
EXERCISE SHEET, MATH 570, FALL 2011

First assignment (due Wednesday, October 12). Solve questions 4, 5, 7, 13, 17, 19.

Remember that solutions must be typed, except for matrices and diagrams that you can

insert by hand, if you wish. You may use other questions on the assignment to solve the

questions you need to submit, even without including the proofs.

Second assignment (due Thursday, October 27). Solve questions 22, 25, 32, 33. Same

instructions as assignment 1. I prefer that you send me pdf files, as opposed to hard copies.

You can still print the tex; add diagrams etc. by hand. Scan it and send me a pdf. But

hard copies are also OK.

Third assignment (due Monday, November 21). Solve questions 37 - 42. Same instruc-

tions as assignment 2.

Fourth assignment (due Tuesday, December 6). Solve questions 44, 47, 49, 51. Solve (any

of) questions 46, 50, 52 as bonus questions to improve your overall grade on assignments.

Otherwise, same instructions as previous assignments.

(1) Prove the Cauchy-Frobenius formula (also known as Burnside’s lemma). Let G be

a finite group acting on a finite non-empty set S. Let N be the number of orbits

of G in S. Then

N =
1

]G

∑
g∈G

F ix(g),

where F ix(g) = ]{s ∈ S : gs = s}. (Hint: define a function I(g, s) on G × S such

that I(g, s) = 1 is gs = s and otherwise 0. Express the sum in the formula using

this function and switch the order of summation.)

(2) Let S be a finite set with |S| > 1 on which a finite group G acts. Assume that the

action of G is transitive, i.e., there is only one orbit. Prove that there is an element

in G with no fixed points.

(3) Consider a rectangular board consisting of 16 squares, 4 in each or row, or column.

Imagine that we want to make 8 squares from red transparent plastic, and the rest

from blue transparent plastic. How many different designs are there? (The group

that acts is the dihedral group of 8 elements.)
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(4) Let G be a group acting transitively on a set S (no finiteness assumption is nec-

essary). Let N be a normal subgroup of G of finite index. Find a formula for the

number of orbits of N.

(5) Prove that there is a transitive action of S5 on a set of 12 elements.

(6) Let G be a finite p-group and H 6= {1} a normal subgroup of G. Prove that

H ∩ Z(G) 6= {1} and, in particular, any normal subgroup of G with p elements is

contained in the centre of G.

(7) Let G be a p-group and H < G a proper subgroup with pk elements. Prove that

there is a subgroup of G with pk+1 elements that contains H. Deduce that every

maximal subgroup of a p group has index p.

(8) Let G be a finite group and H a normal subgroup of G. Let P be a Sylow subgroup

of G. Prove that H ∩ P is a Sylow subgroup of H and HP/H is a Sylow subgroup

of G/H.

(9) Prove that a group of order pq2, where p 6= q are primes, is not simple.

(10) Prove that a group of order pqr , where p < q < r are primes, is not simple.

(11) Prove that every group of order less than 60 is not simple, unless its order is prime.

(12) Prove that PSL2(F) is not simple if F has 2 or 3 elements. In fact, prove the

stronger fact that

PSL2(F2) ∼= S3, PSL2(F3) ∼= A4.

(13) Show that PSL2(F4) ∼= PSL2(F5) ∼= A5. One can also show that PSL3(F2) ∼=
PSL2(F7) are simple groups of order 168 and that there are unique simple groups

of order 60 and 168, but these facts are harder.

(14) Prove that for n > 1 there is no embedding Sn → An+1. What about Sn → An+2?

(15) Prove that for n ≥ 5, An is the only normal subgroup of Sn.

(16) Let F be a free group on n generators. Prove that every element g of F has a

representative that is reduced, namely, does not contain a sequence of the form

tt−1 or t−1t where t is a generator. Prove that such a representative is unique and

is also the word of minimal length that represents g.

(17) Write the quaternion group Q of 8 elements in the form 〈X|R〉. Prove that your

presentation is correct!

(18) Let G : Top.Sp.→ Sets be a the forgetful functor from the category of topological

spaces to the category of sets. Prove that G has both a left adjoint and a right

adjoint.

