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1. Introduction

This course is about linear algebraic groups. These are varieties V over a field k,

equipped with a group structure such that the group operations are morphisms, and, in

addition, V is affine. It turns out that then V is a closed subgroup of GLn(k), for some n,

and for that reason they are called linear.

On the other side of the spectrum are the projective algebraic groups. Such a group, if it’s

connected, is automatically commutative and therefore one call the connected projective

algebraic groups abelian varieties. Their theory is very different from the theory of

linear algebraic groups. Linear algebraic groups have plenty of linear representations, and

their Lie algebra has rich structure. On the other hand, abelian varieties have only trivial

linear representations and their Lie algebras are commutative and so of little interest. On

other hand, the arithmetic of abelian varieties is very deep; abelian varieties produce some

of the most interesting Galois representations, while linear algebraic group have less rich

structure when it comes to Galois representations (which is not to say there aren’t very

deep issues going on there as well).

The two aspects of algebraic groups are connected, but hardly mix in practice, and the

development of their theories is completely different. The theories connect, for example,

in a special class of algebraic groups - the semi-abelian varieties - but, from the point of

view of a general theory, this is a very particular case, and so, by and large, one studies

the two classes of algebraic groups separately.

Notation. We shall use the letters k or F to denote fields and k, ksep, F , F sep to de-

note their algebraic and separable closures. Γk and ΓF will denote then the Galois groups

of ksep/k and F sep/F , respectively.
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2. First Definitions

Let k be a field. A linear, or affine, algebraic group G over k, is an affine variety1 G

over k, equipped with a k-rational point e ∈ G and k-morphisms

µ : G×G→ G, i : G→ G,

such that G(k) becomes a group with identity e, multiplication xy = µ(x, y) and in-

verse x−1 = i(x).

Write k[G] for the ring of regular functions on G then µ and i corresponds to a homo-

morphisms of k-algebras

∆ : k[G]→ k[G]⊗k k[G], ι : k[G]→ k[G],

(called comultiplication and coninverse, respectively) and e is defined by a k-homomorphism

(the counit)

ε : k[G]→ k.

One expresses the group axioms as properties of the morphisms ∆, ι, ε (for example, asso-

ciativity is (∆⊗ 1) ◦∆ = (1⊗∆) ◦∆ , and so on.) In return, given an affine variety G and

given morphisms ∆, ι, ε with these properties, one gets an algebraic group structure on G.

A closed subgroup H of G defined over k is a closed subset H of G defined over k,

thus an affine variety, which is also closed under the group law. It then follows that ∆, ι

and ε induce k-algebra homomorphisms k[H]→ k[H] ⊗k k[H], ι : k[H]→ k[H] and ε :

k[H]→ k. A homomorphism of algebraic groups over k is defined in the obvious manner.

Let G,G1 be linear algebraic groups over k. We say that G1 is a form of G if G and G1

are isomorphic over k.

1An affine variety over k is defined to be a closed subset of the affine space An
k
, defined by an ideal

of k[x1, . . . , xn] that has a generating set of polynomials in k[x1, . . . , xn].
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3. The main examples

We would want to carry with us throughout the course the examples of the classical

groups. Besides illustrating the theory, they are also the most useful and frequently oc-

curring algebraic groups.

3.1. Additive groups. The group Ga - the additive group - is simply k with addition,

µ(x, y) = x+ y;

more precisely, it is A1 - the affine line over k. The coordinate ring is k[x] and the

homomorphism ∆ is given by

x 7→ x⊗ 1 + 1⊗ y ∈ k[x]⊗ k[y].

(Under the isomorphism k[x] ⊗k k[y] ∼= k[x, y], we have x ⊗ 1 + 1 ⊗ y 7→ x + y.) The

group Gn
a is the affine n space An over k, and often we shall identify Gn2

a with Mn2 -

the n× n matrices.

3.2. Tori. The group k
×

of the non-zero elements of k under multiplication is a linear

algebraic group defined over k. It is isomorphic to the affine variety V defined by {(x, y) ∈
A2 : xy = 1}:

k
× → V, t 7→ (t, 1/t).

