ALGEBRAIC GROUPS: EXERCISES

EYAL Z. GOREN, MCGILL UNIVERSITY

Please submit the exercises marked with \star . The other exercises are equally important.

- (1) Prove that over the complex numbers the group U(p,q) is isomorphic to the unitary group U(n).
- (2) Prove that G(V,q) and $G(V,q)^+$ are algebraic groups over k.
- (3) \star Assume that k is a field and char(k) $\neq 2$. In each of the following cases give a concrete model for Cliff(V,q)⁺ (as algebras), for $G(V,q), G(V,q)^+$, Spin(V,q), $S\mathcal{O}_q$ and the homomorphism Spin(V,q) $\to S\mathcal{O}_q$.
 - (a) V = k and $q(x) = tx^2$ for some fixed $t \in k$.
 - (b) V is two dimensional over k with the quadratic form $ax^2 + by^2$.
 - (c) $V = \mathbb{R}^3$ and $q(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2$.
- (4) Let X be a quasi-projective variety. Prove that every constructible set contains on open dense set of its closure.
- (5) Find a morphism $\mathbb{A}^2 \to \mathbb{A}^2$ whose image is the set $(\mathbb{A}^2 \{x = 0\}) \cup \{(0,0)\}$.
- (6) If H and K are closed subgroups of G, one of which is connected then (H, K) the subgroup of G generated by all the commutators $xyx^{-1}y^{-1}, x \in H, y \in K$ - is closed and connected.
- (7) \star Prove that the symplectic group is connected. You may want to use transvections for that.
- (8) \star Let $GL_2(\mathbb{C})$ act on $M_2(\mathbb{C})$ by conjugation. Determine the orbits of this action using the Jordan form. Determine the closure of an orbit and, in particular, find all the closed orbits.
- (9) Show that an action of \mathbb{G}_a on the affine variety $\mathbb{A}^1 \{0\}$ must be trivial.
- (10) Prove that if $a \in \text{End}(V), b \in \text{End}(W)$, where V, W are finite dimensional k-vector spaces, are semisimple (nilpotent, unipotent) then so is $a \oplus b \in \text{End}(V \oplus W)$ and $a \otimes b \in \text{End}(V \otimes W)$.

Date: Winter 2010.

- (11) Let G be a subgroup of GL_n that acts irreducibly on k^n . Prove that the only normal unipotent subgroup of G is the trivial one.
- (12) Let U_2 be the standard unipotent group in GL₂. Find the orbits of U_2 in its action on k^2 . Observe that they are indeed closed.
- (13) Give an example of an action of U_2 on a projective algebraic variety such that not all orbits are closed.
- (14) Do exercises (2)-(3) on p. 48 of Springer's book.
- (15) In the setting of the previous exercise. Let \mathbb{G}_m acts on \mathbb{A}^2 by $t.(v_1, v_2) = (t^{a_1}v_1, t^{a_2}v_2)$, where a_1, a_2 are some fixed integers. What is the decomposition of \mathbb{A}^2 ?
- (16) \star Let k be an algebraically closed field of characteristic p. Show that there is an anti-equivalence of categories between the category of finitely generated abelian groups with no p-torsion and diagonalizable k-groups. This antiequivalence associate $X^*(G)$ to a diagonalizable group G. Show, further, that $G_1 \to G_2$ is injective (resp. surjective) iff $X^*(G_2) \to X^*(G_1)$ is surjective (resp. injective).
- (17) Show that every one parameter subgroup of GL_n is conjugate to one of the form $x \mapsto \operatorname{diag}(x^{a_1}, \ldots, x^{a_n})$ where $a_1 \ge a_2 \ge \cdots \ge a_n$ are integers. Determine $P(\lambda)$ and the centralizer of λ .
- (18) \star Consider the closed subgroup H of GL₂ consisting of matrices of the from $\begin{pmatrix} t_1 & t_2 \\ 0 & 1 \end{pmatrix}$. Determine explicitly the left invariant derivations of H. What are the derivations corresponding to the point derivations $f \mapsto \frac{\partial f}{\partial t_1}(e), f \mapsto \frac{\partial f}{\partial t_2}(e)$?
- (19) A maximal torus T of a linear algebraic group G is a torus T contained in G that is not strictly contained in another torus of G. Working over an algebraically closed field, find a maximal torus for the groups GL_n , SL_n , SO_{2n} , SO_{2n+1} , Sp_{2n} and Spin_{2n} . You may use the fact that such a torus will have rank n in all cases, except for SL_n where the rank is n - 1. For the group GL_n prove maximality without using that.
- (20) Find the Lie algebra of Sp_{2n} .
- (21) Prove that the Lie algebra of Spin(V, q) is isomorphic to the Lie algebra of SO_q .
- (22) Let G_1, G_2 be linear algebraic groups. Prove that $\mathscr{L}(G_1 \times G_2) \cong \mathscr{L}(G_1) \times \mathscr{L}(G_2)$.
- (23) Let k be algebraically closed. Let G be a torus over k. Prove that there is a canonical isomorphism $\mathfrak{g} \cong X_*(G) \otimes_{\mathbb{Z}} k$ (in particular, show that this isomorphism is compatible with maps between tori).
- (24) Calculate the adjoint representation Ad : $SL_2 \to GL_3$ and $\mathfrak{ad} : \mathfrak{sl}_2 \to \mathfrak{gl}_3$ with respect to the basis $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

- (25) ° Let G be a linear algebraic group and B a Borel subgroup of G. Let $\sigma : G \to G$ be an automorphism such that $\sigma(b) = b, \forall b \in B$. Prove that σ is the identity.
- (26) Find a Borel subgroup of Symp_{2n} .
- (27) ° Find a proper parabolic subgroup of SO_n .
- (28) ° Find a Borel subgroup of SO_n .
- (29) ° Let $\phi : G \to H$ be a surjective homomorphism of linear algebraic groups. Is the preimage of a parabolic? what about Borel? What happens if we drop the assumption of surjective?
- (30) ° Let G be a connected algebraic group such that every element of G is semisimple. Prove that G is a torus.
- (31) ° Prove that the commutator subgroup of \mathbb{T}_n is \mathbb{U}_n . Calculate the ascending central series of \mathbb{U}_n .
- (32) ° Let $m: G \times G \to G$ be multiplication and $i: G \to G$ be inversion. Prove that $dm_{(e,e)}(X,Y) = X + Y$ and $di_e(X) = -X$.
- (33) ° Classify the centralizers of semi-simple elements of GL_n in terms of their characteristic polynomial (more specifically, the multiplicities of roots).
- (34)
- (35)
- (36)
- (37)
- (38)
- (39)
- (40)
- (41)
- (42)
- (43)
- (44)
- (45)
- (46)