EXERCISES FOR HIGHER ALGEBRA I, FALL 2009

NOTE: although I do my best to make sure no typos occur, they still do occur sometimes. If you think there's an error, please discuss it with me. You may be right.

(1) Let R be a division ring. Prove that every module over R is free. You will need to use Zorn's lemma:

Recall that a partially order set (=poset) *S* is a set with a relation $x \le y$ defined between some pairs of elements $x, y \in S$, such that: (i) $x \le x$; (ii) $x \le y$ and $y \le x$ implies x = y; (iii) $x \le y, y \le z \Rightarrow x \le z$. A chain in *S* is a subset $T \subset S$ such that for all t, t' in *T*, either $t \le t'$ or $t' \le t$. We say that a chain has an upper bound if there's an element $s \in S$ (we don't require $s \in T$) such that $s \ge t$ for all $t \in T$. Zorn's lemma states for a non-empty poset *S* that if every chain in *S* has an upper bound than *S* has a maximal element, namely an element $s_0 \in S$ such that if $s \in S$ and $s \ge s_0$ then $s = s_0$ (note that we do not require that $s_0 \ge s$ for all $s \in S$). If you have never seen Zorn's lemma in action, try to use it to prove that any ring *R* has a maximal left ideal. Take *S* to be the set of ideals $I \ne R$ of *R* with the partial order $I \le J$ if $I \subseteq J$.

- (2) Analyze the structure of the rings $\mathbb{Q}[G]$, $\mathbb{C}[G]$, where G is the cyclic group $\mathbb{Z}/n\mathbb{Z}$.
- (3) We define a ring $R[S^{-1}]$ as follows: consider symbols $\frac{r}{s}$ where $r \in R$ and $s \in S$ and define a relation:

$$\frac{r_1}{s_1}\sim\frac{r_2}{s_2}\quad\iff\quad \exists t\in S\quad t(r_1s_2-r_2s_1)=0.$$

Prove that this is an equivalence relation. Prove that the operations

$$\frac{r_1}{s_1} + \frac{r_2}{s_2} = \frac{r_1 s_2 + r_2 s_1}{s_1 s_2}, \qquad \frac{r_1}{s_1} \cdot \frac{r_2}{s_2} = \frac{r_1 r_2}{s_1 s_2},$$

make $R[S^{-1}]$ into a commutative ring and that the natural map

$$R \to R[S^{-1}], \qquad r \mapsto \frac{r}{1}$$

is a ring homomorphism. Find its kernel. Give examples when the kernel is trivial and when the kernel is not trivial.

(4) Let *I* be an ideal of *R* then *I*[*S*⁻¹] is an ideal of *R*[*S*⁻¹], which is the ideal generated by *I* in *R*[*S*⁻¹]. Conversely, if φ : *R* → *R*[*S*⁻¹] is the natural map and *J* is an ideal of *R*[*S*⁻¹] then φ⁻¹(*J*) is an ideal of *R*. Prove that (φ⁻¹(*J*))[*S*⁻¹] = *J* and if *I* ∩ *S* = Ø then φ⁻¹(*I*[*S*⁻¹]) ⊇ *I*.

Prove that if *I* is a prime ideal and S = R - I then these constructions provide a bijection between the prime ideals of *R* contained in *I* and the prime ideals of $R[S^{-1}]$. In particular, $R[S^{-1}]$ is a local ring whose maximal ideal is $I[S^{-1}]$.