The group law is given by

(x1, y1)(x2, y2) 7→ (x1x2, y1y2),

and µ is the homomorphism determined by

x 7→ x⊗ x, y 7→ y ⊗ y.

(These are viewed as elements of R ⊗k R, where R = k[x, y]/(xy − 1).) Note that it is

well-defined: 1 = xy 7→ (x⊗ x)(y ⊗ y) = xy ⊗ xy = 1⊗ 1 = 1.

We denote this algebraic group by Gm, and call it the multiplicative group; we also

denote it by GL1. If we need to emphasize the field of definition, we shall write Gm,k

and GL1/k. A torus over k is an algebraic group T over k, which is a form of Gn
m,k, for

some n.

Let K be a number field. We consider K∗ as an algebraic group over Q as follows:

choose a basis α1, . . . , αn for K as a vector space over Q. Then every element in K can be

written as x1α1 + · · ·+ xnαn. The multiplication then has the form

(
∑

xiαi)(
∑

yiαi) = (
∑

fiαi),
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where the fi are bihomogenous polynomials, with rational coefficients, in the set of vari-

ables {xi} and {yi}. The condition that
∑
xiαi has an inverse can be phrased in the

form g(x1, . . . , xn) 6= 0 for some rational polynomial g (exercise!) and so we get an alge-

braic group over Q, which is the open subset of An defined as g(x1, . . . , xn) 6= 0 (this set can

be realized as the affine set in An+1 defined by {(x1, . . . , xn, y) : g(x1, . . . , xn)y − 1 = 0}).
The map ∆ is nothing else then xi 7→ fi. We denote this algebraic group ResK/QGm; its

Q-points are ResK/QGm(Q) = K∗.

Here is a simple example. Let K = Q(
√

5), with the basis α1 = 1, α2 =
√

5. Then,

(x1 + x2
√

5)(y1 + y2
√

5) = x1y1 + 5x2y2 + (x1y2 + x2y1)
√

5.

We can write the inverse of x1+x2
√

5 as x1−x2
√
5

x21−5x22
. The polynomial g(x1, x2) is thus x21−5x22

and we get the algebraic group

G = {(x1, x2) : x21 − 5x22 6= 0},

with comultiplication

x1 7→ x1 ⊗ y1 + 5x2 ⊗ y2, x2 7→ x1 ⊗ y2 + x2 ⊗ y1,

coinverse

x1 7→
x1

x21 − 5x22
, x2 7→

−x2
x21 − 5x22

,

and counit

x1 7→ 1, x2 7→ 0.

This is a torus, which is a form of G2
m,Q. Indeed, already over the field Q(

√
5), the map

(x1, x2) 7→ (x1 + x2
√

5, x1 − x2
√

5),

is an isomorphism to G2
m.

Proposition 3.2.1. We have End(Gn
m) = Mn(Z).

Proof. Because Hom(X × Y, Z) = Hom(X,Z)× Hom(Y, Z) and Hom(X, Y × Z) =

Hom(X, Y ) × Hom(X,Z), it is enough to prove the proposition for n = 1. Given an

integer n, the function

x 7→ xn,
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is a homomorphism of Gm and we get Z ↪→ End(Gm). Let now f : Gm → Gm be a

homomorphism of algebraic groups. This means that the following diagram commutes:

Gm ×Gm

µ //

f×f
��

Gm

f
��

Gm ×Gm

µ // Gm

Then, we must have

∆ ◦ f ∗ = (f ∗ ⊗ f ∗) ◦∆.

Abuse notation and write f(x) for the polynomial f ∗(x), where f ∗ : k[x, x−1]→ k[x, x−1]

is the k-algebra homomorphism corresponding to f . It follows then from this relation that

f(x⊗ y) = f(x)⊗ f(y),

in k[x, x−1]⊗k k[y, y−1]. Write f(x) =
∑N

n=−N anx
n. We then get that

N∑
n=−N

anx
n ⊗ yn = (

N∑
n=−N

anx
n)⊗ (

N∑
n=−N

any
n) =

∑
anamx

n ⊗ ym.

