
EXERCISE SHEET, MATH 570-571, FALL 2011 AND WINTER 2012

First assignment (due Wednesday, January 25). Solve questions (55)-(62), but in question

(57) do only the first 3 rings. In my experience, (58) is tricky, though eventually elementary.

Make sure to use the Chinese Remainder Theorem, and more than once! Remember that

solutions must be typed, except for matrices and diagrams that you can insert by hand, if

you wish.

Second assignment (due Monday, February 27). Solve questions 66 (any 2 of the four

parts), 68, 69, 71, 74, 77, 78 79.

Third assignment (due Friday, March 23). Do exercise 80 - 89, but submit ONLY 81, 82,

83, 85, 89.

Fourth assignment (due Monday, March 26). Do exercises 90, 92, 96, 97.

Fifth assignment (due Friday, April 13). Do exercises 98, 103, 104, 105, 110, 117.

(Questions 103 and 110 are more challenging than the rest, I think.)

(1) Prove the Cauchy-Frobenius formula (also known as Burnside’s lemma). Let G be

a finite group acting on a finite non-empty set S. Let N be the number of orbits

of G in S. Then

N =
1

]G

∑
g∈G

F ix(g),

where F ix(g) = ]{s ∈ S : gs = s}. (Hint: define a function I(g, s) on G × S such

that I(g, s) = 1 is gs = s and otherwise 0. Express the sum in the formula using

this function and switch the order of summation.)

(2) Let S be a finite set with |S| > 1 on which a finite group G acts. Assume that the

action of G is transitive, i.e., there is only one orbit. Prove that there is an element

in G with no fixed points.

(3) Consider a rectangular board consisting of 16 squares, 4 in each or row, or column.

Imagine that we want to make 8 squares from red transparent plastic, and the rest

from blue transparent plastic. How many different designs are there? (The group

that acts is the dihedral group of 8 elements.)
1



2 EXERCISE SHEET, MATH 570-571, FALL 2011 AND WINTER 2012

(4) Let G be a group acting transitively on a set S (no finiteness assumption is nec-

essary). Let N be a normal subgroup of G of finite index. Find a formula for the

number of orbits of N.

(5) Prove that there is a transitive action of S5 on a set of 12 elements.

(6) Let G be a finite p-group and H 6= {1} a normal subgroup of G. Prove that

H ∩ Z(G) 6= {1} and, in particular, any normal subgroup of G with p elements is

contained in the centre of G.

(7) Let G be a p-group and H < G a proper subgroup with pk elements. Prove that

there is a subgroup of G with pk+1 elements that contains H. Deduce that every

maximal subgroup of a p group has index p.

(8) Let G be a finite group and H a normal subgroup of G. Let P be a Sylow subgroup

of G. Prove that H ∩ P is a Sylow subgroup of H and HP/H is a Sylow subgroup

of G/H.

(9) Prove that a group of order pq2, where p 6= q are primes, is not simple.

(10) Prove that a group of order pqr , where p < q < r are primes, is not simple.

(11) Prove that every group of order less than 60 is not simple, unless its order is prime.

(12) Prove that PSL2(F) is not simple if F has 2 or 3 elements. In fact, prove the

stronger fact that

PSL2(F2) ∼= S3, PSL2(F3) ∼= A4.

(13) Show that PSL2(F4) ∼= PSL2(F5) ∼= A5. One can also show that PSL3(F2) ∼=
PSL2(F7) are simple groups of order 168 and that there are unique simple groups

of order 60 and 168, but these facts are harder.

(14) Prove that for n > 1 there is no embedding Sn → An+1. What about Sn → An+2?

(15) Prove that for n ≥ 5, An is the only normal subgroup of Sn.

(16) Let F be a free group on n generators. Prove that every element g of F has a

representative that is reduced, namely, does not contain a sequence of the form

tt−1 or t−1t where t is a generator. Prove that such a representative is unique and

is also the word of minimal length that represents g.

(17) Write the quaternion group Q of 8 elements in the form 〈X|R〉. Prove that your

presentation is correct!

(18) Let G : Top.Sp.→ Sets be a the forgetful functor from the category of topological

spaces to the category of sets. Prove that G has both a left adjoint and a right

adjoint.

(19) Let G be a group and NCG a normal subgroup. What is the universal property that

G/N has?

(20) Let G1, G2 be groups. Prove that (G1 ∗ G2)ab ∼= G1 ⊕ G2.
(21) An R-module M is called cyclic if there’s m ∈ M such that M = Rm. Namely,

M is generated by one element over R. Prove that M is cyclic if and only if

M is isomorphic to R/I for some left ideal I of R. Further, suppose that R is

commutative; what does I being prime/maximal imply about M?
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(22) Being free is not a local property of modules. Let R = Z[
√
−6]. Prove the following.