- (5) Let S be a multiplicative set and $0 \to M_1 \to M_2 \to M_3 \to 0$ an exact sequence of R-modules. Prove that the sequence $0 \to M_1[S^{-1}] \to M_2[S^{-1}] \to M_3[S^{-1}] \to 0$ is also exact.
- (6) Let C be a category. An object A of C is called initial (resp. final) if for every object B there is a unique morphism A → B (resp., B → A). Prove that if C has an initial (resp. final) object then it is unique, up to unique isomorphism. Give examples of categories C such that:
 - (a) **C** has an initial object and doesn't have a final object.
 - (b) **C** doesn't have an initial object and has a final object.
 - (c) **C** doesn't have an initial object and doesn't have a final object.
 - (d) **C** has an initial object and has a final object, but they are non-isomorphic.
 - (e) **C** has object that is both initial and final. (Such an object is sometimes called a zero object.)
- (7) Let *n* be a positive integer and *k* a field. Consider the category **V** whose objects are finite dimensional *k*-vector spaces *V*, equipped with *n*-linear maps $T_1, \ldots, T_n : V \to V$ that commute with each other. A morphism

$$H: (V; T_1, \ldots, T_n) \to (V'; T'_1, \ldots, T'_n)$$

is a linear map $H: V \to V'$ such that $H \circ T_i = T'_i \circ H$.

Prove that this category is equivalent to the category **M** whose objects are *n*-tuples of commuting $m \times m$ -matrices (M_1, \ldots, M_n) and a morphism

$$H: (m; M_1, \ldots, M_n) \rightarrow (m'; M'_1, \ldots, M'_n)$$

is an $m' \times m$ matrix H such that $HM_i = M'_iH$ for all i.

Prove further that these categories are equivalent to the category of modules over $k[x_1, ..., x_n]$ that are finite dimensional *k*-vector spaces. To which data does $k[x_1, x_2]/(x_1^2, x_2^2)$ correspond?

- (8) Let R be a ring and define a ring R^{op} to be the same underlying abelian group of R, but where multiplication is defined by a * b := ba, where ba is the product of b and a in R.
 - (a) Prove that R^{op} is a ring.
 - (b) Prove that the category of left *R*-modules _{*R*}**Mod** is equivalent to the category of right *R^{op}*-modules.
 - (c) Bonus question: Give an example of a ring that is not isomorphic to its opposite ring.
- (9) Let **K** be a category and define the opposite category \mathbf{K}^{op} to be the category **K** with the same objects and $Mor_{K^{op}}(A, B) := Mor_{K}(B, A)$. We define $f \circ g$ in \mathbf{K}^{op} to be $g \circ f$ as performed in **K**. Prove that \mathbf{K}^{op} is a category and note that $(\mathbf{K}^{op})^{op} = \mathbf{K}$.

Prove that if A is an initial (resp. final) object then A is a final (resp. initial) object in \mathbf{K}^{op} . Prove that if \mathbf{K} has products (resp. coproducts) then \mathbf{K}^{op} has coproducts (resp. products).

⁽¹⁰⁾ Prove that $\mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z}$ is an infinite group.

- (11) Prove that in the category of linearly ordered sets co-products $A \coprod B$ need not exists, but that co-products $A \coprod B$ exists in the category of posets.
- (12) Prove that injective limits exist in the category Sets.
- (13) For all m|n we have $\frac{1}{m}\mathbb{Z}/\mathbb{Z} \hookrightarrow \frac{1}{n}\mathbb{Z}/\mathbb{Z}$. Prove that this gives a direct system and $\lim_{\longrightarrow} \frac{1}{n}\mathbb{Z}/\mathbb{Z} \cong \mathbb{Q}/\mathbb{Z}$.
- (14) Let *I* be a poset (the index set). *I* is called directed if $\forall i, j \in I$ there exists $k \in I$ such that $i \leq k$ and $j \leq k$.

Given an injective system $\{M_i, f_{ij}\}$ of *R*-modules indexed by a directed set *I*, let us say that $m_i \in M_i$ is equivalent to $m_j \in M_j$ if there *k* such that $i \leq k, j \leq k$ and $f_{ik}(m_i) = f_{jk}(m_j)$. Check that this defines an equivalence relation on the disjoint union of the M_i and denote an equivalence class by $[m_i]$. Give the equivalence classes a structure of an *R*-module by

$$r[m_i] = [rm_i], \qquad [m_i] + [n_j] = [f_{ik}(m_i) + f_{jk}(m_j)],$$

where k is any element such that $i \le k, j \le k$. Show that this is well-defined and that this *R*-module is isomorphic to $\lim_{i \to \infty} M_i$.