Let n0 be such that an0 6= 0. Then, it follows that, for n 6= n0, an = 0 (since anan0x
n⊗ yn0

must be zero). Further, since an0x
n0⊗yn0 = a2n0

xn0⊗yn0 , we must have an0 = 1. If follows

that f is the homomorphism x 7→ xn0 . �

For a general linear group G, elements f ∈ k[G] such that ∆(f) = f ⊗ f are called

“group-like” elements. They correspond to homomorphisms G→ Gm.

3.3. The general linear group GLn. For a field k, the group GLn over k is the affine

variety in An2
- thought of n × n matrices (xij)- which is the complement of the closed

subvariety det(xij) = 0. It is an affine variety, as it is isomorphic to the affine variety in

An2+1 with coordinates xij and y, defined by the equation det(xij) · y − 1 = 0. The group

law is, of course, matrix multiplication. It is called the general linear group. The map

GLn → Gm, (xij) 7→ det(xij),

is a group homomorphism.

Here are some closed subgroups of GLn.

(1) The torus T = {diag(x1, . . . , xn) : x1x2 · · ·xn 6= 0}.
(2) The so-called Borel subgroup of upper-triangular matrices

B = {(xij) ∈ GLn : xij = 0, i > j}.
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(3) The group of unipotent matrices

U = {(xij) ∈ B : xii = 1,∀i}.

Note that

B = TU = UT ∼= T × U.

Let V be an n-dimensional vector space over k. A flag F of type (d1, . . . dt), where 0 ≤
d1 < d2 < · · · < dt ≤ n are integers is a series of subspaces {Vi} of V such that dim(Vi) = di

and V1 ⊂ V2 ⊂ · · · ⊂ Vd. A maximal flag is a flag of type (0, 1, 2, . . . , n). The collection

of flags of type (d) is an algebraic variety of dimension d(n − d), called the Grassmann

variety G (n, d). The collection of flags of type (d1, . . . dt) is a closed subvariety F(d1,...,dt)

of G (n, d1)× G (n, d2)× · · · × G (n, dt).

We say that an algebraic group G acts on a variety V if we are given a morphism

G× V → V, (g, v) 7→ gv,

such that

g1(g2v) = (g1g2)v, ev = v,

for all v ∈ V, g1, g2 ∈ G. Let v ∈ V and Stab(v) = {g ∈ G : gv = v} be its stabilizer. It

is a closed subgroup of G.

Let V = kn. The group GLn acts transitively on F(d1,...,dt). Pick a flag F of type F(d1,...,dt).

Then Stab(F ) is a closed subgroup of GLn, called a parabolic subgroup of type F(d1,...,dt).

Choosing a basis {e1, . . . , en} for V such that the first d1 vectors span V1, the first d2 span

V2 and so on, the parabolic subgroup consists of matrices of the form
A1 ∗ ∗ . . . ∗

A2 ∗ . . . ∗
A3 . . . ∗

. . .

At+1

 ,

where A1 is a square matrix of size d1, A2 is a square matrix of size d2− d1, A3 is a square

matrix of size d3 − d2 and so on, and At+1 is of size n− dt.
For the maximal flag F = {Span(e1), Span(e1, e2), . . . , Span(e1, e2, . . . , en)} we get back

the Borel subgroup B.
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Exercise 1. Calculate the dimension of a parabolic subgroup and, using that, calculate

the dimension of the variety F(d1,...,dt).

3.3.1. The unitary groups Up,q. Consider the hermitian form on Cn given by

〈(x1, . . . , xn), (y1, . . . , yn)〉 =

p∑
i=1

xiȳi − (
n∑

i=p+1

xiȳi),

where 1 ≤ p ≤ n (and q = n− p). Let U(p, q) be the matrices of Mn(C) that preserve this

form. Seperating real and imaginary parts, we get a collection of algebraic equations with

rational coefficients that define U(p, q). Indeed, writing a matrix as

(
A B
C D

)
with A of

size p× p, B of size p× q, etc., and then A = A1 + iA2, etc., we find the relations(
tA1 + itA2

tC1 + itC2
tB1 + itB2

tD1 + itD2

)(
Ip 0
0 −Iq

)(
A1 − iA2 B1 − iB2

C1 − iC2 D1 − iD2

)
=

(
Ip 0
0 −Iq

)
.

