ(g).)

• In the same setting, let V and W be irreducible representations of G. Prove that

Homk[G](V,W ) is one dimensional if V ∼= W and 0-dimensional otherwise. (You may

want to use Schur’s lemma and perhaps Morita’s equivalence + Artin-Weddernburn).

• Now, use the calculation of the character of Homk(V,W ) and the previous parts of the

question to conclude that if χ,ψ, are irreducible characters then

〈χ,ψ〉 =

{
1 χ = ψ

0 else
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(53) Let G be a finite group acting on a finite non-empty set S. Use the formula for dim(V G) to

deduce the Cauchy-Frobenius formula (also knows as Burnside’s lemma) that states that

the number of orbits of G in S is equal to 1
] G

∑
g∈G I(g), where I(g) is the number of fixed

points of g in S.

(54) Deduce from the previous question that if |S| = n > 1 and G acts transitively on S then there

is an element g ∈ G without fixed points. Let G0 = {g ∈ G : g has no fixed point in S}. It

is a subset of G (but usually not a subgroup). Let

c0 = ] G0/] G.

Jordan proved that c0 ≥ 1/] G. Here we prove the stronger result (a result of Cameron-

Stewart) that c0 ≥ 1/]S.

To prove that construct the vector space on the basis S and let χ be the character of

the representation of G on that space. First prove that

1

] G

∑
g∈G

χ2(g) ≥ 2.

(Which representation is lurking in the background?...) Then prove that theorem on c0 by

arguing that ∑
g∈G

(χ(g)− 1)(χ(g)− n) ≤ n ]G0

and continuing to examine this inequality.

(55) Find the character table of A4. If χ is an irreducible character of S4 calculate its restriction

to A4 as a sum of irreducible characters of A4. Finally, is the 3-dimensional representation

of A4, coming from its action on the tetrahedron, irreducible?

(56) Let G1, G2 be finite groups. Prove (under the usual conditions on k) that every irreducible

representation of G1 × G2 is isomorphic to the tensor product V1 ⊗ V2, where Vi is an irre-

ducible representation of Gi and in fact, letting V1 range over the irreducible representations

of G1 and V2 range over the irreducible representations of G2 we get every irreducible rep-

resentation of G1 × G2 once. (Suggestion: do first the last part and count how many

irreducible representations you get this way.)

(57) Consider the group Z/2Z×S3 - a non abelian group of order 12. Write its character table.

Compare it with the character table of A4 to deduce it is not isomorphic to A4 (although it

is not hard to see that directly either).


