
EXERCISES FOR THE COURSE MATH 570, FALL 2010

EYAL Z. GOREN

(1) Let G be a group and H ⊂ Z(G) a subgroup such that G/H is cyclic. Prove that G is
abelian. Conclude that every group of order p2 (p a prime number) is abelian and that
the centre of any non-abelian group of order p3 has p elements.

(2) (?) Let H be a normal subgroup of a p-group G, H 6= {e}. Prove that H∩Z(G) 6= {e}. In
particular, one obtains that any normal subgroup with p-elements is contained in Z(G).

(3) Let G be a p-group and H < G a proper subgroup with pk elements. Prove that there is a
subgroup of G with pk+1 elements that contains H. Deduce that every maximal subgroup
of a p group has index p.

(4) (?) Let G be a finite group and H a normal subgroup of G. Let P be a Sylow subgroup
of G. Prove that H ∩ P is a Sylow subgroup of H and HP/H is a Sylow subgroup of
G/H.

(5) Show that up to isomorphism there are precisely 5 groups of order 8 given by Z/8Z,Z/4Z×
Z/2Z, (Z/2Z)3, D8 and Q. D8 is the dihedral group with 8 elements and Q is the quater-
nion group {±1,±i,±j,±k} with i2 = j2 = k2 = −1, ij = −ji = k (±1 commute with
any element).

(6) Prove the Cauchy-Frobenius formula (also known as Burnside’s lemma). Let G be a finite
group acting on a finite non-empty set S. Let N be the number of orbits of G in S. Then

N =
1

]G

∑
g∈G

Fix(g),

where Fix(g) = ]{s ∈ S : gs = s}. (Hint: define a function I(g, s) on G × S such that
I(g, s) = 1 is gs = s and otherwise 0. Express the sum in the formula using this function
and switch the order of summation.)

(7) (?) Give a formula for the number of roulette (resp. necklace) designs with n sectors (n
beads), k of the coloured blue and the rest red. (The symmetry group is Z/nZ for the
first case, and D2n in the second case.)

(8) (?) Let p 6= q be primes. Prove that a group of order p2q is not simple. (Hint: assume
both p-Sylow and q-Sylow are not normal and count how many elements are accounted
for by p and q Sylow subgroups.)

(9) Let p < q be primes such that p - (q − 1). Prove that a group of order pq is necessarily
cyclic.

(10) Prove that a group of order pqr is solvable, where p < q < r are primes.
(11) Prove that every group of order less than 60 is solvable.
(12) Show that G is solvable iff it has a normal series with cyclic quotients.
(13) Prove that S4 is solvable but not supersolvable.
(14) Prove that a nilpotent group is supersolvable but the converse doesn’t hold.
(15) (?) Prove that a subgroup and quotient group of a nilpotent group are nilpotent.
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(16) Prove that every maximal subgroup of a nilpotent group has index which is a prime
power.

(17) Let G 6= {e} be a nilpotent group. Prove that every maximal subgroup H of G has index
which is a prime and H is normal in G.

(18) Prove that every element w of a free group F (X) (namely, an equivalence class of words
in the alphabet X) has a unique representative of minimal length among all the words in
the equivalence class w.

(19) (?) Let G : Top.Sp.→ Sets be a the forgetful functor from the category of topological
spaces to the category of sets. Prove that G has both a left adjoint and a right adjoint.

(20) (?) Write the quaternion group Q of 8 elements in the form 〈X|R〉. Prove that your
presentation is correct!

(21) Based on Zorn’s lemma prove that every vector space has a basis. (We shall assume in
this course that every two bases of a vector space have the same cardinality).

(22) Let R be a non-zero ring. Based on Zorn’s lemma prove that R has a maximal left ideal.
(23) (??) Let R be a commutative ring. Let M be a free R-module on a set X and N a free

R-module on a set Y . Prove that M ∼= N if and only if X and Y have the same cardinality
(i.e., there’s a bijective function f : X → Y ). Hint: reduce to the case of vector spaces
making use of the previous exercise.

(24) Give an example of a torsion-free module over an integral domain R which is not free.
Can you give such an example which is also finitely generated?

(25) (??) Let R be an integral domain and 0→M1 →M →M2 → 0 an exact sequence of
R-modules of finite rank. Prove that rk(M) = rk(M1) + rk(M2).

(26) Let R be an integral domain. Prove that M 7→ Tors(M) is a covariant functor from
the category of R modules to itself. Is it an exact functor? (Namely, is it the case
that 0→M1 →M →M2 → 0 exact implies 0→ Tors(M1)→ Tors(M)→ Tors(M2)→ 0
exact?)

(27) Let f : Zn → Zn be a homomorphism represented by a matrix M ∈Mn(Z). Assume that
det(M) 6= 0. Prove that [Zn : f(Zn)] = | det(M)|.