- (15) Let k be a field. Prove that $\lim_{k \to \infty} k[t]/(t^n) \cong k[[t]]$.
- (16) The projective limit of $\ldots \to \mathbb{Z}/p^2\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z} \to \{0\}$ is denoted \mathbb{Z}_p . Prove that \mathbb{Z}_p is a commutative integral domain containing \mathbb{Z} . Define a metric on \mathbb{Z} by

$$d(m,n)=p^{-\mathrm{val}_p(m-n)},$$

where, for $x \in \mathbb{Z}$, we let,

$$\operatorname{val}_p(x) = \operatorname{highest} \operatorname{power} \operatorname{of} p \operatorname{dividing} x.$$

Define also a valuation on \mathbb{Z}_p by $\operatorname{val}_p((m_i)) = \max\{i : m_i = 0\}$. Show that this extends the definition of val_p on \mathbb{Z} and that $d(x, y) = p^{-\operatorname{val}_p(x-y)}$ is a metric on \mathbb{Z}_p . Prove that \mathbb{Z}_p is the completion of \mathbb{Z} relative to this metric. Prove that \mathbb{Z}_p is compact.

- (17) Let F : **TopSp** \rightarrow **Set** be the forgetful functor. Show that F has both a left adjoint and a right adjoint.
- (18) Let (F, G), $F : C \to D, G : D \to C$, be an adjoint pair. Suppose that A, B are object in D having a product $A \Pi B$. Prove that $G(A \Pi B)$ is a product for G(A), G(B). Similarly, F takes co-products to co-products.
- (19) Let R be a commutative ring and I_1 , I_2 two ideals of R. Prove that

$$R/I_1 \otimes R/I_2 \cong R/(I_1 + I_2).$$

- (20) Prove that $\mathbb{Q}/\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z} \cong \{0\}$.
- (21) Let V/k be a finite dimensional vector space over a field k of characteristic different from 2. The tensor algebra T(V) of V is the direct sum

$$\oplus_{l=0}^{\infty} V^{\otimes i} = k \oplus V \oplus (V \otimes_k V) \oplus (V \otimes_k V \otimes_k V) \oplus \dots$$

It is a k-vector space, being a direct sum of k-vector spaces, of infinite dimension. It has a well-defined multiplication induced by

$$v_1 \otimes \cdots \otimes v_a \cdot w_1 \otimes \cdots \otimes w_b = v_1 \otimes \cdots \otimes v_a \otimes w_1 \otimes \cdots \otimes w_b.$$

This makes T(V) into a (non-commutative, in general) ring containing k. This ring is graded: $T(V) = \bigoplus_{i=0}^{\infty} V^{\otimes i}$, the weight i elements are $V^{\otimes i}$, and we have under multiplication $V^{\otimes i} \times V^{\otimes j} \to V^{\otimes i+j}$.

Let now $q: V \to k$ be a quadratic form, i.e., the pairing B(x, y) = q(x+y) - q(x) - q(y)is bilinear. Let *I* be the two-sided ideal of T(V) generated by all expressions of the form $v \otimes v - q(v)$ where v runs over V. The Clifford algebra is defined to be

$$\operatorname{Cliff}(V, q) = T(V)/I.$$

There is a natural map $V \rightarrow \text{Cliff}(V, q)$ which is injective.

