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10. The Lie algebra of an algebraic group

10.1. Derivations. Let R be a commutative ring, A an R-algebra and M an A-module.

A typical situation for us would be the case where R is an algebraically closed field, A the

ring of regular functions of an affine k-variety and M is either A itself, or A/M , where M

is a maximal ideal. Returning to the general case, define D, an M-valued R-derivation

of A, to be a function

D : A→M,

such that D is R-linear and

D(ab) = a ·D(b) + b ·D(a).

We have used the dot here to stress the module operation: a ∈ A and D(b) ∈ M and

a · D(b) denotes the action of an element of the ring A on an element of the module M .

The collection of all such derivations, DerR(A,M), is an A-module, where we define

(f ·D)(a) = f ·D(a), f, a ∈ A.

Example 10.1.1. Let k be an algebraically closed field, X an affine k-variety, OX,x the

local ring of x on X and view k as an OX,x-module via f ·α = f(x)α, for f ∈ OX,x, α ∈ k.

Then Derk(OX,x, k) are the k-linear functions

δ : OX,x → k,

such that δ(fg) = f · δ(g) + g · δ(f). Using the definition of the module structure, these

are the functions δ : OX,x → k such that

δ(fg) = f(x)δ(g) + g(x)δ(f).

10.2. The tangent space. There are many interpretations for the tangent space. We

bring here three such. Yet another one can be given using the notion of k[ε] points (ε2 = 0).

See Springer’s, or Hartshorne’s book.

10.2.1. An intrinsic algebraic definition. Let X be a variety. The tangent space at x ∈ X,

TX,x, is

TX,x := (mx/m
2
x)∗,

namely, TX,x = Homk(mx/m
2
x, k), where mx is the maximal ideal of the local ring OX,x and

mx/m
2
x is viewed as a k = OX,x/mx-vector space.
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10.2.2. A naive non-intrinsic geometric definition. Assume that X is affine (else, pick a

Zariski open affine negihborhood of x), say X ⊆ An, defined by an ideal I, and let M be

the maximal ideal of k[X] comprising the functions vanishing at x. Then,

OX,x = k[X]mx , mx = MOX,x,

and so

OX,x/mx = k[X]/M, mx/m
2
x = M/M2.

As a result,

TX,x = (M/M2)∗.

The point is that (M/M2)∗ affords a description which is closer to our geometric intuition.

Suppose that T1, . . . , Tn are the variables on An and f is a function vanishing on X.

Develop f into a Taylor series at x = (x1, . . . , xn); the leading term, which we denote dfx,

is

(10.2.1) dxf =
n∑

i=1

∂f

∂Ti
(x)(Ti − xi).

We define T naive
X,x to be the affine-linear variety defined by all the equations (10.2.1) as f

ranges over I:

dxf = 0, f ∈ I.

We remark that if I = 〈f1, . . . , fm〉 then it is enough to use dxf1, . . . , dxfm to define T naive
X,x .

Thus, T naive
X,x with origin at x, is the solutions to the homogenous system of equations(

∂fi
∂Tj

)
1≤i≤m,1≤j≤n

.

We can in fact define dxf for any f ∈ k[X], by the same formula (10.2.1), and view it

as a function on T naive
X,x , which is linear once we make x = (x1, . . . , xn) the origin. In this

interpretation dxf , for f ∈ I, is the zero function on T naive
X,x . Now, since k[X] = k+M and

dxf = 0 if f is constant, we may view dx as a map

dx : M → (T naive
X,x )∗.

Since dx(fg) = f(x)dx(g) + g(x)dx(f) we see that dx vanishes on M2 and so we get a map

dx : M/M2 → (T naive
X,x )∗.
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One proves this map is an isomorphism (it’s not hard; see Springer, Humphries) and, thus,

dualizing, we have

T naive
X,x

∼= (M/M2)∗ ∼= (mx/m
2
x)∗,

showing that the naive non-intrinsic geometric definition agrees with the intrinsic algebraic

definition.

10.2.3. Via point derivations. We can also view TX,x, or, rather, (mx/m
2
x)∗ as point deriva-

tions at x. Let δ be a point derivation at x, δ : OX,x → k. Then δ is determined by its

restriction to mx and δ|m2
x
≡ 0. Thus, we get a map

δmx/m
2
x → k,

which is k-linear. This is an element of (mx/m
2
x)∗. Conversely, a functional δ ∈ (mx/m

2
x)∗

defines a derivation δ by

δ(f) = δ(f − f(x) (mod m2
x)).