(a) Prove that the units of R are {±1}. Let I = 〈2,
√
−6〉. Prove that I is a prime

ideal and is the only prime ideal containing 2.

(b) Prove that I is not a free R-module.

(c) Prove that I is locally free. (Distinguish between the case where 2 6∈ p - which

is a very easy case, where one doesn’t really need to know anything about p -

and 2 ∈ p, where then p = I.)

(d) Conclude also that being cyclic is not a local property.

(23) Let F be a field and 0→ V1 → V2 → . . . → Vn → 0 an exact sequence of finite

dimensional vector spaces over F. Prove that
∑n

i=1(−1)i dimF(Vi) = 0. (Hint: it is

convenient to split the exact sequence into

0→ V1 → V2 → V2/V1 → 0, 0→ V2/V1 → V3 → V3/V2 → 0, etc).

(24) Let F be a field, V an F[x ]-module, finite dimensional as an F-vector space. Prove

that V is a cyclic F[x ]-module (namely, that there exists a vector v ∈ V such

that {v , T v , T 2v , . . . , T n−1v} is a basis for V over F), if and only if the minimal

polynomial of T is equal to its characteristic polynomial.

(25) Deduce from the structure theorem for modules over PID that a linear transforma-

tion is diagonalizable over a field F if and only if its minimal polynomial factors into

linear terms.

(26) Let F ⊂ L be fields. Deduce from the structure theorem for modules over PID

that the minimal polynomial of a matrix M in Mn(F ) is the same as the minimal

polynomial of M viewed as a matrix in Mn(L).

(27) Let F be a field and M ∈ Mn(F) an n × n matrix with entries in F. Prove that

M is conjugate to a unique block diagonal matrix diag(Mc1(x), . . . ,Mca(x)) where

c1(x)|c2(x)| · · · |ca(x) are non-constant monic polynomials and Mf (x) is the matrix

defined in class (1’s below the diagonal and minus the coefficients of f along the last

column). Furthermore, the minimal polynomial of M is ca(x) and the characteristic

polynomial is c1(x)c2(x) · · · ca(x).

Note that this result explains the obstruction for two matrices with the same

characteristic and minimal polynomials to be conjugate over F (or an extension of

F, for that matter).

Use this to count the number of conjugacy classes in Mn(Fq) for n = 1, 2, 3, 4.

(28) Let F be a field. Denote the category of finite dimensional vector spaces over F by

f.d.F− Vsp. Prove that the duality functor

∗ : f.d.F− Vsp =⇒ f.d.F− Vsp

[where V ∗ := HomF(V,F) is the dual vector space and for T : V → W , T ∗ :

W ∗ → V ∗, defined by T ∗(φ)(v) = φ(Tv), is the dual linear map], is an anti-

equivalence of categories.
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(29) Pullback. Consider the diagram of modules

M1

h1
��

M2
h2 // M3

The projective limit of this diagram is called the pull-back, (in more “geometric

categories” such as topological spaces, or manifolds, it is called the fibre product).

Prove a simplified version: that the projective limit is a module M with homomor-

phisms such that the diagram

M
f //

g

��

M1

h1
��

M2
h2 // M3

commutes, and for every module N such that

N
F //

G
��

M1

h1
��

M2
h2 // M3

commutes there is a unique commutative diagram:

N

G

��0
00

00
00

00
00

00
00

F

((QQQQQQQQQQQQQQQQ
φ

  A
A

A
A

M
f //

g

��

M1

h1
��

M2
h2 // M3

.

One also says that the diagram

M
f //

g

��

M1

h1
��

M2
h2 // M3
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is a cartesian product and the notation

M
f //

g

��

M1

h1

��

�

M2
h2 // M3

is often used to denote that.

Prove further that the pullback can be taken to be

{(m1, m2) : h1(m1) = h2(m2), mi ∈ Mi}

(with the natural projection maps).

(30) Pushout. Consider the diagram of modules

M3
h2 //

h1
��

M2

M1

The injective limit of this diagram is called the push-out. Prove a simplified version:

that the injective limit is a module M with homomorphisms such that the diagram

M3
h2 //

h1
��

M2

g

��
M1

f // M

commutes, and for every module N such that

M3
h2 //

h1
��

M2

G

��
M1

F // N

commutes there is a unique commutative diagram:

M3
h2 //

h1
��

M2

g

��
G

��0
00

00
00

00
00

00
00

M1
f //

F

((QQQQQQQQQQQQQQQQ M
φ

  A
A

A
A

N
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Prove further that the pushout can be taken to be

M1 ⊕M2/{(h1(m),−h2(m)) : m ∈ M3}.

