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14. General structure theorems for connected algebraic groups

Let G be a connected linear algebraic group. By a maximal torus of G we mean a

torus of G not properly contained in any other torus.

Theorem 14.0.1. Let G be a connected linear algebraic group. Any two maximal tori in

G are conjugate.

Proof. Every maximal torus, being connected and solvable, is contained in a Borel sub-

group. We proved that all Borel subgroups are conjugate and all the maximal tori of a

Borel subgroup are conjugate (in that Borel subgroup). �

Definition 14.0.2. Let G be a connected linear algebraic group and let T be a maximal

torus in G. Then dim(T ) is called the rank of G. It is independent of the choice of T .

Example 14.0.3. rk(GLn) = n, rk(SLn) = n− 1, rk(Sp2n = n, rk(Tn) = n.

Proposition 14.0.4 (Rigidity of Tori). Let G and H be two diagonalizable groups and let

V be a connected affine variety. Assume given a morphism

φ : V ×G→ H,

such that for any v ∈ V the map x 7→ φ(v, x) is a homomorphism of algebraic groups

G→ H. Then φ(v, x) is independent of v. (Colloquially, a family of homomorphisms

G→ H indexed by a connected variety V is constant.)

The proposition states that one cannot continuously deform homomorphisms of diago-

nalizable groups. This makes sense heuristically as morphism of diagonalizable groups are

determined by their effect on characters groups, which are discrete objects.

Proof. Let ψ ∈ X∗(H) be a character of H. It is in particular a regular function on H and

so

φ∗ψ(v, x) =
∑

χ∈X∗(G)

fχ,ψ(v)χ(x),

with fχ,ψ ∈ k[V ]. Here we have used that k[V × G] = k[V ] ⊗k k[G] and that X∗(G) is a

basis for k[G] over k.

By our assumption, for a fixed v the sum
∑

χ∈X∗(G) fχ,ψ(v)χ(x) is a character of G,

because x 7→ φ(v, x) is a homomorphism of algebraic groups. By Dedekind’s independence
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of characters, we must have fχ,ψ(v) = 1 for exactly one χ and zero for all the other χ. For

a fixed χ, the conditions fχ,ψ(v) = 1, or fχ,ψ(v) = 0 are closed conditions and as v varies

over an irreducible component of V they exhibit the component as a disjoint union of two

closed sets, thus one of them must be empty. For every irreducible component choose v

and χ such that fχ,ψ(v) = 1. Then fχ,ψ(v) = 1 for any v in that irreducible component

and fχ′,ψ(v) = 0 for any v in that component and any χ′ 6= χ. The connectedness of V

now implies that for that χ, fχ,ψ ≡ 1 and for any χ′ 6= χ, fχ′,ψ ≡ 0. �

Proposition 14.0.5. Let G be a linear algebraic group and H a diagonalizable subgroup

of G. Then (i) NG(H)0 = ZG(H)0, (ii) ZG(H) and ZG(H)0 are normal in NG(H), and

(iii) the groups NG(H)/ZG(H), NG(H)/ZG(H)0, are finite.

NG(H)

finite, normalZG(H)

NG(H)0 = ZG(H)0

Proof. Let z ∈ ZG(H), n ∈ NG(H) and h ∈ H. Then (nzn−1)h = nz(n−1hn)n−1 =

n(n−1hn)zn−1 = h(nzn−1) which proves that ZG(H) is a normal subgroup of NG(H).

Since ZG(H)0 is a characteristic subgroup of ZG(H) it is normal in NG(H) too (and this

will also follow from NG(H)0 = ZG(H)0).

Apply the previous proposition with

NG(H)0 ×H → H, (n, h) 7→ nhn−1.

This map is therefore independent of n. For n = 1 it is the identity. Thus, NG(H)0 ⊂
ZG(H) and so NG(H)0 ⊂ ZG(H)0; the other inclusion being obvious, we get NG(H)0 =

ZG(H)0.

The group NG(H)/NG(H)0 is finite and NG(H)/ZG(H) is a quotient of it. �

The following Lemma is of independent interest. It is also useful in practice in calculating

centralizers of tori, as it reduces the calculation to calculating the centralizer of a single

element that the proof explains how to choose.
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Lemma 14.0.6. Let G be a linear algebraic group and S a torus of G. There exists s ∈ S
such that ZG(s) = ZG(S).