(28) Let R be an integral domain and 0→M1 →M →M2 → 0 an exact sequence of R-
modules. Prove that if M1 and M2 are free then so is M .

(29) (??) Let F be a field, V a finite dimensional vector space over F and T : V → V a linear
transformation. We view V as an F[x] module where x acts through T . Prove that there
is a vector v ∈ V such that {v, Tv, T 2v, . . . Tmv} is a basis for V (for some m) if and only
the minimal polynomial of T is equal to its characteristic polynomial.

(30) Let p(n) denote the partition function, p : N 0 → N. For a positive integer n, p(n) is the
number of ways one can write n as λ1 + · · ·+ λt (for some t), where the λi are increasing
positive integers.

For example, p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5 and p(5) = 7 and the partitions
of 5 are 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 2, 1 + 1 + 3, 1 + 2 + 2, 1 + 4, 2 + 3, 5. Let n be
a positive integer and n = pa11 · · · parr its unique factorization. Prove that the number of
abelian groups of order n, up to isomorphism, is p(a1) · p(a2) · · · p(ar).

(31) Prove that the ring Z[i] = {a + bi : a, b,∈ Z} of Gaussian integers is a principal ideal
domain. Suggestion: given an ideal consider a non-zero element z in that ideal of minimal
norm ‖z‖ =

√
a2 + b2. Given another non-zero element try to perform “division by z with

residue”.
Show that the units of Z[i] are precisely {±1,±i} and that these are precisely the

elements of norm 1. Show that 2 is not a prime in Z[i]. Let n > 2 be an integer. Show
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that if n is prime in Z[i] then n is a prime number and is congruent to 3 modulo 4, and vice
versa. (You are not supposed to use any result about representation of numbers as a sum
of 2 squares.) Hint: in a commutative ring R an ideal (z) is prime if and only if z is prime,
if and only if R/(z) is an integral domain; think about Z[i]/(p) as (Z/pZ)[x]/(x2 +1), but
justify that too.

Conclude now that if n is a prime number congruent to 3 modulo 4 then one cannot
write n = x2 + y2, a sum of squares of integers, but if n is a prime number congruent to
1 modulo 4 then one can in fact write n as a sum of squares. Hint: note that x2 + y2 =
(x+ iy)(x− iy); use unique factorization in the PID Z[i].

(32) (??) Let F be a field with q elements. Give a formula for the number of conjugacy classes
of n × n matrices with entries in F for n = 1, 2, 3. Based on that, can you can prove a
formula for every n?

(33) (??) Prove that if F is an additive functor between categories of modules (of either
variance) then F (0) = 0, where 0 is either the zero module, or the zero homomorphism.

(34) Let R be a commutative ring and let

0 // M1
f // M2

g // M3
// 0,

be a complex of R-modules (that is, Im(f) ⊆ Ker(g)). Prove that this sequence is exact,
if and only if, for every prime ideal p of R the localized sequence

0 // M1,p
fp // M2,p

gp // M3,p // 0,

is exact. Suggestion: prove first that Ker(f)p = Ker(fp) and similar for the image.
(35) Prove that projective and injective limits exist in the category of sets.
(36) Prove that the category of topological spaces has projective and injective limits.
(37) Prove that projective and injective limits exist in the category of groups.
(38) Let (F,G) be an adjoint pair of covariant functors. Prove that F commutes with direct

limits and G with projective limits.
(39) Prove that the category of rings does not have injective limits, in general. (The problem

is with the identity element!)
(40) Let C be a category where direct limit exist. Consider the diagram below, where M is

the push-out of B

C

55kkkkkk

))SSSSSS

A

,

C
β //

α

��

B

��
A // M

Does it follow that C is the pull-back?
(41) Recall the definition of Zp as lim

←− n
Z/pnZ. We defined

val(. . . , rn, . . . , r1) = max{n : rn ≡ 0 (mod pn).

Prove that this is a discrete valuation. Namely, that the following holds: (i) val(x) <∞
if x 6= 0; (ii) val(x + y) ≥ min{val(x), val(y)} with equality if val(x) 6= val(y); (iii)
val(xy) = val(x) + val(y).
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(42) Prove that in Zp, x|y if and only if val(x) ≤ val(y). Deduce that Z×p = {x : val(x) = 0}.
Deduce that every ideal of Zp is principal and is generated by pn for a suitable n.

(43) (4) Consider the following system of Z-modules:
(a) . . . → Z→ Z→ Z→ . . .
(b) . . . → Z→ Z→ Z.
(c) Z→ Z→ Z→ . . .

In each case, all arrows are multiplication by a prime p. Find in each case the direct and
projective limit of the system.