(with the natural maps).

(31) Let C be a category where direct limit exist. Consider the diagram below, where M

is the push-out of B

C

66llllll

((RRRRRR

A

,

C
β //

α

��

B

��
A // M

Does it follow that C is the pull-back?

(32) Let (F,G) be an adjoint pair of covariant functors. Prove that F commutes with

direct limits and G with projective limits.

(33) Consider the following system of Z-modules:

(a) . . . → Z→ Z→ Z→ . . .

(b) . . . → Z→ Z→ Z.
(c) Z→ Z→ Z→ . . .

In each case, all arrows are multiplication by a fixed prime p. Find in each case the

direct and projective limit of the system.

(34) Give an example of a category that doesn’t have projective limits.

(35) Consider the ring Z[x ]. For each of the following ideals find the I-adic completion

lim
←−
Z[x ]/In. “Find” means to give some concrete reasonable description of the

limit.

(a) I = (p);

(b) I = (x);

(c) I = (p, x).

(36) For every open disk D in the complex plane around 0 let A(D) be the ring of

analytic functions on D. The collection of these disks is a directed poset, where we

say D ≥ D′ if D ⊆ D′. We have the restriction maps A(D′)→ A(D) and so we get

a direct system. Find a concrete description in terms of power series for lim
−→
D

A(D).

(37) Prove that for x, y ∈ Zp one has x |y if and only if v(x) ≤ v(y). Deduce

that Z×p = {x : v(x) = 0}. Deduce that every ideal is principal and, in fact,

(0), (1), (p), (p2), (p3), . . . is the complete list of ideals of Zp.

(38) Prove that Z×p ∼= µp−1 × (1 + pZp), where µp−1 is the cyclic group of order p − 1

consisting of the (p − 1)-st roots of unity in Zp. Prove further that for p > 2

1 + pZp ∼= pZp ∼= Zp,
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as topological groups (namely, there are bicontinuous isomorphisms). Hint: use the

power series of exp(x) = 1+x+ x2

2!
+ x3

3!
+ . . . and log(1+x) = x− x2

2
+ x3

3
− x4

4
+ . . .

to define the isomorphisms. Note that you need of course to show that the series

converge p-adically. On the other hand, you may use the identity of power series

exp(log(1 + x)) = 1 + x , etc. )

(39) Let p be a prime. Show that the extension Q({e2πi/pn : n ∈ Z>0}), obtained from Q
by adjoining all roots of unity of p power order in C, is a Galois extension. Further,

let G be its Galois group; prove

G ∼= Z×p .

(40) Prove that every non-trivial closed subgroup of Zp is open. Prove also that

Ẑ := lim
←− n

Z/nZ ∼=
∏
p

Zp

(where the limit is over all integers n with Z/nmZ→ Z/mZ being the natural map

x mod mn 7→ x mod m, and the product on the right hand side is over all primes).

Use this to show that a profinite group could have non-finite, closed, subgroups that

are not open.

(41) Let G = lim
←− α∈I

Gα be a profinite group (that is, an inverse limit with surjective

transition maps over a directed index set). Let πj : G → Gj be the canonical

projection. Prove that a set Z ⊆ G is dense if and only if πj(Z) = πj(G) for every

j ∈ I.
(42) Prove that a profinite group is totally disconnected. That is, every open subset U,

|U| ≥ 2, can be written as U = V
∐
W , a disjoint union of non-trivial open sets.

(43) Let p be a prime number and Fp a field with p elements. Prove that

xp
n − x =

∏
f (x),

the product being taken over all irreducible monic polynomials f (x) ∈ Fp[x ] of

degree dividing n.

Deduce that a non-constant polynomial f (x) ∈ Fp[x ] is irreducible if and only if

gcd(f (x), xp
n − x) = 1 for all n ≤ deg(f (x))/2. (The point is that the gcd can be

calculated very quickly using the Euclidean algorithm while finding a root of f for

p � 0 and deg(f )� 0 is a hopeless task.)

(44) Prove that Q(ζm) ∩Q(ζn) = Q(ζd) where d = gcd(m, n).

(45) Let K = Q({ζn : n ∈ Z>0}) be the field obtained from Q by adjoining all roots of

unity of all orders. Using Galois theory (and the ring isomorphism Ẑ ∼=
∏
` prime Z`)

determine the structure of Gal(K/Q) and show that for every n, K has a subfield Kn
such that [K : Kn] = n. (The field Kn is not unique and the exercise is, admittedly,

more of a gymnastique in Galois theory than a valuable fact.)