Multiplying through and separating real and imaginary parts, we find a collection of qua-

dratic equations with integer coefficients. Thus, the group U(p, q) is defined over Q and

its real points, U(p, q)(R) (denoted often just by U(p, q)) are the matrices of Mn(C) that

preserve the form
∑p

i=1 xiȳi − (
∑n

i=p+1 xiȳi).

Exercise 1. Prove that over the complex numbers the group U(p, q) is isomorphic to the

unitary group U(n).

The group U(n), in turn, is isomorphic over the complex numbers to the group GLn.

Indeed, the elements of U(n)(C) are pairs of complex matrices (A,B) such that tAA +
tBB = In and tAB is symmetric (this implies (tA+ itB)(A− iB) = In).The group law is

given by (A,B)(C,D) = (AC −BD,AD +BC). Define a map

U(n)(C)→ GLn(C), (A,B) 7→ A+ iB.

This is a well-defined group homomorphism. It is injective, because, letting M = A+ iB,

we have A− iB = tM
−1

and so

A =
1

2
(M + tM

−1
), B =

1

2i
(M − tM

−1
).

This map is also surjective: given any M ∈ GLn(C) define A,B by these formulas. One

then checks that tAA+ tBB = In and tAB is symmetric. Thus, the unitary groups U(p, q)
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are forms of GLn over Q. The calculation above shows that in fact U(p, q) is isomorphic

to GLn over Q(i).

3.4. The orthogonal group Oq. In this section we assume that char(k) 6= 2.

3.4.1. Quadratic forms. Let V be a finite-dimensional vector space over k of dimension n.

A bilinear form on V is a function

B : V × V → k,

such that B(x, y) is a linear map in each variable separately. It is called symmetric if in

addition B(x, y) = B(y, x). We then let

q : V → k q(x) = B(x, x),

be the associated quadratic form.2 If

q : V → k

is a function satisfying q(λx) = λ2q(x), such that the function

B : V × V → k, B(x, y) =
1

2
(q(x+ y)− q(x)− q(y)),

is a symmetric bilinear form, then we call q a quadratic form. Note that q(x) = B(x, x)

then.

Given a bilinear form B we define the orthogonal group OB = Oq:
OB = {A ∈ GL(V ) : B(Ax,Ay) = B(x, y),∀x, y ∈ V }

= {A ∈ GL(V ) : q(Ax) = q(x), ∀x ∈ V }.

If one introduces coordinates on V then we can can write

B(x, y) = t[x]M [y],

where [x] are the coordinates of x and M is a symmetric n× n matrix. Then,

OB = {A ∈ GLn(k) : tAMA = M}.

We see that OB is a closed subgroup of GLn, defined by quadratic equations. We let SOB
be OB ∩ SL(V ) (and in coordinates: OB ∩ SLn(k)). We note that B is non-degenerate

(namely, if B(x, y) = 0 for a fixed x and all y, then x = 0) iff det(M) 6= 0.

The classical orthogonal group, denoted simply O(n), is a special case of this con-

struction, when the matrix M is In (and so the quadratic form is, in coordinates, x21 +x22 +

2In many texts the normalization is q(x) = 1
2B(x, x), and that can matter a lot sometimes.
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· · ·+ x2n. Note that if B is non-degenerate then OB is a form of O(n), and SOB is a form

of SO(n)).

Let V,W be vector spaces with bilinear forms BV , BW . An isometry T : V → W is an

isomorphism of vector spaces such that BW (Tx, Ty) = BV (x, y). For example, OB is the

group of isometries from V to itself.

Theorem 3.4.1 (Witt’s extension theorem). Let V be a vector space equipped with a

bilinear form B. Any isometry T : U → U ′, between subspaces U,U ′ of V , can be extended

to an isometry of V . (For the proof see, e.g., Jacobson, Part I, p. 369.)