Proof. Embed G in GLn so that S are diagonal matrices. We may then assume, without

loss of generality, that G = GLn. S being diagonal, its diagonal entries are characters

s ∈ S 7→ sii. Let χ1, . . . , χm be the distinct characters obtained this way. Let s0 ∈ S be

an element such that χi(s0) 6= χj(s0) for i 6= j. Such s0 exists, because each of the finitely

many characters χi/χj is equal to 1 on a codimension 1 subtorus of S.

The inclusion ZG(s) ⊃ ZG(S) is obvious. We may arrange the coordinates so that

S = {diag(χ1(s), . . . χ1(s)︸ ︷︷ ︸
a1

, χ2(s), . . . , χ2(s)︸ ︷︷ ︸
a2

, · · · , χm(s), . . . χm(s)︸ ︷︷ ︸)
am

: s ∈ S)}.

Then one can easily check that ZG(s) ∼= GLa1 × GLa2 × · · · × GLam and that this group

centralizes S as well. (Remember that this is the centralizer in GLn. If one wants to

apply that to the original G, it is the intersection with the image G under an embedding

diagonalizing S in a very specific manner.) �

Example 14.0.7. Consider the torus {diag(t1, . . . , tm, 1, . . . , 1)} in GLn. Its centralizer is

therefore {diag(t1, . . . , tm)} ×GLn−m.

Let G be a connected linear algebraic group. A Cartan subgroup of G is the identity

component of the centralizer of a maximal torus of G. (We shall see later that in fact the

centralizer of a maximal torus is already connected.)

Proposition 14.0.8. Let G be a connected algebraic group. Let T be a maximal torus and

C = ZG(T )0 the corresponding Cartan subgroup. Then:

(1) C is nilpotent and T is its unique maximal torus. In particular, C is contained in

some Borel subgroup.

(2) There exists elements t ∈ T lying in only finitely many conjugates of C.

Proof. We will need a lemma.

Lemma 14.0.9. Let G be an algebraic group and B a Borel subgroup of G. If B is nilpotent

then B = G0.
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Proof of Lemma. The proof is by induction on dim(G). The case dim(G) = 0 is obvious.

In general, since B is nilpotent, B has a non-trivial closed connected central subgroup J ,

for example that generated by commutators of maximal length that are not yet trivial.

Since C(B) ⊆ C(G), J is normal in G. We may then pass to G/J and B/J (the image of

Borel is Borel, as we have proven) and conclude by induction. �

Now, C contains T as a central subgroup; choose a Borel subgroup B of C containing T .

Then T is a central subgroup of B. In this case the isomorphism of varieties T ×Bu → B

is also an isomorphism of algebraic groups and so, since Bu is nilpotent, B is nilpotent.

By the lemma B = C. In particular, C is nilpotent and T is its central torus, C = T ×Cu.
To prove (2) we choose an element t ∈ T such that ZG(t) = ZG(T ). If t ∈ gCg−1 then

g−1tg ∈ C = ZG(T )0 and so T ⊂ ZG(g−1tg) = ZG(g−1Tg) and must be the maximal torus

of ZG(g−1Tg). But, ZG(g−1Tg) also contains g−1Tg as a maximal torus. Thus, T = g−1Tg

and hence g ∈ NG(T ). As NG(T )/ZG(T ) is finite, there are only finitely many conjugates

gCg−1 containing t (note that gCg−1 depends only on the coset gZG(T ) 1). �

The next theorem is a very important theorem. It explains the special role played by tori

and Borel subgroups in the study of linear algebraic groups.

Theorem 14.0.10. Let G be a connected linear algebraic group.

(1) Every element of G lies in some Borel subgroup.

(2) Every semisimple element of G lies in a maximal torus.

(3) The union of the Cartan subgroups of G contains a dense open subset of G. (So

“almost” every element of G lies in a Cartan subgroup.)

Before the proof we need a lemma.