10.3. Regular points. (Also called “non-singular”, or “simple”, points). Let X be an

equi-dimensional variety (that is, all the components of X have the same dimension). A

point x ∈ X is called regular if

dimk TX,x = dim(X).

X itself is called regular if all its points are regular. A basic result is

Proposition 10.3.1. The set of regular points in X is a dense Zariski-open set.

Let ϕ : X → Y be a morphismx ∈ X, y = ϕ(x). There is an induced homomorphism of

local rings

ϕ∗ : OY,y → OX,x,

taking the maximal ideal my into the maximal ideal mx. There is therefore a k-linear map

my/m
2
y → mx/m

2
x,

hence, by dualizing a k-linear map, which we denote dϕx,

dϕx : TX,x → TY,y.

There is another way to describe it. If δ is a point derivation at x then dϕ(δ) is the point

derivation at y defined by

dϕ(δ)(f) = δ(f ◦ ϕ).



ALGEBRAIC GROUPS: PART III 50

The matching of these two definitions is an easy exercise. Other properties that follow

easily are

d(ψ ◦ ϕ)x = dψϕ(x) ◦ dϕx, d(IdX)x = Id.

From this follows formally that if ϕ is an isomorphism so is dϕx for any x. The following

theorem is useful to know (although we do not use it in the sequel).

Theorem 10.3.2. Let ϕ : X → Y be a morphism. Then ϕ is an isomorphism if and only

if it is bijective and dϕx is an isomorphism for all x ∈ X.

Example 10.3.3. Consider the cuspidal curve Y : y2 = x3 in A2. The point (0, 0) is

a singular point (that is, it is not regular) as M = (x, y, y2 − x3) = (x, y), M2 =

(x2, y2, xy, y
2 − x3) = (x2, y2, xy) and M/M2 is two dimensional.

The normalization of Y , X is the affine line A1. The map

X → Y, t 7→ (t2, t3),

is a bijection. It cannon be an isomorphism though, because 0 is a regular point of X.

And indeed, at the point 0 the map of tangent spaces can be calculated thus:

The point derivations of X at 0 are the derivations of the form f(t) 7→ α · (∂f/∂t)(0)

where α ∈ k. Let D be the derivation corresponding to α = 1 (a basis for the 1-dimensional

space of derivations). The point derivations of Y at (0, 0) are the derivations f(x, y) 7→
α · (∂f/∂x)(0, 0) + β · (∂f/∂y)(0, 0). The map dϕ0 is the following

dϕ0(D)(f(x, y)) = D(f(x, y) ◦ ϕ) = D(f(t2, t3)) = 0,

as f(t2, t3)− f(0, 0) ∈ (t2).

Let us also calculate it the other way. The map OY,(0,0) → OX,0 is f 7→ f(t2, t3), which

belongs to m2
0 if f ∈ m(0,0). Once again, the map is the zero map.

Proposition 10.3.4. Let X be an algebraic group. Then X is regular.

Proof. Let x0 ∈ X be a regular point. Let x1 ∈ X an other point. The morphism

X → X, x 7→ x1x
−1
0 x,

is an isomorphism taking x0 to x1, hence inducing an isomorphism

TX,x0 → TX,x1 .

It follows that X is regular at x1 as well. �
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10.4. Left invariant derivations. Let G be an algebraic group over k. Let A = k[G]

and consider Derk(A,A). If D1, D2 are derivations then so is

[D1, D2] := D1 ◦D2 −D2 ◦D1,

as a simple calculation shows. This makes Derk(A,A) into a Lie algebra. That means

that apart from the vector space structure, the bracket

[·, ·] : Derk(A,A)×Derk(A,A)→ Derk(A,A),

is a k-bilinear alternating pairing, such that the Jacobi identity holds:

[D1, [D2, D3]] + [D2, [D3, D1]] + [D3, [D1, D2]] = 0.

Recall that G acts on A locally finitely by

(λxf)(y) = f(x−1y).