(44) Give an example of a category that doesn’t have projective limits.
(45) (4) Consider the ring Z[x]. For each of the following ideals find the I-adic completion

lim
←−

Z[x]/In. “Find” means to give some concrete reasonable description of the limit.

(a) I = (p);
(b) I = (x);
(c) I = (p, x).

(46) For every open disk D in the complex plane around 0 let A(D) be the ring of analytic
functions on D. The collection of these disks is a directed poset, where we say D ≥ D′

if D ⊆ D′. We have the restriction maps A(D′)→ A(D) and so we get a direct system.
Find a concrete description in terms of powerseries for lim

−→ D
A(D).

(47) Let R be a PID and Q its quotient ring. Recall that we have unique factorization in both
R and Q, similar to the situation for Z and Q. Prove Gauss’ lemma: a monic polynomial
f(x) ∈ R[x] is irreducible in R[x] if and only if it is irreducible in Q[x]. (Remark: if you
are able to do the proof for R = Z, you’ll be able to do it in the general case!)

(48) Let f(x) ∈ F [x] be a non-zero polynomial of degree d. We say f is separable if f
has d distinct roots in some splitting field. Prove that f is separable if and only if
gcd(f(x), f ′(x)) = 1.

(49) (4) Prove that xp
n − x =

∏
f(x), where the product is over all irreducible polynomials

f(x) ∈ Fp[x] of degree d, where d runs over integers dividing n. (Suggestion: use the
theory of finite fields!)

(50) (4) Let f(x) ∈ Fp[x] be a non-zero polynomial of degree r. Then f is irreducible if and
only if for all n ≤ r/2 we have gcd(f(x), xp

n −x) = 1. In particular, f has a root in Fp[x]
if and only if gcd(f(x), xp− x) 6= 1. (Note that these criteria do not require factoring f !)

(51) The Mobius function µ is defined as follows. It is a function defined on positive integers
n and

µ(n) =


1 n = 1

0 ∃d > 1, d2|n
(−1)r n = p1p2 · · · pr (distinct primes)

Note that µ is a multiplicative function; if (n,m) = 1 then µ(nm) = µ(n)µ(m).

Mobius inversion formula: let f : N>0 → C be a function. Then,

f(n) =
∑
d|n

F (d)µ(n/d).
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Apply this to prove that the number of monic irreducible polynomials of degree n in Fp[x]
is

1

n

∑
d|n

pdµ(n/d).

(52) Let F be a field. Prove that F (x) is a purely transcendental extension of F .
(53) Let f(x) ∈ Q[x] be a cubic irreducible polynomial. Prove that the splitting field of f has

degree either 3 or 6 over Q. Give an example of each case.
(54) (4) Give an example of a degree 4 irreducible polynomial over Q[x] whose splitting field

has degree: (i) 4; (ii) 8.
(55) Find the degree of the splitting field of the polynomial x3 − 3 over Q, over Q[i], and over

the finite fields with 2, 3, 4, 5, 7 elements. The same with x4 − 1.
(56) (4) Let K be a finite extension of F .

(a) Prove that K is a splitting field over F if and only if every irreducible polynomial in
F [x] that has a root in K splits completely in K[x].

(b) Let K1,K2 be finite extensions of F contained in the field K, and assume both are
splitting fields over F . Prove that K1K2 and K1 ∩K2 are splitting fields over F .

(Remark: (b) follows rather easily from (a), and one direction of (a) is easy.)
(57) Calculate the automorphism group Aut(K/F ) for the following pairs of fields. In each

case where the extension is a finite Galois extension write the lattice of subgroups and
subfields and how they correspond. Also, in these cases, write each field as F (α) for a
suitable α and find the minimal polynomial of α over F .

(1) F = Q and K the splitting field of x3 + 3.
(2) F = Q and K the splitting field of (x3 − 1)(x2 + 3).
(3) F = Q and K the splitting field of (x3 − 1)(x2 − 3).
(4) F = C and K = C(t) (hint: a matrix

(
a b
c d

)
defines an automorphism by t 7→ at+b

ct+d).

(5) F = Q and K = Q(
√

2 +
√

2).
(58) Let G be a finite group. Prove that there is a Galois extension of fields K/F such that

Aut(K/F ) ∼= G. (Hint: Show, for example, that Sn acts as automorphisms on the field
Q(x1, ..., xn) – the field of fractions of the ring of polynomials in n variables Q[x1, ..., xn].)

(59) Give an example of an extension of fields K ⊃ F such that [K : F ] = 4 and such that
there is no subfield K ⊃ L ⊃ F with [K : L] = 2. (Hint: start the construction with a
Galois extension of fields whose Galois group is A4.)

(60) Exhibit an extension like in the previous exercise with F = Q and K explicitly described
as Q[x]/(f(x)).

(61) Construct, for any group G of order less than 9, a Galois extension of Q with Galois group
isomorphic to G.