- (a) Prove that $\operatorname{Cliff}(V, q)$ has a natural $\mathbb{Z}/2\mathbb{Z}$ -grading. Namely, we can write $\operatorname{Cliff}(V, q) = \operatorname{Cliff}(V, q)^0 \oplus \operatorname{Cliff}(V, q)^1$ such that under multiplication $\operatorname{Cliff}(V, q)^i \times \operatorname{Cliff}(V, q)^j \subseteq \operatorname{Cliff}(V, q)^{i+j \pmod{2}}$. In particular, $\operatorname{Cliff}(V, q)^0$ is an algebra, called the even Clifford algebra.
- (b) Prove that $\operatorname{Cliff}(V, q)$ has the following universal property. Any map f of k-vector spaces from V to a k-algebra W, $f : V \to W$, such that $f(v)^2 = q(v)$ for all $v \in V$, factors uniquely through $\operatorname{Cliff}(V, q)$:

- (c) Deduce from (b) an isomorphism $\operatorname{Cliff}(V, q) \to \operatorname{Cliff}(V, q)^{op}$, which is the identity on V, between the Clifford algebra and its opposite algebra. Deduce that $\operatorname{Cliff}(V, q)$ has an anti-automorphism ϵ , whose effect on generators is $\epsilon(v_1 \cdots v_m) = v_m \cdots v_1$, where $v_i \in V$.
- (d) Show that the map $V \to V$, $v \mapsto -v$, induces an automorphism of V as well. We denote it by σ . Write the action of σ on elements $v_1 \cdots v_m$ as above. Let $\alpha = \sigma \circ \epsilon = \epsilon \circ \sigma$.
- (e) Show that if $x \in \text{Cliff}(V, q)$ is invertible so is $\alpha(x)$ and that x acts on Cliff(V, q) by "twisted conjugation"

$$y \mapsto c_x(y) := xy\alpha(x)^{-1}$$
.

The invertible elements $x \in \text{Cliff}(V, q)$ with the property that $c_x(V) \subseteq V$ form a group, called the Clifford group. Prove that indeed this is a group. Denote it by Γ . One can prove (but this is not easy, and not required here) that there's an exact sequence,

$$1 \rightarrow k^* \rightarrow \Gamma \rightarrow O(V, q) \rightarrow 1.$$

This forms the first step in constructing the Spin group and the Spin representation, which play a role in physics.

(f) Suppose that dim(V) = n. Prove that dim(Cliff(V, q)) = 2ⁿ. This may prove a little difficult. Try doing first the cases n = 1, 2. In general, show that V has an orthogonal basis: namely, a basis x_1, \ldots, x_n such that $B(x_i, x_j) = 0$ for $i \neq j$. Note that since q is allowed to be identically zero we cannot expect to find a basis such that $q(x_i) = 1$ or even not equal to zero. Show in general that $x_1^{a_1} \cdots x_n^{a_n}$, where $a_i \in \{0, 1\}$ is a spanning set for Cliff(V, q) as a k-vector space. The difficult part is to show it's independent (although you can probably do it).

- (22) Suppose that G is a finite group, H < G a subgroup and that $(\sharp H, char(k)) = 1$. Let W be a representation of H. Given $f : G \to W$, which is an element of $\operatorname{Ind}_{H}^{G}(W)$, show that its image under the isomorphism $\operatorname{Ind}_{H}^{G}(W) \cong k[G] \otimes_{k[H]} W$ is $\frac{1}{\sharp H} \sum_{g \in G} g \otimes f(g)$.
- (23) Give examples showing that $\text{Hom}_R(A, -)$ and $\text{Hom}_R(-, A)$ are not right exact. Prove that they are both left exact.
- (24) Let *R* be a commutative ring and M_1, M_2 projective *R*-modules. Give two proofs that $M_1 \otimes_R M_2$ is a projective *R*-module.
- (25) Let *M* be a projective *R*-module. Prove that there is free *R*-module *F* such that $M \oplus F$ is free.
- (26) Let R be a commutative ring and M an R-module. Let \mathfrak{p} be a prime ideal and denote by $R_{\mathfrak{p}}$ and $M_{\mathfrak{p}}$ the localizations of R and M in the multiplicative set $S = R \mathfrak{p}$, respectively. Prove that M is zero if and only if each $M_{\mathfrak{p}}$ is zero. In fact, show that it is enough to let \mathfrak{p} run over maximal ideals.
- (27) With the notation above, prove that localization at \mathfrak{p} (meaning: in *S*) is an exact functor from the category of *R*-modules to the category of $R_{\mathfrak{p}}$ -modules.
- (28) Assume that *M* is a finitely presented *R*-module. Prove that *M* is a projective *R*-module if and only if each *M*_p is a projective *R*_p-module. One says that "projective is a local property". (Hint: show that Hom and localization commute in a suitable sense.)
- (29) Show that projective doesn't imply injective; that injective doesn't imply projective.
- (30) Show that Q/Z is injective but not flat; Show that Z ⊕ Q is flat but is not injective or projective.
- (31) Let R be a principal ideal domain (for example, a field). Show that R is an injective R-module if and only if R is divisible (for every non-zero $r \in R$ multiplication by r is surjective map $R \to R$).
- (32) Let *R* be an integral domain. Prove that *R* is a field if and only if *R* is both injective and projective *R*-module.
- (33) Let $B \in \mathbf{Mod}_R$ and let its character module B^* be defined as