3.4.2. Clifford algebras. Let V be a vector space over k (still char(k) 6= 2) and q a quadratic

form on k. There is a pair (Cliff(V, q), p) consisting of a k-algebra Cliff(V, q) and a k-linear

map

p : V → Cliff(V, q),

with the following properties:

• Cliff(V, q) is generated as k-algebra by p(V ) and 1.

• p(v)2 = q(v) · 1.

• (Cliff(V, q), p) has the following universal property. Given any other k-algebra A

with a k-linear map p1 : V → A such that p1(v)2 = q(v) · 1A, there is a unique map

f : Cliff(V, q)→ A,

of k-algebras such that f ◦ p = p1.

Clearly these properties determine (Cliff(V, q), p) up to a unique isomorphism. One

further proves the following properties:

• The map p is injective. (This is clear if every non-zero vector v is anisotropic: q(v) 6=
0, but the vector space may have isotropic vectors even when B is non-degenerate.)

We shall therefore write v for p(v) and think of V as a subset of Cliff(V, q), whenever

convenient.

• If e1, . . . , en are a basis for V over k then the 2n elements ei1ei2 · · · eit , where 1 ≤
i1 < i2 < · · · < it ≤ n, are a basis of Cliff(V, q) as a k-vector space (the empty

product is understood as 1).

• One can construct Cliff(V, q) as T (V )/〈x2−q(x) : x ∈ V 〉, where T (V ) = ⊕∞n=0V
⊗n

is the tensor algebra (V ⊗0 := k). The natural map V = V ⊗1 → T (V ) induces the
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map p : V → Cliff(V, q). Note that since the ideal 〈x2 − q(x) : x ∈ V 〉 is graded,

the Clifford algebra has a Z/2Z-grading.

Example 3.4.2. Since 2B(x, y) = q(x+ y)− q(x)− q(y) = (x+ y)2 − x2 − y2 = xy + yx,

we have the relation in Cliff(V, q)

xy + yx = 2B(x, y), ∀x, y ∈ V

In particular, if x, y are orthogonal, namely, if B(x, y) = 0 then xy = −yx.

Suppose that B is identically zero. Then Cliff(V, q) is the exterior algebra of V . This

is easy to see given the statement about a basis of Cliff(V, q) and the relation xy =

−yx holding for all x, y ∈ V , or from the assertion that the Clifford algebra is equal to

T (V )/〈x2 : x ∈ V 〉.

Definition 3.4.3. The canonical automorphism of Cliff(V, q) is the automorphism

induced by the map

p1 : V → Cliff(V, q), p1(v) = −p(v).

This induced automorphism, denoted

a 7→ a′,

is uniquely determined by the property

x′ = −x, ∀x ∈ V

(where now we identify V with its image under p; alternately, it is the property p(v)′ =

−p(v)).

Note that Cliff(V, q)op, the opposite k-algebra, equal to Cliff(V, q) as a k-vector space, but

with multiplication a× b = ba, where on the right we have the multiplication in Cliff(V, q),

is indeed a k-algbera. The map p : V → Cliff(V, q)op satisfies the properties of a Clifford

algebra and so we get a map

Cliff(V, q)→ Cliff(V, q)op,

extending the identity map on V . Denote this map by a 7→ a∗. It is a k-linear involution

on Cliff(V, q); it is uniquely determined by the property (ab)∗ = b∗a∗ (the involution

property) and

x∗ = x, ∀x ∈ V.

The even Clifford algebra Cliff(V, q)+ is defined by

Cliff(V, q)+ = {a ∈ Cliff(V, q) : a′ = a}.
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It is indeed a k-algebra. We also define

Cliff(V, q)− = {a ∈ Cliff(V, q) : a′ = −a}.

Then Cliff(V, q)− is a k-vector space, which is a Cliff(V, q)+-module and

Cliff(V, q) = Cliff(V, q)+ ⊕ Cliff(V, q)−.