Lemma 14.0.11. Let H be a closed subgroup of a connected linear group G. Let X =

∪g∈GgHg−1 and X̄ the Zariski closure of X.

(1) X contains a non-empty open subset of X̄. If H is parabolic then X = X̄.

(2) Assume that H has a finite index in its normalizer and that there exist elements of

H lying in only finitely many conjugates of H. Then X̄ = G.

1We are not claiming though that distinct cosets give distinct conjugates. This would be the case of
ZG(T ) = NG(T ), but this is almost never the case.
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Proof of lemma. We may assume H is connected. We can view X as the image of G×H
under the morphism G×H → G, (g, h) 7→ ghg−1. It follows that X is constructible, hence

contains a non-empty open subset of X̄.

It is also useful to view X as the image of a different morphism. Consider the isomor-

phism φ : G×G→ G×G given by

φ(x, y) = (x, x−1yx).

Let Y = {(x, y) : x−1yx ∈ H}. Then Y = φ−1(G×H). We have a commutative diagram

Y
φ //

(x,y)7→y
��

G×H

(x,y)7→xyx−1
{{wwwwwwwww

G

.

Y is a closed subset of G × G and it is H-closed; that is, if h ∈ H, (x, y) ∈ Y then

(xh, y) ∈ Y . Indeed, φ(xh, y) = h−1(x−1yx)h ∈ H. Therefore, if H is parabolic, then the

image of Y under the projection p2 : G×G→ G, namely X, is closed in G.

We may now let Ȳ be the image of Y in G/H ×G. Since Y is closed and equal to the

pre-image of Ȳ , we can conclude from G→ G/H being an open map that Ȳ is a closed set

of G/H ×G, hence a variety. Ȳ is irreducible, being the image of Y ∼= G×H. We have

dim(Ȳ ) = dimY − dimH = dim(G).

We have an induced map

p̄2 : Ȳ → G, (xH, y) 7→ y.

Let y be an element of H that belongs to finitely many cosets of H, say t1Ht
−1
1 , . . . , tmHt

−1
m .

The preimages of y in Y are the elements (x, y) such that x−1yx ∈ H, or, y ∈ xHx−1. Such

x is therefore of the form x = tin for some n ∈ NG(H). It follows that the preimages of y in

Ȳ are the elements (tiαjH, y) where the αj are the finite number of cosets representatives

for NG(H)/H. In particular, the fiber of Ȳ → X over y is finite, hence zero-dimensional.

Thus, the fibre is zero-dimensional over almost any point of X. It follows that

dim(X) = dim(Ȳ ) = dim(G).

Thus, X̄ = G. �

Proof of the theorem. Let T be a maximal torus and C = ZG(T )0 the Cartan subgroup.

Suppose that x ∈ NG(C) then x must also conjugate the only maximal torus of C
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(Proposition 14.0.8) to itself. Thus, x ∈ NG(T ). On the other hand, NG(T ) normalizes

ZG(T )0 = NG(T )0,as we have shown above (Proposition 14.0.5). Thus,

NG(C) = NG(T )

It follows that C = ZG(T )0 has finite index in NG(C) and so if we apply the Lemma

with H = C, the conditions of part (ii) hold, because we had also proven that there is

an element of T (hence of C) that lies in only finitely many conjugates of C. Thus, we

conclude that

G = Zariski closure(∪x∈GxCx−1),

and (3) follows.

Now, we know C is connected and nilpotent, hence solvable. Thus C is contained in

some Borel subgroup B. Since a Borel is parabolic, the Lemma gives that ∪x∈GxBx−1 is

a closed set. It contains the dense set ∪x∈GxCx−1. Thus,

G = ∪x∈GxBx−1.

Finally, let s be a semisimple element of G. Then s lies in some Borel B and we can apply

Theorem 13.3.5 to deduce that x lies in a maximal torus of B (so of G). �

Corollary 14.0.12. Let B be a Borel subgroup of a connected linear algebraic group G.

Then

C(B) = C(G).

Proof. We had already proven that C(B) ⊆ C(G). Let g ∈ C(G); g belongs to some Borel

subgroup. Since all Borel subgroups are conjugate and g is fixed by conjugation, g belongs

to all Borel subgroups. Thus, g ∈ C(B). �

Theorem 14.0.13. Let S be a subtorus of a connected linear algebraic group G.