$$B^* = \operatorname{Hom}_{\mathbb{Z}}(B, \mathbb{Q}/\mathbb{Z}).$$

It is a module in $_R$ **Mod**. Prove that

$$0 \to A \to B \to C \to 0$$

is exact, if and only if

$$0 \to C^* \to B^* \to A^* \to 0$$

is exact.

Guidance: the direction \Rightarrow is easy if you use what you should.... For the other direction, first argue that it's enough to prove that a diagram $A \xrightarrow{\alpha} B \xrightarrow{\beta} C$ with $\text{Ker}(\alpha^*) = \text{Im}(\beta^*)$ is exact (for any A, B, C, α, β). In order to show that, first prove the following lemma

Lemma: If Q is a non-trivial abelian group and $q \in Q$ is non-zero, then there is a homomorphism $h: Q \to \mathbb{Q}/\mathbb{Z}$ such that $h(q) \neq 0$. Suppose that $Im(\alpha)$ is not contained in $Ker(\beta)$ and choose an $a \in A$ such that $\beta \alpha a \neq 0$. O. Apply the lemma to get $h : C \to \mathbb{Q}/\mathbb{Z}$ such that $h(\beta \alpha a) \neq 0$. Proceed to derive a contradiction.

After proving that $\operatorname{Im}(\alpha) \subset \operatorname{Ker}(\beta)$ assume that there is a $b \in \operatorname{Ker}(\beta) - \operatorname{Im}(\alpha)$. Use the lemma to construct $h : B/\operatorname{Im}(\alpha) \to \mathbb{Q}/\mathbb{Z}$ such that $h(b + \operatorname{Im}(\alpha)) \neq 0$.

The context of this exercise is the following theorem (which you are NOT required to prove):

Theorem: $B \in \mathbf{Mod}_R$ is flat if and only if $B^* \in_R \mathbf{Mod}$ is injective.

Note that the case B = R is a consequence of a result we proved in class.

(34) Let $\{M_i, f_{ij}\}$ be an inverse system in _R**Mod** and B a left R-module. Prove that

 $\operatorname{Hom}_{R}(B, \lim_{\longleftarrow} M_{i}) \cong \lim_{\longleftarrow} \operatorname{Hom}_{R}(B, M_{i}).$

(35) Let $\{M_i, f_{ij}\}$ be a direct system in $_R$ **Mod** and B a left R-module. Prove that

Hom($\lim_{\longrightarrow} M_i, B$) $\cong \lim_{\longrightarrow}$ Hom(M_i, B).