(46) Artin-Schreier Extensions. Let F be a field of characteristic p and K/F a cyclic

Galois extension of degree p. There are no roots of unity of order p in characteristic
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p so we cannot even hope for Kummer’s theory to apply. Artin-Schreier theory is a

replacement.

(a) Let a be an element of F and consider the polynomial xp− x −a. If α is a root

of this polynomial, then so is α + b for every b ∈ Fp. Let K = F (α). Then

K is the splitting field of xp − x − a. Prove that K is Galois and there is a

natural homomorphism Gal(K/F)→ Fp. Further, prove that if a is not of the

form cp − c for some c ∈ F then xp − x − a is irreducible and Gal(K/F) ∼= Fp
is a cyclic group of order p.

(b) Let K/F be a cyclic extension of order p and σ a generator for the Galois

group. Define the trace map

Tr : K → F, Tr(a) = a + σ(a) + · · ·+ σp−1(a).

This is a surjective F-linear map with kernel {b − σ(b) : b ∈ K}. (Hint: you

may want to use independence of characters.)

(c) So, in particular −1 = b − σ(b) for some b ∈ K. Prove that bp − b ∈ F. Let

a = bp − b. Then show that K is the splitting field of xp − x − a.

(47) Prove that the polynomial x4 + px + p ∈ Q[x ] is irreducible for every prime p. Let

G be its Galois group. Prove that G ∼= S4, unless p equals 3 or 5, in which case it

is isomorphic to D4 and C4, respectively.

(48) Determine the Galois group of (x3− 2)(x3− 3) over Q as a subgroup of S6. Write

the lattice of its subfields. Which ones are Galois over Q?

(49) Let k be a field and R = k [x, y ]/(y 2−x3). Prove that R is an integral domain. Let

t = y/x , an element of the fraction field K of R. Prove that k [t] is the integral

closure of R in K.

(50) Generalize the previous exercise to the ring R = k [x, y ]/(y a − xb), where a, b are

relatively prime positive integers.

(51) Let A ⊆ B be an integral extension and ϕ : A→ k a homomorphism of A into

an algebraically closed field k . Prove that ϕ can be extended to B. Further, give

an example showing that the assumption that k is algebraically closed is necessary.

(Suggestions: for the first part “think ideals”; for the second part one can take

A = Z, k = Z/3Z and B = Z[i ].)

(52) Let A ⊆ B be an integral extension and n a maximal ideal of B. Let m = n ∩ A (a

maximal ideal of A). Is the extension Am ⊆ Bn necessarily integral? [Consider the

subring k [x2 − 1] of k [x ] and the ideal n = (x − 1). Can the element 1/(x + 1) be

integral?]

2nd Term

(53) Show that the ring of integers of Q( 3
√

2) is Z[ 3
√

2]. (Lots of computations...)
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(54) Show that the ring of integers of Q(
√

2,
√

5) is Z[
√

2, 1+
√
5

2
]. (Lots of computa-

tions...)

(55) Let p 6= 5 be a prime number. By considering the number of roots of unity of order

5 in finite fields, argue that if p ≡ 1 (mod 5) the polynomial x4 + x3 + x2 + x + 1

splits modulo p, if p ≡ −1 (mod 5) the polynomial is a product of two quadratic

polynomials modulo p and if p ≡ 2, 3 (mod 5) the polynomial is irreducible modulo

5. Using these results write for every prime p how many prime ideals p there are in

Z[ζ5] such that p∩Z = (p). Furthermore, for p = 2, 3, 5, 11, 19 find generators for

these ideals.

(56) Compare Spec(Q[x ]/(xp − 1)) and Spec(Q[x ]/(xp − 1)). Explain the morphism

Spec(Q[x ]/(xp − 1))→ Spec(Q[x ]/(xp − 1)).

(57) Draw a picture of Spec(Z/30Z) and all its points. Same for Spec(k [x ]), Spec(k [x ]/(xn)),

Spec(k [x, y ]/(y − x3)), Spec(k [x, y ]/(y 2 − x2)) and Spec(k [x, y ]/(x2 + y 2 − 1)),

where k is an algebraically closed field of characteristic 6= 2. In the cases where the

spectrum consists of finitely many points calculate the local ring of each point.

(58) Let A be a commutative ring. Prove that Spec(A) is a disjoint union of two non-

trivial closed sets if and only if A ∼= A1 × A2, a product of two non-zero rings.

(59) Let A be a commutative ring. Prove that the sets D(f ) = {[p] : f 6∈ p}, as f varies

over A, are a basis for the topology on Spec(A).