We define L (G), the left invariants derivations of G, as

L (G) = {D ∈ Derk(A,A) : D ◦ λx = λx ◦D, ∀x ∈ G}.

It is a Lie algebra under the bracket operation. Let

g = TG,e

be the tangent space to G at the identity element e. We commonly think about it in terms

of point derivations. There is a map

Derk(A,A)→ g, D 7→ {f 7→ (Df)(e)}.

This restricts to a k-linear map

L (G)→ g.

In fact, a point of explanation is in order. The derivation D is defined on k[G] and to define

the point derivation we need to extend D to the local ring at e, OG,e = k[G]M , where M is

the maximal ideal corresponding to e. Firstly, if D can be extended to OG,e then it would

have to satisfy D(f) = D(f
g
· g) = g ·D(f

g
) + f

g
·D(g). That is, D(f

g
) = g·D(f)−f ·D(g)

g2
. This

shows that if D extends to OG,e this extension is unique. Secondly, D(f
g
) = g·D(f)−f ·D(g)

g2

actually defines the extension of D to OG,e (one has to verify it’s well defined and is indeed

a derivation, but this is just a simple verification).
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Theorem 10.4.1. The map

L (G)→ g

is an isomorphism of k-vector spaces. In particular, dimk(L (G)) = dim(G).

Let ϕ : G→ G′ be a homomorphism of algebraic groups then the induced map,

dϕe : g→ g′,

is a homomorphism of Lie algebras (where g, g′ are given the bracket operation via the

isomorphism to L (G),L (G′), respectively).

Remark 10.4.2. Although we do not need it in the proof, let’s see that the map L (G)→ g

is injective. Suppose that the point derivation

f 7→ (Df)(e)

is identically zero. Then, for every f ∈ k[G], and every x ∈ G,

0 = [D(λxf)](e)

= [λx(Df)](e)

= (Df)(x−1).

Thus, Df = 0 for all f ∈ G and so D is the zero derivation.

Proof. Given a point derivation δ at e and f ∈ A, define the convolution of f with δ,

(f ∗ δ)(x) := δ(λx−1f).

Then, f 7→ f ∗ δ is a derivation:

((fg) ∗ δ)(x) = δ(λx−1(fg))

= δ(λx−1f · λx−1g)

= δ(λx−1f) · (λx−1g)(e) + δ(λx−1g) · (λx−1f)(e)

= δ(λx−1f) · g(x) + δ(λx−1g) · f(x)

= (f ∗ δ)(x) · g(x) + (g ∗ δ)(x) · f(x)

= ((f ∗ δ) · g + (g ∗ δ) · f)(x).
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It is left-invariant:

(λy(f ∗ δ))(x) = (f ∗ δ)(y−1x)

= δ(λx−1yf)

= δ(λx−1λyf)

= ((λyf) ∗ δ)(x).

We claim that this is an inverse to the map L (G)→ g. Indeed, given D ∈ L (G), let δ

be the derivation f 7→ (Df)(e). Then,

(f ∗ δ)(x) = δ(λx−1f)

= (Dλx−1f)(e)

= (λx−1Df)(e)

= (Df)(x).

Conversely, let f ∈ k[G] and δ a point derivation at e. Then the derivation f 7→ (f ∗ δ)(e)
is just δ as (f ∗ δ)(e) = δ(λef) = δ(f).

Now let ϕ : G→ G′ be a homomorphism. The map

dϕe : g→ g′

is the map

dϕe(δ)(f
′) := δ(ϕ∗f ′) = δ(f ′ ◦ ϕ), f ′ ∈ OG′,e′ .

Let f = ϕ∗f ′. Let δ1, δ2 ∈ g (point derivations) and let δ′1 = dϕe(δ1), δ
′
2 = dϕe(δ2). Then,

on the one hand,

[δ′1, δ
′
2](f

′) = [∗δ′1, ∗δ′2](f ′)(e′)

= ((f ′ ∗ δ′2) ∗ δ′1)(e′)− ((f ′ ∗ δ′1) ∗ δ′2)(e′) (sic!)

= δ′1(f
′ ∗ δ′2)− δ′2(f ′ ∗ δ′1)

= δ1(ϕ
∗(f ′ ∗ δ′2))− δ2(ϕ∗(f ′ ∗ δ′1)).