If B is a right R-module, prove that

$$B \otimes_R \varinjlim M_i \cong \varinjlim (B \otimes_R M_i)$$

- (36) Let $f : M \to M$ be a surjective homomorphism of *R*-modules. Prove that if *M* is noetherian then *f* is an isomorphism.
- (37) Prove that the following rings are not noetherian: (i) C[t^{1/n} : n ∈ N_{>0}]. (Note that C[t^{1/n} : n ∈ N_{>0}] = lim m C[t^{1/m}] and so a direct limit of noetherian rings need not be noetherian.
 (ii) The ring of continuous functions f : [0, 1] → R. (iii) The ring C[x, x²y, x³y², ..., xⁱyⁱ⁻¹, ...]. (Note that this is a subring of C[x, y] and so a subring of a noetherian ring need not be noetherian.)
- (38) Show that the number of generators for ideals in $\mathbb{C}[x, y]$ is not bounded. Namely that for every $n \in \mathbb{N}$ there is an ideal of $\mathbb{C}[x, y]$ that cannot be generated by less than n elements.
- (39) Let $P = \bigcup_{k=1}^{\infty} \frac{1}{p^k} \mathbb{Z}/\mathbb{Z}$. Prove that *P* is an artinian but not noetherian \mathbb{Z} -module.
- (40) Let R be a simple R-module. Prove that R is a division ring. (Remark: don't forget that for $a \neq 0$ you need to find b such that ab = ba = 1.)
- (41) For a ring R define, $\hat{J}(R)$ to be the intersection of all maximal right ideals of R. In analogy to J(R) it would be the collection of all element $x \in R$ such that for every $r \in R$ the element (1 xr) has a right inverse. Prove that $\tilde{J}(R) = J(R)$. Guidance: For $z \in J(R)$ use that 1 z has a left inverse and right it as (1 z')(1 z) = 1. What can you say about z' and therefore about 1 z'?
- (42) Show that in Nakayama's lemma the condition that the module is finitely generated is necessary. Hint: take R to be a local ring.
- (43) Let *R* be a commutative ring. Let nil(R) the collection of nilpotent elements of *R*. Show that nil(R) is an ideal of *R* and that $nil(R) \subseteq J(R)$. Show that nil(R) need not be equal to J(R). Show that if *R* is artinian then nil(R) is a nilpotent ideal (and in fact, nil(R) = J(R)), but this need not be the case of a general ring *R*.
- (44) Prove the Hopkins-Levitzky theorem: Every left artinian ring is left noetherian.
 Suggestion: consider the series R ⊆ J(R) ⊆ J(R)² ⊆ ··· ⊆ J(R)^m = {0}. Let J = J(R).

- (a) Show that R/J(R) is a semi-simple artinian ring.
- (b) Show that each J^i/J^{i+1} is an artinian R/J-module.
- (c) Show that each J^i/J^{i+1} has a finite length as an R/J-module, hence as an R-module.
- (d) Put everything together to conclude that R is an R-module of finite length. Use the fact explained in class to finish the proof.
- (45) Let k be a field. Prove that every commutative finite dimensional k-algebra is a finite sum of field extensions of k.
- (46) Let G be a finite group and V a finite dimensional complex representation of G, ρ : $G \rightarrow GL(V)$. Prove that there is a hermitian form which is G-invariant:

$$\langle
ho(g) v,
ho(g) w
angle = \langle v, w
angle.$$

Conclude that if $U \subset V$ is a subrepresentation then also U^{\perp} is. Conclude that $\mathbb{C}[G]$ is semi-simple.

- (47) Let k be an (algebraically closed) field and G a finite group. The trivial representation of G, $G \to GL_1(k)$, $g \mapsto 1$ for all g, is an irreducible representation. Find the corresponding maximal ideal of k[G].
- (48) Let k be an (algebraically closed) field and G a finite abelian group such that $char(k) \nmid \sharp G$, $\rho : G \rightarrow GL_n(k)$ a representation. Prove, directly, that ρ is diagonalizable; there is a basis relative to which every $\rho(g)$ is a diagonal matrix. Conclude that every irreducible representation of G is one dimensional.
- (49) Use the isomorphism $S_3 \cong D_3$ to find another realization of the irreducible two dimensional representation of S_3 .
- (50) Find all irreducible representations of D₄, including a model for each such representation. (Note that D₄ has a normal subgroup of order 2 such that the quotient is isomorphic to Z/2Z × Z/2Z.) Write the character table of D₄.
- (51) Let $Q = \{\pm 1, \pm i, \pm j, \pm k\}$ be the non-abelian quaternion group of order 8. (Here ij = k = -ji, $i^2 = j^2 = k^2 = -1$.) Find the conjugacy classes of Q and the number of irreducible representations and their dimension. Find a model for each irreducible representation. Write the character table of Q.
- (52) Let G be a finite group and (V, ρ) a finite dimensional representation of G over an algebraically closed field k such that char(k) ∤ ♯ G. Let V^G = {v ∈ V : ρ(g)v = v, ∀g ∈ G} be the subspace of fixed vectors. Prove from first principles that