(19) Let G be a group and NCG a normal subgroup. What is the universal property that

G/N has?

(20) Let G1, G2 be groups. Prove that (G1 ∗ G2)ab ∼= G1 ⊕ G2.
(21) An R-module M is called cyclic if there’s m ∈ M such that M = Rm. Namely,

M is generated by one element over R. Prove that M is cyclic if and only if

M is isomorphic to R/I for some left ideal I of R. Further, suppose that R is

commutative; what does I being prime/maximal imply about M?
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(22) Being free is not a local property of modules. Let R = Z[
√
−6]. Prove the following.

(a) Prove that the units of R are {±1}. Let I = 〈2,
√
−6〉. Prove that I is a prime

ideal and is the only prime ideal containing 2.

(b) Prove that I is not a free R-module.

(c) Prove that I is locally free. (Distinguish between the case where 2 6∈ p - which

is a very easy case, where one doesn’t really need to know anything about p -

and 2 ∈ p, where then p = I.)

(d) Conclude also that being cyclic is not a local property.

(23) Let F be a field and 0→ V1 → V2 → . . . → Vn → 0 an exact sequence of finite

dimensional vector spaces over F. Prove that
∑n

i=1(−1)i dimF(Vi) = 0. (Hint: it is

convenient to split the exact sequence into

0→ V1 → V2 → V2/V1 → 0, 0→ V2/V1 → V3 → V3/V2 → 0, etc).

(24) Let F be a field, V an F[x ]-module, finite dimensional as an F-vector space. Prove

that V is a cyclic F[x ]-module (namely, that there exists a vector v ∈ V such

that {v , T v , T 2v , . . . , T n−1v} is a basis for V over F), if and only if the minimal

polynomial of T is equal to its characteristic polynomial.

(25) Deduce from the structure theorem for modules over PID that a linear transforma-

tion is diagonalizable over a field F if and only if its minimal polynomial factors into

linear terms.

(26) Let F ⊂ L be fields. Deduce from the structure theorem for modules over PID

that the minimal polynomial of a matrix M in Mn(F ) is the same as the minimal

polynomial of M viewed as a matrix in Mn(L).

(27) Let F be a field and M ∈ Mn(F) an n × n matrix with entries in F. Prove that

M is conjugate to a unique block diagonal matrix diag(Mc1(x), . . . ,Mca(x)) where

c1(x)|c2(x)| · · · |ca(x) are non-constant monic polynomials and Mf (x) is the matrix

defined in class (1’s below the diagonal and minus the coefficients of f along the last

column). Furthermore, the minimal polynomial of M is ca(x) and the characteristic

polynomial is c1(x)c2(x) · · · ca(x).

Note that this result explains the obstruction for two matrices with the same

characteristic and minimal polynomials to be conjugate over F (or an extension of

F, for that matter).

Use this to count the number of conjugacy classes in Mn(Fq) for n = 1, 2, 3, 4.

(28) Let F be a field. Denote the category of finite dimensional vector spaces over F by

f.d.F− Vsp. Prove that the duality functor

∗ : f.d.F− Vsp =⇒ f.d.F− Vsp

[where V ∗ := HomF(V,F) is the dual vector space and for T : V → W , T ∗ :

W ∗ → V ∗, defined by T ∗(φ)(v) = φ(Tv), is the dual linear map], is an anti-

equivalence of categories.
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(29) Pullback. Consider the diagram of modules

M1

h1
��

M2
h2 // M3

The projective limit of this diagram is called the pull-back, (in more “geometric

categories” such as topological spaces, or manifolds, it is called the fibre product).

Prove a simplified version: that the projective limit is a module M with homomor-

phisms such that the diagram

M
f //

g

��

M1

h1
��

M2
h2 // M3

commutes, and for every module N such that

N
F //

G
��

M1

h1
��

M2
h2 // M3

commutes there is a unique commutative diagram:

N

G

��0
00

00
00

00
00

00
00

F

((QQQQQQQQQQQQQQQQ
φ

  A
A

A
A

M
f //

g

��

M1

h1
��

M2
h2 // M3

.