On the other hand,

dϕe([δ1, δ2])(f
′) = [δ1, δ2](ϕ

∗f ′)

= (((ϕ∗f ′) ∗ δ2) ∗ δ1)(e)− (((ϕ∗f ′) ∗ δ1) ∗ δ2)(e)

= δ1((ϕ
∗f ′) ∗ δ2)− δ2((ϕ∗f ′) ∗ δ1).
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It is therefore enough to prove the following identity,

(ϕ∗f ′) ∗ δ2 = ϕ∗(f ′ ∗ dϕe(δ2)).

We do that by calculating the values of these functions on G at every x ∈ G. On the one

hand,

((ϕ∗f ′) ∗ δ2)(x) = δ2(λ
−1
x ϕ∗f ′)

= δ2(ϕ
∗(λϕ(x)−1f ′))

= dϕe(δ2)(λϕ(x)−1f ′).

on the other hand,

ϕ∗(f ′ ∗ dϕe(δ2))(x) = (f ′ ∗ dϕe(δ2))(ϕ(x))

= dϕe(δ2)(λϕ(x)−1f ′).

�

10.5. Subgroups and Lie subalgebras. Let H be a closed subgroup of G defined by an

ideal J . The natural inclusion

H → G,

induces a map on tangent spaces

TH,e → TG,e.

The relations between local rings is OH,e = OG,e/J and mH,e = mG,e/J . Thus

Theorem 10.5.1. The image of TH,e → TG,e is the subspace of TG,e consisting of deriva-

tions δ such that δ(f) = 0,∀f ∈ J .

This simple observation is very useful in calculating Lie algebras, as we shall see below.

More theoretically, we have:

Theorem 10.5.2. Let g be the Lie algebra of G and h the Lie algebra of H. Then h is a

subalgebra of g and

h = {δ ∈ g : f ∗ δ ∈ J,∀f ∈ J}.

Proof. Let δ ∈ h and f ∈ J . For h ∈ H we have

(f ∗ δ)(h) = δ(λh−1f) = 0,

because λh−1f ∈ J and δ, being a derivation on (the localization of) k[G]/J , vanishes on J .

Thus, f ∗ δ ∈ J .
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Conversely, let δ ∈ g be a derivation such that f ∗ δ ∈ J,∀f ∈ J . Then, 0 = (f ∗ δ)(e) =

δ(λe−1f) = δ(f). Thus, δ ∈ h. �

10.6. Examples.

10.6.1. The additive group Ga. Let the coordinate be t. The tangent space at zero is

k · ∂(·)
∂t

(0). Since the bracket operation is alternating, the bracket is trivial and this is the

full story. What is the invariant derivation corresponding to δ := ∂(·)
∂t

(0)? Let f be a

polynomial, x ∈ Ga and g the function g(t) = f(t+ x), then

(f ∗ δ)(x) = δ(λ−xf)

=
∂g

∂t
(0)

=
∂f

∂t
(x),

by the chain rule. That is, ∗δ is just the derivation f 7→ ∂f
∂t

. To check, in general, that a

derivation is invariant on A = k[G], it is enough to test it on algebra generators, because,

if Dλxf = λxDf and Dλxg = λxDg then, Dλx(fg) = D(λxf · λxg) = λxfD(λxg) +

λxgD(λxf) = λxfλx(Dg) + λxgλx(Df) = λxD(fg), etc..

In the particular case at hand t is a generator and

∂λ−xt

∂t
=
∂(t+ x)

∂t
= 1 = λ−x

∂t

∂t
.

10.6.2. The multiplicative group Gm. Again the tangent space is one dimensional and so

the bracket is identically zero. We let δ be the point derivation at 1 given by δ(f) = ∂f
∂t

(1).

For a fixed x, letting g(t) = f(xt), the invariant derivation corresponding to δ is

(f ∗ δ)(x) = δ(λx−1f)

= δ(g(t))

=
∂g

∂t
(1)

= x · ∂f
∂t

(x).

We conclude that up to multiplication by a scalar every invariant derivation on Gm is the

derivation

f 7→ t · ∂f
∂t
.
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We can again check. Call that derivation D. As an algebra k[Gm] is generated by t±1. We

have

λx−1Dt = λx−1t = xt, D(λx−1t) = t · ∂(tx)

t
= xt,

and

λx−1Dt−1 = λx−1(t · (−t−2)) = −1/(xt),

D(λx−1t−1) = t ·D(1/(xt)) = t · (−x/(xt)2) = −1/(xt).