(60) Let A be a commutative ring. Prove that a closed set V (a) ⊆ Spec(A) is irreducible

(meaning, if it’s equal to T ∪ Z, two closed sets, then it is equal to T , or to Z) if

and only if
√
a is a prime ideal.

(61) Let A ⊆ B be an integral extension of integral domains and assume that A is

integrally closed in its quotient field. Show, by example, that for p1 ( p2 prime

ideals of A and f : Spec(B)→ Spec(A) the natural map, one may have ]f −1([p2])

greater, equal, or less than ]f −1([p1]). Also show that f −1([p2]) ⊂ f −1([p1]).

(62) Write down Noether’s normalization explicitly for the ring k [x, y , z, w ]/(xy − zw).

Is the extension k [x, y , z ] ⊂ k [x, y , z, w ]/(xy − zw) integral?

(63) Let k be a field. Prove that every finitely generated k-algebra is Noetherian.

(64) Let R be a commutative ring, p a prime ideal of R and a1, . . . , ab any ideals of R.

Prove that if p ⊇ a1 ∩ · · · ∩ ab then p ⊇ ai for some i .

(65) Give an example of a ring R such that the localization of R at any prime ideal is

Noetherian, but R is not Noetherian.

(66) Which of the following rings are Noetherian?

(a) The ring of rational functions of the complex variable z that have no pole on

the circle |z | = 1.

(b) The ring of complex power series in z with a positive radius of convergence,

i.e., converging on some open disk around zero. (Hint: consider first the units

in this ring.)

(c) The ring of complex power series in z with an infinite radius of convergence.
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(d) The ring of complex polynomials in z whose first k derivatives vanish at the

origin.

(67) In this exercise we prove that every commutative Artin ring is isomorphic to a

product of local Artin rings.

(a) Let A be a commutative ring and let a, b relatively prime ideals, i.e., two ideals

such that a+b = A. Prove that for every k > 0 also ak , bk are relatively prime

ideals. Prove also that ab = a ∩ b.

(b) Let R be an Artin ring and let m1, . . . ,ma be its distinct maximal ideals. Prove

that for every k , (
∏a
i=1mi)

k =
∏a
i=1m

k
i = ∩ai=1mk

i and that for k � 0,

∩ai=1mk
i = 0.

(c) Prove that for k � 0 the map R→
∏a
i=1R/m

k
i is an isomorphism. (Use the

Chinese Remainder Theorem.)

(d) Finally, prove that each R/mk
i is a local Artin ring.

(68) Let f : M → M be a surjective endomorphism of a noetherian R-module. Prove

that f is an isomorphism.

(69) Prove that the following rings are not notherian:

(a) C[t1/n : n ∈ N>0]. Conclude that a direct limit of noetherian rings need not

be noetherian.

(b) The ring of continuous functions f : [0, 1]→ R.

(c) The ring C[x, x2y , x3y 2, . . . , x iy i−1, . . . ] ⊂ C[x, y ]. Conclude that a subring of

a noetherian ring need not be noetherian.

(70) Show that the number of generators for ideals in C[x, y ] is not bounded. Namely

that for every n ∈ N there is an ideal of C[x, y ] that cannot be generated by less

than n elements.

(71) Let p be a prime number. Let P = ∪∞k=1 1pkZ/Z. Prove that P is an artinian but

not noetherian Z-module.

(72) Show that the ring R =

{(
a 0

b c

)
: a ∈ Z, b, c ∈ Q

}
is left noetherian but not

right noetherian.

(73) Let R be a commutative ring and let a, b be ideals of R. We define

(a : b) = {r ∈ R : rb ⊆ a}.

This is an ideal of R. In spite of the nice notation, it can be badly behaved.

(a) For x, y ∈ R, write (x : y) for (〈x〉, 〈y〉). Using prime factorization, calculate

for m, n ∈ Z the ideal (m : n).

(b) Show that b(a : b) ⊆ a but that equality doesn’t hold in general.

(c) Suppose that b|a in the sense that there exists and ideal c such that bc = a.

Show that also b(a : b) = a, but c 6= (a : b), in general.

(74) Let R be a Noetherian commutative ring. Prove that any non-zero ideal of R

contains a product of non-zero prime ideals. (Hint: suppose not. Choose an ideal
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I maximal relative to this property. Prove that whether I is prime or not leads to a

contradiction.)

(75) Let A ∈ RModS. Prove that A⊗S (−) is not a left exact functor.

(76) Let (F,G) be an adjoint pair of covariant functors between additive categories.

Prove that F is right-exact and G is left-exact. (In particular, A ⊗S (−) and

HomR(A,−) are right and left exact, respectively).