$$\dim_k(V^G) = \frac{1}{\sharp G} \sum_{g \in G} \chi_{\rho}(g).$$

(Hint: consider the operator $\frac{1}{\sharp G} \sum_{g \in G} \rho(g)$.)

- In the same setting, let V and W be irreducible representations of G. Prove that $\operatorname{Hom}_{k[G]}(V,W)$ is one dimensional if $V \cong W$ and 0-dimensional otherwise. (You may want to use Schur's lemma and perhaps Morita's equivalence + Artin-Weddernburn).
- Now, use the calculation of the character of Hom_k(V, W) and the previous parts of the question to conclude that if χ, ψ, are irreducible characters then

$$\langle \boldsymbol{\chi}, \boldsymbol{\psi} \rangle = \begin{cases} 1 & \boldsymbol{\chi} = \boldsymbol{\psi} \\ 0 & \text{else} \end{cases}$$

- (53) Let *G* be a finite group acting on a finite non-empty set *S*. Use the formula for dim(V^G) to deduce the Cauchy-Frobenius formula (also knows as Burnside's lemma) that states that the number of orbits of *G* in *S* is equal to $\frac{1}{\sharp G} \sum_{g \in G} I(g)$, where I(g) is the number of fixed points of *g* in *S*.
- (54) Deduce from the previous question that if |S| = n > 1 and G acts transitively on S then there is an element $g \in G$ without fixed points. Let $G_0 = \{g \in G : g \text{ has no fixed point in } S\}$. It is a subset of G (but usually not a subgroup). Let

$$c_0 = \sharp G_0 / \sharp G.$$

Jordan proved that $c_0 \ge 1/\sharp G$. Here we prove the stronger result (a result of Cameron-Stewart) that $c_0 \ge 1/\sharp S$.

To prove that construct the vector space on the basis S and let χ be the character of the representation of G on that space. First prove that

$$\frac{1}{\sharp G} \sum_{g \in G} \chi^2(g) \ge 2.$$

(Which representation is lurking in the background?...) Then prove that theorem on c_0 by arguing that

$$\sum_{g \in G} (\chi(g) - 1)(\chi(g) - n) \le n \, \sharp G_0$$

and continuing to examine this inequality.

- (55) Find the character table of A_4 . If χ is an irreducible character of S_4 calculate its restriction to A_4 as a sum of irreducible characters of A_4 . Finally, is the 3-dimensional representation of A_4 , coming from its action on the tetrahedron, irreducible?
- (56) Let G_1, G_2 be finite groups. Prove (under the usual conditions on k) that every irreducible representation of $G_1 \times G_2$ is isomorphic to the tensor product $V_1 \otimes V_2$, where V_i is an irreducible representation of G_i and in fact, letting V_1 range over the irreducible representations of G_1 and V_2 range over the irreducible representations of G_2 we get every irreducible representation of $G_1 \times G_2$ once. (Suggestion: do first the last part and count how many irreducible representations you get this way.)
- (57) Consider the group $\mathbb{Z}/2\mathbb{Z} \times S_3$ a non abelian group of order 12. Write its character table. Compare it with the character table of A_4 to deduce it is not isomorphic to A_4 (although it is not hard to see that directly either).