10.6.3. The general linear group GLn. A basis of the point derivations at e are the deriva-

tions

f 7→ ∂f

∂tij
(1).

(The inclusion GLn ↪→ An2
identifies the tangent spaces.) Let us calculate the correspond-

ing invariant derivation. Let δ = ∂f
∂tij

(1). Consider the function f((tij)) = tk`, where k, `

are some fixed indices. Then, the function g((tab)) = λ(xab)−1f((tab)) is simply the function

(tab) 7→
∑

r xkrtr` and

(f ∗ δ)((xab)) = δ(g((tab)))

=
∂(
∑

r xkrtr`)

∂tij
(1)

= δj` · xki

(here δj` is, unfortunately, the Kronecker delta symbol). Consider the derivations

Dijf :=
∑
a

tai
∂f

∂taj
.

Since f 7→ ∂f/∂tab is a derivation, and the derivations are a module over the coordinate

ring, these are indeed derivations. The value of Dij on the function f((tij)) = tk` is δj` · tki.
Since any derivation is determined by its values on the functions tk` it follows that D must

be the derivation ∗δ and, in particular, left invariant.

If we write an element of TGLn,1 as (mij), corresponding to the derivation
∑
mij

∂(·)
∂tij

(1)

and so to the left-invariant derivation
∑

ij mijDij we can calculate the Lie bracket. It will

be determined uniquely by taking the elementary matrices Ek`, Eij, corresponding to Dk`
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and Dij. One calculates (it is enough to check on the basic functions we used before) that

[Dkl, Dij] = δ`iDkj − δjkDil,

which is the derivation associated with [Ek`, Eij]. Thus, we conclude that gln is canonically

identified with the k-vector space of all n× n matrices with Lie bracket

[X, Y ] = XY − Y X.

10.6.4. Subgroups of GLn. Let H be a subgroup of GLn defined by the vanishing of the

ideal J , where we view GLn ⊂ An2
. Then, the tangent space of GLn is An2

, identified as a

Lie algebra with Mn(k) with the bracket XY − Y X (see above), and the tangent space of

H is defined as the subspace of Mn(k) determined by the vanishing of the linear equations

dfe =
∑
ij

∂f

∂tij
(Idn), f ∈ J.

We note that if we develop such f as f(Idn + (tij)) =
∑

ij tij
∂f
∂tij

(0n) + h.o.t. then h is

defined by the equations
∑

ij tij
∂f
∂tij

(0n), that is, by the equations

∑
ij

tij
∂f

∂tij
(mod (tijtk`)i,j,k,`).

Consider for example H = SLn. Then H is defined by the equation f(Idn + (tij)) − 1 =

det(Idn + (tij))− 1 = 0. Modulo squares of variables this is the equation∑
tii = 0,

and we conclude that

sln = {M ∈Mn(k) : Tr(M) = 0}.

Consider the case of a bilinear form represented by a symmetric matrix B = (bij) (so that

〈x, y〉 = txBy. The orthogonal group associated to it is

OB = {M ∈ GLn : tMBM = B}.

Write M = Idn + (tij) then, modulo squares, we have

(Idn + t(tij))B(Idn + (tij)−B = B + t(tij)B +B(tij) + (tij)B(tij)−B

= t(tij)B +B(tij).
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That is, the Lie algebra are the “B-skew-symmetric matrices”,

oB = {M ∈Mn(k) : tMB = −BM}.

Now Tr(M) = Tr(BMB−1) = Tr(−tMBB−1) = −Tr(M t) = −Tr(M) and so Tr(M) = 0.

It follows that

soB = oB.

This of course can be proven with no calculation. SOB is of index 2 in OB and is equal in

fact to the identity component of OB, hence they have the same Lie algebra.

In particular, for B = Idn (corresponding to the quadratic form q(x) =
∑
x2i ), we have

on = son = {M ∈Mn(k) : tM = −M}.