(77) Let V,W be finite-dimensional k vector-spaces. Prove (directly) that there is a

natural isomorphism

Homk(V,W ) ∼= V ∗ ⊗k W,

where V ∗ is the dual vector space. On the other hand, show, based on what we

had done in class, that

Homk(V,W ) ∼= (V ⊗k W ∗)∗.

Conclude that (V ⊗k W )∗ ∼= V ∗ ⊗k W ∗.
Prove that there is an isomorphism of k-vector spaces,

Bilink(V ×W, k) ∼= V∗ ⊗k W∗.

(78) Let n,m be positive integers. Denote by n the multiplication by n map. Analyze

the sequence obtained from

0 // Z
[n]
// Z // Z/nZ // 0 ,

upon tensoring over Z with Q, and with Z/mZ.

(79) Let R be a commutative ring and I an ideal of R. Let M be an R-module. Prove

an isomorphism of R-modules,

(R/I)⊗R M ∼= M/IM.

(80) Let k be a field.

(a) Let V , W be k vector spaces of finite dimension. Let {vi : i = 1, . . . , a} be a

basis for V , {wi : i = 1, . . . , b} be a basis for W . Prove that {vi ⊗ wj : i =

1, . . . , a, j = 1, . . . , b} is a basis for V ⊗W .

(b) Let V ⊗n be equal to k for n = 0, V for n = 1 and, in general, V ⊗n+1 = V ⊗n⊗kV
for every non-negative integer n. Find a basis for V ⊗n as a k-vector space.

(c) Define T (V ), the tensor algebra of V , as

T (V ) = ⊕∞n=0V ⊗n.

Prove that T (V ) is a graded algebra, where the multiplication law

V ⊗m × V ⊗n → V ⊗m+n

is determined by

(v1 ⊗ · · · ⊗ vm, v ′1 ⊗ · · · ⊗ v ′n) 7→ v1 ⊗ · · · ⊗ vm ⊗ v ′1 ⊗ · · · ⊗ v ′n.
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Note that it is not commutative in general.

(d) We define the symmetric algebra of V , Sym(V ), as the quotient of T (V ) by

the (graded) ideal generated by all expressions of the form

v1 ⊗ · · · ⊗ vi ⊗ · · · ⊗ vj ⊗ · · · ⊗ vn − v1 ⊗ · · · ⊗ vj ⊗ · · · ⊗ vi ⊗ · · · ⊗ vn,

in Sym(V ) for any vi , vj and n.

Prove that this is the same ideal of relations as the one where we take all the

generators

v1 ⊗ · · · ⊗ vn − vσ(1) ⊗ · · · ⊗ vσ(n),

where σ is any permutation.

Prove that Sym(V ) is a commutative algebra.

(e) Suppose that V has dimension n, prove that Sym(V ) ∼= k [x1, . . . , xn], the ring

of polynomials in n variables.

(f) Formulate and prove a universal property for the morphism V → Sym(V ).

(g) LetQ a symmetric bilinear form V ×V → k and letQ(v) := Q(v , v). Define the

Clifford algebra C(V ) as the quotient of the algebra T (V ) by the ideal generated

by all the expressions v ⊗ v − Q(v). Note that C(V ) has a Z/2Z grading.

The even part, C+(V ), is called the even Clifford algebra. Let e1, . . . , en be

an orthogonal basis for V . Prove that the 2n elements of C(V ) given by

ei1ei2 · · · eij , where 1 ≤ i1 < i2 < · · · < ij ≤ n, form a basis for C(V ). (Here

ei1ei2 · · · eij is the image of ei1 ⊗ ei2 ⊗ · · · ⊗ eij under T (V )→ C(V ).) Conclude

that C(V ) is a 2n-dimensional algebra over k .

Remark: it is not hard to show this is a spanning set; it’s harder to show linear

independence.

(h) Prove that the Clifford algebra has the following universal property: There is

a linear map f : V → C(V ) such that f (v)2 = Q(v) and this map is universal.

Namely, for every k-algebra A and a linear map g : V → A for which g(v)2 =

Q(v) for all v ∈ V , there is a unique morphism of k-algebras G : C(V )→ A

such that G ◦ f = g.

(i) Consider now the special case Q = 0. In this case the Clifford algebra is called

the exterior algebra of V and is denoted
∧∗
V and the image of ei1⊗ei2⊗· · ·⊗eij

under T (V )→
∧∗
V is denoted ei1 ∧ ei2 ∧ · · · ∧ eij . Prove that in

∧∗
V we have

v1 ∧ · · · ∧ vi ∧ · · · ∧ vj ∧ · · · ∧ vr = 0 if vi = vj for i < j . So moding out by the

linear span of all these relations is an equivalent definition of
∧∗
V .