(1) The centralizer ZG(S) is connected.

(2) If B is a Borel subgroup containing S then ZG(S)∩B is a Borel subgroup of ZG(S).

Every Borel subgroup of ZG(S) is obtained this way.

Proof. We will only prove here the first part. The proof of the second part is completely

within our means now, but in the interest of time we don’t give it. See Springer’s theorem

6.4.7 for the proof.
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Let g ∈ ZG(S) and let B be a Borel subgroup containing g. Let

X = {xB ∈ G/B : x−1gx ∈ B}.

Note that X = (p̄2)
−1(g) in the notation of Lemma 14.0.11 (used for H = B), and so

X is a closed subset of G/B. Thus, X is a complete variety. The torus S acts on X

by (s, xB) 7→ sxB (since g centralizes S). Using Borel’s fixed point theorem, there is an

element xB of X that is fixed by the action of S: sxB = xB, ∀s ∈ S. That is, x−1Sx ⊂ B.

Since B is connected solvable, we can apply Corollary 13.3.8 to H = x−1Sx and conclude

that x−1gx, which is in the centralizer of x−1Sx and also in B (by definition of X) belongs

to the identity component of ZB(x−1Sx). Thus, g belongs to the identity component

of ZxBx−1(S) and hence to the identity component of ZG(S). We proved that ZG(S) is

connected. �

Corollary 14.0.14. Let S be a torus of a connected linear algebraic group G. Then

ZG(S) = ZG(S)0 = NG(S)0 and is of finite index in NG(S). In particular, this holds for a

maximal torus T . Thus, a Cartan subgroup is the centralizer of a maximal torus (no need

to add anymore that it is the connected component of that centralizer). The finite group

NG(T )/NG(T )0 = NG(T )/ZG(T ) =: W (G, T )

is called the Weyl group of G relative to T . Any two Weyl groups of G are conjugate

(because maximal tori are), hence isomorphic, but not canonically.2

Corollary 14.0.15. Let B be a Borel subgroup containing a maximal torus T then B

contains its Cartan subgroup C.

Proof. The theorem tells us that B ∩ C is a Borel subgroup. However, if T is a maximal

torus, its centralizer C is a nilpotent subgroup (Proposition 14.0.8), hence solvable. Thus,

every Borel of C is equal to C. That is, B ⊇ C. �

We come now to a very important theorem in the structure of algebraic groups. Unfortu-

nately, its proof employs techniques appearing in parts of Springer’s book that we didn’t

cover. Thus, we omit the proof. But see the remark following the theorem for a weaker

statement.

2One could say canonically up to inner automorphism. However such groups often contain a large
symmetric group and so the distinction between “automorphism” and “inner automorphism” is not so
important.
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Theorem 14.0.16. Let G be a connected linear algebraic group and B a Borel subgroup

of G. Then,

NG(B) = B.

Remark 14.0.17. We can at least show that B = NG(B)0 and thus see why it is of finite

index in NG(B).

The group NG(B)0 is connected and B is its Borel subgroup; in fact, its only Borel

subgroup, since all Borel subgroups are conjugate. But, every element of NG(B)0 belongs

to some Borel subgroup. Thus, NG(B)0 = B.

Corollary 14.0.18. Let G be a connected linear algebraic group. Let P be a parabolic

subgroup of G. Then P is connected and NG(P ) = P .

Proof. P contains a Borel subgroup B and, in fact, B ⊂ P 0. Let x ∈ NG(P ) then

xBx−1 is another Borel subgroup of the connected linear algebraic group P 0 and so -

since all Borels are conjugate in P 0, there is a y ∈ P 0 such that xBx−1 = yBy−1. Then,

y−1x ∈ NG(B) = B and so x ∈ yB ⊂ P 0. That is, P 0 ⊃ NG(P ) ⊃ P ⊃ P 0 and everything

follows. �

Corollary 14.0.19. Let P be a parabolic subgroup of a connected linear algebraic group

G. Then,

ZG(P ) = C(P ) = C(G).