Given the description of a basis for Cliff(V, q), it is easy to see that Cliff(V, q)±, are

each 2n−1-dimensional; a basis of Cliff(V, q)+ (resp. Cliff(V, q)−) is given by the ele-

ments ei1ei2 · · · ein , for n even (resp., n odd).

3.4.3. The Clifford and Spin groups. From this point on assume that B is non-degenerate.

That is, if x ∈ V and B(x, y) = 0 for all y then x = 0. Note that this doesn’t preclude the

existence of x 6= 0 such that q(x) = 0.

Given a quadratic space (V, q), put

G(V, q) = {a ∈ Cliff(V, q)× : a−1V a = V }.

Further, let

G+(V, q) = G(V, q) ∩ Cliff(V, q)+.

We call G(V, q) the Clifford group and G+(V, q) the even Clifford group.

Exercise 2. Prove that G(V, q) and G(V, q)+ are algebraic groups over k.

For a ∈ G(V, q) define τ(a) ∈ GL(V ) by

xτ(a) = a−1xa, (x ∈ V ).

Linear transformation will act here on the right so that we have τ(ab) = τ(a)τ(b) and we

get a homomorphism

G(V, q)→ GL(V ).

In fact, the image of this homomorphism is in the orthogonal group Oq:
q(xτ(a)) = (xτ(a))2

= (a−1xa)2

= a−1q(x)a

= q(x).

Therefore, we have a homomorphism of algebraic groups:

G(V, q)→ Oq.
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Suppose that x ∈ V is invertible in Cliff(V, q), then also x2 = q(x) is invertible and

so q(x) 6= 0. Conversely, if q(x) 6= 0 then x is invertible in Cliff(V, q) and the inverse

is q(x)−1 · x. Thus, the elements of V that are invertible in Cliff(V, q) are precisely the

anisotropic vectors - the vectors x with q(x) 6= 0. Such vectors v are contained in G(V, q)

as for any u ∈ V , v−1uv = v−1(2B(u, v)− vu) = 2B(u, v) · q(v)−1 · v− u ∈ V ; Therefore, a

product of an even number of such vectors is in G(V, q)+. It is a theorem that G(V, q)+ con-

sists of all the products of an even number of elements of V that are invertible in Cliff(V, q),

namely products of an even number of anisotropic vectors (see below).

Define a function

ν : G(V, q)+ → k∗, ν(a) = aa∗.

If a = x1x2 . . . x2r, xi ∈ V, q(xi) 6= 0, then

ν(a) = q(x1)q(x2) · · · q(x2r).

Thus, ν is a group homomorphism. We define the spin group of (V, q) by

Spin(V, q) = {a ∈ G(V, q)+ : ν(a) = 1}.

It is an algebraic group and we have a homomorphism

τ : Spin(V, q)→ OB.

One can show that the kernel of τ on G(V, q)+ is precisely k∗. Since k∗∩Spin(V, q) = {±1},
there is an injection,

Spin(V, q)/{±1} ↪→ Oq.

The truth is the following. The image of Spin(V, q) is SOq and so one obtains an exact

sequence:

(3.4.1) 1→ {±1} → Spin(V, q)→ SOq → 1.

This is an exact sequence over k̄, and so is also an exact sequence of algebraic groups. In

order to understand why the sequence is exact we need to go deeper into the structure of

the orthogonal group and the spin group.

3.4.4. Reflections. Let x ∈ V with q(x) 6= 0. Let x⊥ = {v ∈ V : B(x, v) = 0}. We have

the orthogonal decomposition

V = k · x⊕ x⊥.

There is a unique element of Oq taking x to −x and acting as the identity on x⊥; we call

it a reflection in x⊥. In fact, this linear transformation is −τ(x). Indeed, if v ∈ x⊥



ALGEBRAIC GROUPS: PART I 14

then xv = −vx and so −vτ(x) = −x−1vx = −x−1(−x)v = v and, of course −x−1xx = −x.

We note that det(−τ(x)) = −1.