Prove, further, that for every permutation σ ∈ Sr we have

v1 ∧ v2 ∧ · · · ∧ vr = sgn(σ)vσ(1) ∧ vσ(2) ∧ · · · ∧ vσ(r),

and, conversely, if k has characteristic different from 2, these relations are

equivalent to the relations defining
∧∗
V .
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Show that
∧∗
V is a graded algebra

∧∗
V = ⊕nk=0

∧k
V , where

∧k
V has

dimension
(
n
k

)
and basis ei1 ∧ · · · ∧ eik , 1 ≤ i1 < · · · ik ≤ n. Multiplication in∧∗

V is “commutative up to a sign”; make this precise!

(81) Let R be a commutative ring and M,N, two projective R-modules. Prove that

M ⊗R N is projective without using that M, or N, are direct summands of free

modules.

(82) We consider the category of Z-modules (= abelian groups). Show that Q/Z is

injective, but is not flat. Show that Z⊕Q is flat, but is not injective or projective.

Show that Z is projective and not injective. Show that Q is injective but not

projective.

(83) Let R be an integral domain. Prove that R is a field if and only if R is both injective

and projective as an R-module.

(84) Let R be a commutative ring. Prove that R[x ] is a flat R-module. (This is easier

than it seems at first sight....)

(85) Let M,N be flat R modules, where R is a commutative ring. Prove that M ⊗R N
is flat too.

(86) Prove that the direct sum of divisible groups and a quotient of a divisible group is

divisible.

(87) Let R,S be rings, such that R is a left S-module. Let M ∈ SMod be an injective

S-module. Prove that HomS(R,M), which is a left R-module, is injective too.

(88) Let R be a PID. Prove that an R-module A is injective iff it is divisible.

(89) Prove that a direct summand of an injective module is injective.

(90) Prove that the following are equivalent for a ring R: (i) R is semisimple as a left

R-module; (ii) every left R module is injective; (iii) every left R-module is projective.

(91) Let D be a division ring and n a positive integer. Prove that Dn is the only simple

Mn(D)-module. Show that Mn(D) is a semisimple module over itself and find its

factorization a sum of simple modules. Prove that EndMn(D)(D
n) ∼= Dopp.

(92) Prove that R is a division ring if and only if R is a simple R-module. (Caution:

given a nonzero element x ∈ R you need to show that there is y ∈ R such that

both xy and yx are equal to 1. In fact, show that if xy = 1 then yx = 1.)

(93) Let R be a ring and let J̃(R) be the intersection of all maximal right ideals of R.

Find a characterization of the elements of J̃(R) using right quasi-regular elements.

Using this, show that J(R) = J̃(R).

(94) Show that the condition on finite generation appearing in Nakayama’s lemma is

necessary.

(95) Consider the ring R = {
(
a b

0 d

)
: a ∈ Q, b, d ∈ R}. Classify all the right ideals of

R and all the left ideals of R. Prove that R is right artinian but is not left artinian.

Calculate the Jacobson radical of R.

(96) Prove that a ring R that is a semisimple left R-module is a finite sum of simple left

R-modules and hence left artinian.
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(97) Prove, using the Artin-Wedderburn theorem that a ring is left semisimple over itself

if and only if it is right semisimple over itself.

In the following questions the representations are over an algebraically closed

field k whose characteristic does not divide the number of elements of G. (Unless

explicitly stated otherwise).

(98) Another proof of Maschke’s theorem for C[G]: Let G be a finite group. We wish to

prove that C[G] is semisimple. Explain why it is enough to prove that every finite

dimensional representation of G is semisimple. Thus, let ρ : G → GL(V ) be a linear

representation of G. Prove that there is a hermitian form 〈·, ·〉 that is G-invariant.

That is, 〈ρ(g)v , ρ(g)w〉 = 〈v , w〉 for all v , w ∈ V .

Given a subrepresentation U ⊆ V show that V = U ⊕ U⊥ and U⊥ is also a

representation of G. Finish the proof.

(99) Let G be a finite group. Prove that the number of irreducible one dimensional

representations of G is |G/G ′|.
(100) Let A be an n×n matrix with characteristic polynomial f (x) =

∏n
i=1(x−αi) and let

B be an m ×m matrix with characteristic polynomial g(x) =
∏m
i=1(x − βi). Prove

that the Kronecker product has characteristic polynomial
∏n
i=1

∏m
j=1(x − αiβj).