One also says that the diagram

M
f //

g

��

M1

h1
��

M2
h2 // M3



EXERCISE SHEET, MATH 570, FALL 2011 5

is a cartesian product and the notation

M
f //

g

��

M1

h1

��

�

M2
h2 // M3

is often used to denote that.

Prove further that the pullback can be taken to be

{(m1, m2) : h1(m1) = h2(m2), mi ∈ Mi}

(with the natural projection maps).

(30) Pushout. Consider the diagram of modules

M3
h2 //

h1
��

M2

M1

The injective limit of this diagram is called the push-out. Prove a simplified version:

that the injective limit is a module M with homomorphisms such that the diagram

M3
h2 //

h1
��

M2

g

��
M1

f // M

commutes, and for every module N such that

M3
h2 //

h1
��

M2

G

��
M1

F // N

commutes there is a unique commutative diagram:

M3
h2 //

h1
��

M2

g

��
G

��0
00

00
00

00
00

00
00

M1
f //

F

((QQQQQQQQQQQQQQQQ M
φ

  A
A

A
A

N
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Prove further that the pushout can be taken to be

M1 ⊕M2/{(h1(m),−h2(m)) : m ∈ M3}.

(with the natural maps).

(31) Let C be a category where direct limit exist. Consider the diagram below, where M

is the push-out of B

C

66llllll

((RRRRRR

A

,

C
β //

α

��

B

��
A // M

Does it follow that C is the pull-back?

(32) Let (F,G) be an adjoint pair of covariant functors. Prove that F commutes with

direct limits and G with projective limits.

(33) Consider the following system of Z-modules:

(a) . . . → Z→ Z→ Z→ . . .

(b) . . . → Z→ Z→ Z.
(c) Z→ Z→ Z→ . . .

In each case, all arrows are multiplication by a fixed prime p. Find in each case the

direct and projective limit of the system.

(34) Give an example of a category that doesn’t have projective limits.

(35) Consider the ring Z[x ]. For each of the following ideals find the I-adic completion

lim
←−
Z[x ]/In. “Find” means to give some concrete reasonable description of the

limit.

(a) I = (p);

(b) I = (x);

(c) I = (p, x).

(36) For every open disk D in the complex plane around 0 let A(D) be the ring of

analytic functions on D. The collection of these disks is a directed poset, where we

say D ≥ D′ if D ⊆ D′. We have the restriction maps A(D′)→ A(D) and so we get

a direct system. Find a concrete description in terms of power series for lim
−→
D

A(D).

(37) Prove that for x, y ∈ Zp one has x |y if and only if v(x) ≤ v(y). Deduce

that Z×p = {x : v(x) = 0}. Deduce that every ideal is principal and, in fact,

(0), (1), (p), (p2), (p3), . . . is the complete list of ideals of Zp.

(38) Prove that Z×p ∼= µp−1 × (1 + pZp), where µp−1 is the cyclic group of order p − 1

consisting of the (p − 1)-st roots of unity in Zp. Prove further that for p > 2

1 + pZp ∼= pZp ∼= Zp,
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as topological groups (namely, there are bicontinuous isomorphisms). Hint: use the

power series of exp(x) = 1+x+ x2

2!
+ x3

3!
+ . . . and log(1+x) = x− x2

2
+ x3

3
− x4

4
+ . . .

to define the isomorphisms. Note that you need of course to show that the series

converge p-adically. On the other hand, you may use the identity of power series

exp(log(1 + x)) = 1 + x , etc. )

(39) Let p be a prime. Show that the extension Q({e2πi/pn : n ∈ Z>0}), obtained from Q
by adjoining all roots of unity of p power order in C, is a Galois extension. Further,

let G be its Galois group; prove

G ∼= Z×p .

(40) Prove that every non-trivial closed subgroup of Zp is open. Prove also that

Ẑ := lim
←− n

Z/nZ ∼=
∏
p

Zp

(where the limit is over all integers n with Z/nmZ→ Z/mZ being the natural map

x mod mn 7→ x mod m, and the product on the right hand side is over all primes).

Use this to show that a profinite group could have non-finite, closed, subgroups that

are not open.