Every element of Oq is a product of reflections. This can be proved by an elementary

argument using induction on the dimension of q.3 Let us also admit that the intersection

of the center of Cliff(V, q) with Cliff(V, q)+ is k.4 If τ(x) = 1V then x commutes with any

element of V and so x is in the center of Cliff(V, q) and a fortiori in the center of Cliff(V, q)+;

that is, x ∈ k×. Now, let a ∈ G(V, q)+. Then we may write τ(a) = τ(x1) · · · τ(xm)

for some x1, . . . , xm in V . It follows that a = (cx1) · · ·xm for some c ∈ k∗ and we see

that every element of G(V, q)+ is a product of elements of V . Because a ∈ G(V, q)+, it

follows directly from the definition of the canonical automorphism that m is even, m =

2r. Since det(−τ(a)) =
∏

det(−τ(yi)) = −12r = 1, we conclude that Spin(V, q) maps

into SOq .

Let us assume that k is algebraically closed (it suffices that it contains all square roots

of q(V )). Then, further, if ν(a) = 1, we may assume that a = y1 · · · y2r, yi ∈ V , and

that ν(yi) = 1 for i > 1. It then follows that ν(y1) = 1 as well. It follows that every

element a of Spin(V, q) is a product of an even number of elements yi ∈ V with ν(yi) =

q(yi) = 1.

On the other hand, since every element in SOq is a product of an even number of

reflections, each of the form −τ(x), where wlog q(x) = 1, it follows that it is the image of

an element in Spin(V, q).

3.5. The symplectic group. Let V be an even dimensional vector space over a field k

of characteristic different from 2. A symplectic form on V is an alternating perfect pairing

〈·, ·〉 : V × V → k.

There’s always a basis {x1, . . . , xn, y1, . . . , yn} of V such that in this basis 〈yi, yj〉 =

〈xi, xj〉 = 0 and 〈xi, yj〉 = δij. (Thus, any two such pairings are equivalent under a

suitable change of basis.) In this basis the form is given by a 2n× 2n matrix of the form

J :=

(
0 In
−In 0

)
.

3For the proof, see Jacobson, Part I, p. 371, or Shimura. In fact, every element of the orthogonal group
of q is a product of atmost n reflections. The proof is in Jacobson, Part I, p. 372; this statement is called
the Cartan-Dieudonné theorem.

4Choose an orthonormal basis {e1, . . . , en} for V and let δ = e1e2 · · · en. Then:

(1) If n > 0 is even then the center of Cliff(V, q) is k and the center of Cliff(V, q)+ is k + kδ.
(2) If n is odd then the center of Cliff(V, q) is k + kz and the center of Cliff(V, q)+ is k.

(See Shimura, Theorem 2.8)
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Some prefer to reorder the basis elements such that the pairing is given by

0 · · · 0 1
0 · · · 1 0

. .
.

1 0
0 · · · 0 −1
0 · · · −1 0

. .
.

−1 0


.

The symplectic group Sp(2n, k) are the linear transformations T of V preserving this

pairing. In terms of matrices, these are the matrices M such that

tMJM = J.

There is an injective homomorphism

GLn → Sp2n, A 7→
(
A

tA−1

)
.

The image is a closed subgroup of Sp2n, consisting of all symplectic matrices ( A B
C D ) (n×n

matrices), such that B = C = 0. There is also an injective homomorphism

Gn(n+1)/2
a → Sp2n, B 7→

(
I B

I

)
,

where Gn(n+1)/2
a is interpreted as symmetric matrices of size n. The symplectic group is

generated by the the image of Gn(n+1)/2
a , the image of GLn and the matrix

(
0 I
−I 0

)
.

Let u ∈ V be a non-zero vector and c ∈ k. Then the function

τu,cv 7→ v + c〈v, u〉 · u

is a symplectic automorphism of V , called a transvection. One can prove (Jacobson,

Part I, p. 392) that the symplectic group is generated by transvections. Note that if k is

algebraically closed, or just closed under taking square roots, we can simply take c = 1 by

the cost of replacing u by
√
c · u. Note the formula

ητu,cη
−1 = τηu,c, η ∈ Sp2n.

—– � —–