Also, prove that although A×B need not be equal to B ×A, they are nonetheless

conjugate.

(101) Let V be a finite dimensional representation of G. Prove that Symn(V ) and
∧n

V

are representations of G as well. As a particular (and often used) case, suppose

that we have a two dimensional representation and that g ∈ G acts by

(
a b

c d

)
.

Write the matrix for g in the 3-dimensional representation Sym2(C2).

(102) Let R be a ring, M a semisimple R-module and N a simple R module. Prove

that N is isomorphic to a quotient module of M if and only if N is isomorphic

to a submodule of M. Phrase this conclusion for the case R = k [G] in terms of

representations.

(103) Let W be an irreducible finite dimensional representation of a group G, finite or

infinite, over an algebraically closed field k . Prove (not using Artin-Wedderburn,

but just linear algebra) that Endk[G](W ) ∼= k , namely, that every G-equivariant map

W → W is multiplication by a scalar.

In the following exercises use characters, whenever convenient. G is a finite group,

k an algebraically closed field of characteristic prime to ]G, and all linear represen-

tations of G are finite dimensional and over k .

(104) Let (V, ρ) be an irreducible representation of G. Let (k, χ) be a one dimensional

representation of G. Prove that (V ⊗ k, ρ⊗χ) is an irreducible representation of G
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and provide a criterion to determine if it is isomorphic to ρ or not. We will denote

this representation V (χ) or ρ⊗ χ.

(105) Let P 0 be the trace zero permutation representation of Sn. Let sgn be the sign

representation of Sn. Prove that P 0⊗sgn is irreducible as well. When is it isomorphic

to P 0?

(106) Find the character table of the group Q, the quaternion group with 8 elements.

(107) Find the character table of the group A4, the alternating group with 12 elements.

(108) Find the character table of the group S4, the symmetric group with 24 elements.

(109) If χ is an irreducible character of S4 calculate its restriction to A4 as a sum of

irreducible characters of A4.

(110) Prove that
∧2

P 0 is an irreducible representation of Sn. In fact, this is true∧a
P 0, a = 1, 2, . . . , n − 1, but is combinatorially harder to prove. Is

∧2
P 0 ∼=∧2

P 0 ⊗ sgn?

(111) For each character φ of A3 write IndS3A3φ in terms of the irreducible representations

of S3.

(112) For each irreducible representation ρ of S3 write IndS4S3 in terms of the irreducible

representations of S4.

(113) Use the formula for the character of Homk(V,W ), and Schur’s lemma to prove the

orthogonality relations of characters.

(114) Let V G = {v ∈ V : ρ(g)v = v ,∀g ∈ G} be the subspace of fixed vectors. Prove

from first principles that

dimk(V G) =
1

] G

∑
g∈G

χρ(g).

(Hint: consider the operator 1
] G

∑
g∈G ρ(g).)

(115) Let G be a finite group acting on a finite non-empty set S. Use the formula for

dim(V G) to deduce the Cauchy-Frobenius formula (also knows as Burnside’s lemma)

that states that the number of orbits of G in S is equal to 1
] G

∑
g∈G I(g), where

I(g) is the number of fixed points of g in S.

(116) Deduce from the previous question that if |S| = n > 1 and G acts transitively

on S then there is an element g ∈ G without fixed points. Let G0 = {g ∈ G :

g has no fixed point in S}. It is a subset of G (but usually not a subgroup). Let

c0 = ] G0/] G.

Jordan proved that c0 ≥ 1/] G. Here we prove the stronger result (a result of

Cameron-Stewart) that c0 ≥ 1/]S.

To prove that construct the vector space on the basis S and let χ be the character

of the representation of G on that space. First prove that

1

] G

∑
g∈G

χ2(g) ≥ 2.
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(Which representation is lurking in the background?...) Then prove that theorem

on c0 by arguing that∑
g∈G

(χ(g)− 1)(χ(g)− n) ≤ n ]G0

and continuing to examine this inequality.

(117) Let G1, G2 be finite groups. Prove (under the usual conditions on k) that every

irreducible representation of G1 × G2 is isomorphic to the tensor product V1 ⊗ V2,
where Vi is an irreducible representation of Gi and in fact, letting V1 range over the

irreducible representations of G1 and V2 range over the irreducible representations

of G2 we get every irreducible representation of G1×G2 once. (Suggestion: do first

the last part and count how many irreducible representations you get this way.)

(118) Consider the group Z/2Z×S3 - a non abelian group of order 12. Write its character

table. Compare it with the character table of A4 to deduce it is not isomorphic to

A4 (although it is not hard to see that directly either).

(119) Find the character table of D2n for n even.