Proof. Let P be a parabolic subgroup. Then, since ZG(P ) ⊂ NG(P ) = P , we find that

ZG(P ) = C(P ) is the centre of P . Let B be a Borel subgroup contained in P . Then,

as we proved before, C(B) = C(G) and so C(B) ⊆ C(P ). On the other hand, certainly

C(P ) = ZG(P ) ⊂ ZG(B) = C(B). Thus, C(P ) = C(B) = C(G). �
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15. Summary of some results so far

Let G be a connected algebraic group. We have 3 notions that are prominent so far: (i)

a maximal torus; (ii) a Borel subgroup; (iii) a parabolic subgroup.

We also have three “operations”: (i) take the centralizer; (ii) take the normalizer; (iii)

conjugate.

It is interesting to examine the knowledge we have so far in light of these concepts and

operations. We know the following.

(1) Every element belongs to some Borel subgroup.

(2) Every semisimple element belongs to some maximal torus.

As to conjugation:

(1) A conjugate of a maximal torus is a maximal torus and any two maximal tori are

conjugate. In particular, they all have the same dimension. Every maximal torus

is contained in some Borel B, hence the dimension of maximal tori is dim(B/Bu).

(2) A conjugate of a Borel is a Borel and all Borel are conjugate.

(3) A conjugate of a parabolic is parabolic.

As to inclusions:

(1) Every parabolic contains a Borel. Every Borel is parabolic.

(2) Every Borel contains a maximal torus, every maximal torus is contained in some

Borel.

(3) The centralizer of a maximal torus T - a Cartan subgroup C = C(T ) - is connected,

nilpotent, and is equal to NG(T )0 and is contained in every Borel containing T . We

have NG(C) = NG(T ).

(4) The normalizer of a parabolic is equal to the parabolic. The centralizer of a para-

bolic is equal to its centre and is equal to the centre of the ambient group G.

It is now interesting to look at collections.

(1) The collection of Borel subgroups of G is in bijection with the projective variety

G/B, where B is some Borel. More generally, the collection of Borel subgroups

contained in a given parabolic subgroup P is in bijection with the projective variety

P/B, where B is some Borel of P .
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(2) The collection of maximal tori of G is in bijection with G/NG(T ), which has a finite

cover by G/ZG(T ) (often T = ZG(T )). The collection of maximal tori contained in

a fixed Borel subgroup is in bijection with B/NB(T ) = B/ZB(T ).

(3) The collection of Borel subgroups containing a given maximal torus T is in bijection

with NG(T )/ZG(T ) = W (G, T ) - the Weyl group (which is a finite group).

(4) Let B be a Borel subgroup. Out of every conjugacy class of parabolic subgroups

there’s exactly one element containing B. In particular, the parabolic subgroups

containing B are in bijection with conjugacy classes of parabolic subgroups. These

can be classified by means of roots.

We have more or less proven all these assertions. The assertions we didn’t prove can be

deduced quite easily from those we have proved. For example, one needs that if P,Q are

conjugate parabolic containing a Borel B then P = Q. Indeed, if P = xQx−1 then the

Borels B and xBx−1 are contained in P and so conjugate in P . Thus, for some y ∈ P ,

B = yxBx−1y−1. Then yx ∈ NP (B) = B and so x ∈ y−1B ⊆ P and so P = Q.

All this, while beautiful, doesn’t explain completely why the notions we were occupied

with are so central. It is the role the play in the classification of algebraic groups and their

representations that makes them central to the whole theory.

15.1. Some definitions. Let A,B be closed normal subgroups of a connected algebraic

group G. Then AB is also a closed normal subgroup, connected if A and B are, solvable

if A and B are. Thus, there is a maximal closed connected solvable and normal subgroup

of G. This group is called the radical of G and will be denoted here R(G). A group is

called semi-simple if R(G) = {1}.
Similarly, if A and B are normal and unipotent then so is AB. Thus, there is a maximal

closed connected unipotent normal subgroup of G. This group is called the unipotent

radical of G and is denoted here Ru(G).