(41) Let G = lim
←− α∈I

Gα be a profinite group (that is, an inverse limit with surjective

transition maps over a directed index set). Let πj : G → Gj be the canonical

projection. Prove that a set Z ⊆ G is dense if and only if πj(Z) = πj(G) for every

j ∈ I.
(42) Prove that a profinite group is totally disconnected. That is, every open subset U,

|U| ≥ 2, can be written as U = V
∐
W , a disjoint union of non-trivial open sets.

(43) Let p be a prime number and Fp a field with p elements. Prove that

xp
n − x =

∏
f (x),

the product being taken over all irreducible monic polynomials f (x) ∈ Fp[x ] of

degree dividing n.

Deduce that a non-constant polynomial f (x) ∈ Fp[x ] is irreducible if and only if

gcd(f (x), xp
n − x) = 1 for all n ≤ deg(f (x))/2. (The point is that the gcd can be

calculated very quickly using the Euclidean algorithm while finding a root of f for

p � 0 and deg(f )� 0 is a hopeless task.)

(44) Prove that Q(ζm) ∩Q(ζn) = Q(ζd) where d = gcd(m, n).

(45) Let K = Q({ζn : n ∈ Z>0}) be the field obtained from Q by adjoining all roots of

unity of all orders. Using Galois theory (and the ring isomorphism Ẑ ∼=
∏
` prime Z`)

determine the structure of Gal(K/Q) and show that for every n, K has a subfield Kn
such that [K : Kn] = n. (The field Kn is not unique and the exercise is, admittedly,

more of a gymnastique in Galois theory than a valuable fact.)

(46) Artin-Schreier Extensions. Let F be a field of characteristic p and K/F a cyclic

Galois extension of degree p. There are no roots of unity of order p in characteristic
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p so we cannot even hope for Kummer’s theory to apply. Artin-Schreier theory is a

replacement.

(a) Let a be an element of F and consider the polynomial xp− x −a. If α is a root

of this polynomial, then so is α + b for every b ∈ Fp. Let K = F (α). Then

K is the splitting field of xp − x − a. Prove that K is Galois and there is a

natural homomorphism Gal(K/F)→ Fp. Further, prove that if a is not of the

form cp − c for some c ∈ F then xp − x − a is irreducible and Gal(K/F) ∼= Fp
is a cyclic group of order p.

(b) Let K/F be a cyclic extension of order p and σ a generator for the Galois

group. Define the trace map

Tr : K → F, Tr(a) = a + σ(a) + · · ·+ σp−1(a).

This is a surjective F-linear map with kernel {b − σ(b) : b ∈ K}. (Hint: you

may want to use independence of characters.)

(c) So, in particular −1 = b − σ(b) for some b ∈ K. Prove that bp − b ∈ F. Let

a = bp − b. Then show that K is the splitting field of xp − x − a.

(47) Prove that the polynomial x4 + px + p ∈ Q[x ] is irreducible for every prime p. Let

G be its Galois group. Prove that G ∼= S4, unless p equals 3 or 5, in which case it

is isomorphic to D4 and C4, respectively.

(48) Determine the Galois group of (x3− 2)(x3− 3) over Q as a subgroup of S6. Write

the lattice of its subfields. Which ones are Galois over Q?

(49) Let k be a field and R = k [x, y ]/(y 2−x3). Prove that R is an integral domain. Let

t = y/x , an element of the fraction field K of R. Prove that k [t] is the integral

closure of R in K.

(50) Generalize the previous exercise to the ring R = k [x, y ]/(y a − xb), where a, b are

relatively prime positive integers.

(51) Let A ⊆ B be an integral extension and ϕ : A→ k a homomorphism of A into

an algebraically closed field k . Prove that ϕ can be extended to B. Further, give

an example showing that the assumption that k is algebraically closed is necessary.

(Suggestions: for the first part “think ideals”; for the second part one can take

A = Z, k = Z/3Z and B = Z[i ].)

(52) Let A ⊆ B be an integral extension and n a maximal ideal of B. Let m = n ∩ A (a

maximal ideal of A). Is the extension Am ⊆ Bn necessarily integral? [Consider the

subring k [x2 − 1] of k [x ] and the ideal n = (x − 1). Can the element 1/(x + 1) be

integral?]