10.6.5. A useful observation. One consequence of the fact that an algebraic group G oveer

k is non-singular and that

dimk L (G) = dimk g = dimG,

is that we can calculate the dimension of G by calculating the dimension of its Lie algebra.

Thus, we easily find that dim(GLn) = n2 and dim SLn = n2− 1, which we knew of course,

but also that dimOB = dimSOB = 1
2
n(n− 1).

10.6.6. Products. Let G1, G2 be algebraic groups. Then

L (G1 ×G2) ∼= L (G1)⊕L (G2).

We leave that as an exercise.

10.6.7. Tori. Let T be a torus. There is a canonical isomorphism

L (T ) = k ⊗Z X∗(T ).

Further, the bracket operation is trivial. We leave that as an exercise.

10.7. The adjoint representation. Let A = k[G]. We are going to define two actions

of G on g that will be shown to be equal. First, we note the action of G on L (G),

D 7→ ρx ◦D ◦ ρ−1x ,

where x ∈ G and (ρxf)(y) = f(yx). It is easy to check this is an action, using the

λyρx = ρxλy.
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This induces an action on g via the isomorphism g→ L (G); the action of x takes a

derivation δ to a derivation µ such that

∗µ = ρx ◦ ∗δ ◦ ρ−1x .

On the other hand, consider the action of G on TG,e coming from conjugation. Let Int(x)

be the automorphism of G given by

Int(x)(y) = xyx−1.

We denote its differential at the identity by Ad(x). Thus,

Ad(x) = d Int(x)e.

Note that, by definition,

Ad(x)(δ)(f) = δ(f ◦ Int(x)) = δ(λx−1ρx−1f).

We claim that µ = Ad(x)(δ). We may pass to g. Then µ(f)(e) = [ρx((ρ−1x f) ∗ δ)](e),
which is equal to [(ρ−1x f) ∗ δ](x) = δ(λx−1ρx−1f) = Ad(x)(δ)(f). Thus, we have proven the

following lemma.

Lemma 10.7.1. Ad(x)(δ) = ρx ◦ ∗δ ◦ ρ−1x .

Let us consider now the case G = GLn. The map Int(x) is in fact a linear map on An2

and, as is well-known, the differential of a linear map is equal to the map. Thus:

Lemma 10.7.2. Let δ ∈ gln = Mn(k) then

Ad(x)(δ) = xδx−1.

Corollary 10.7.3. The adjoint representation Ad : GLn → GL(gln) ∼= GLn2 is an alge-

braic representation.

For a general algebraic group we cannot multiply elements of the group with elements

of the Lie algebra, so there is no intrinsic formula like in the lemma. Yet, every algebraic

group is isomorphic to a closed subgroup of GLn and for those we have the following lemma.

Lemma 10.7.4. Let H be a closed subgroup of GLn and view h as a Lie subalgebra of gln.

Let h ∈ H then Ad(h)(δ) = hδh−1.
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Proof. This is just the statement that the differential of conjugation by h on H is the

restriction of the differential of conjugation by h on GLn. This is clear for example from

the interpretation of the tangent space usingthe m/m2 description. �

Corollary 10.7.5. Let H be an algebraic group. The adjoint representation Ad : H → GL(h) ∼=
GLn is an algebraic representation (n = dim(H)).

This corollary is very important as it gives us a way to associate a canonical represen-

tation to an algebraic group.

10.7.1. ad - The differential of Ad. We have constructed a linear representation

Ad : G→ GL(g) ∼= GLd(k),

where d = dim(G). Note though that Ad(x) has the additional property that it respects

the Lie bracket on g. At any rate, we have an induced map of Lie algebras - the differential

of Ad at the identity:

ad : g→ gl(g).

The calculation for GLn is given by the following theorem.

Proposition 10.7.6. The homomorphism of Lie algebras

ad : gln → gl(gln) ∼= Mn2 ,

is given by

ad(X)(Y ) = [X, Y ] = XY − Y X.

The proof is a calculation that can either be done directly, or by more sophisticated

arguments. In any case we omit it. It can be found in Springer’s or Humphreys books.

By embedding an algebraic group G into GLn we conclude:

Corollary 10.7.7. Let G be an algebraic group. The homomorphism

ad : g→ gl(g)

is given by

ad(X)(Y ) = [X, Y ] = X ◦ Y − Y ◦X.