How to calculate these? Note that the radical being connected and solvable is contained

in a Borel subgroup. Thus, being normal, it is contained in all Borel subgroups and being

connected, R(G) ⊆ (∩B BorelB)0. On the other (∩B BorelB)0 is a closed connected normal

solvable subgroup of G, hence contained in the radical. Thus:

R(G) = (∩B BorelB)0.
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In the same way,

Ru(G) = (∩B BorelBu)
0.

Since for every Borel B, R(G)u ⊆ Bu, and being connected (as R(G) is connected solvable)

R(G)u ⊆ Ru(G). On the other hand, Ru(G) is contained in R(G) and consists of unipotent

elements, hence Ru(G) ⊆ R(G)u. Thus,

Ru(G) = R(G)u .

A connected linear algebraic group G is called semisimple if R(G) = {1} and reductive

if Ru(G) = {1}.

Example 15.1.1. Suppose that the centre of the group is positive dimensional, equiv-

alently, C(G)0 is not trivial. It is easy to see that C(G)0 ⊆ R(G). Then G cannot be

semisimple. For example, we see that GLn is not semisimple.

On the other hand, GLn is reductive. We know that Gm = C(GLn) ⊂ R(GLn). The two

Borel subgroups Tn and tTn show the radical is contained in Dn = Tn ∩ tTn. On the other

hand, any diagonal matrix having two non-equal entries is conjugate to a non-diagonal

matrix. For example, diag(2, 1, a, b, c, . . . ) is conjugate to diag(( 2 1
1 ) , a, b, c, . . . ). That

implies that the largest normal subgroup of GLn contained in Dn are the scalar matrices

Gm. Thus,

R(GLn) = k× · In ∼= Gm, Ru(GLn) = {1}.

On the other hand, SLn is semisimple. If G is a closed normal subgroup of H then it is

not hard to check that R(G) is a normal subgroup of H (in fact, R(G) is a characteristic

subgroup of G and in particular preserved under the automorphisms induced by conjuga-

tion by elements of H). Thus, R(G) ⊆ R(H). Thus, R(SLn) ⊆ R(GLn) = k× · In. But

the only elements of determinant one in that group is the finite subgroup of n-th roots of

unity. Since R(SLn) is connected, it must be trivial.

Example 15.1.2. Let P be a parabolic subgroup in GLn then P is not reductive. Indeed,

if we write P as the matrices

M =


A1 ∗ ∗ . . . ∗

A2 ∗ . . . ∗
A3 . . . ∗

. . .

At

 ,
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(Ai of size ai) the the subgroup of P where all the Ai are identity matrices is normal,

connected, unipotent, hence contained in Ru(P ). Indeed, this subgroup is the kernel of

the homomorphism P → GLa1 × · · · ×GLat , M 7→ diag(A1, . . . , At).

Proposition 15.1.3. Let G be a connected linear algebraic group. Then G/R(G) is

semisimple. Its rank is called the semisimple rank of G. Similarly, G/Ru(G) is re-

ductive.

Proof. Let H be a normal connected closed and solvable subgroup of G/R(G). Then, it

preimage in G, say H̃ is a closed connected normal subgroup. It is also solvable, because it

sits in an exact sequence 1→ R(G)→ H̃ → H → 1, where both R(G) and H are solvable.

Thus, H̃ ⊂ R(G) and so H = {1}.
The proof forG/Ru(G) is the same, where now one needs that if 1→ Ru(G)→ H̃ → H → 1

is an exact sequence and H is unipotent so is H̃. Indeed, if it had a semisimple element h its

projection to H would be both semisimple and unipotent and so trivial. Thus, h ∈ Ru(G)

and again semisimple and unipotent, hence trivial. �

We have the following additional useful results:

• If G is reductive then R(G) is a maximal torus. G = R(G)·(G,G) and R(G)∩(G,G)

is finite. Thus, R(G) × (G,G)→ G is a surjective homomorphism with a finite

kernel (isogeny). Further, (G,G) is semisimple.

• If G is semisimple then G = (G,G) and it has a finite centre.

• If G is reductive and T is a maximal torus of G then C(T ) = T , that is, Cartan

subgroups are tori, and C(G) ⊆ T . Further, if S is any torus then ZG(S) is

connected and reductive.

• If G is connected, semi-simple, of rank 1 then G ∼= SL2 or PSL2.


