EXERCISES FOR THE COURSE MATH 570, FALL 2010

EYAL Z. GOREN

- (1) Let G be a group and $H \subset Z(G)$ a subgroup such that G/H is cyclic. Prove that G is abelian. Conclude that every group of order p^2 (p a prime number) is abelian and that the centre of any non-abelian group of order p^3 has p elements.
- (2) (*) Let H be a normal subgroup of a p-group G, $H \neq \{e\}$. Prove that $H \cap Z(G) \neq \{e\}$. In particular, one obtains that any normal subgroup with p-elements is contained in Z(G).
- (3) Let G be a p-group and H < G a proper subgroup with p^k elements. Prove that there is a subgroup of G with p^{k+1} elements that contains H. Deduce that every maximal subgroup of a p group has index p.
- (4) (*) Let G be a finite group and H a normal subgroup of G. Let P be a Sylow subgroup of G. Prove that $H \cap P$ is a Sylow subgroup of H and HP/H is a Sylow subgroup of G/H.
- (5) Show that up to isomorphism there are precisely 5 groups of order 8 given by $\mathbb{Z}/8\mathbb{Z}, \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, (\mathbb{Z}/2\mathbb{Z})^3, D_8$ and Q. D_8 is the dihedral group with 8 elements and Q is the quaternion group $\{\pm 1, \pm i, \pm j, \pm k\}$ with $i^2 = j^2 = k^2 = -1$, ij = -ji = k (± 1 commute with any element).
- (6) Prove the Cauchy-Frobenius formula (also known as Burnside's lemma). Let G be a finite group acting on a finite non-empty set S. Let N be the number of orbits of G in S. Then

$$N = \frac{1}{\sharp G} \sum_{g \in G} Fix(g),$$

where $Fix(g) = \sharp \{s \in S : gs = s\}$. (Hint: define a function I(g, s) on $G \times S$ such that I(g, s) = 1 is gs = s and otherwise 0. Express the sum in the formula using this function and switch the order of summation.)

- (7) (*) Give a formula for the number of roulette (resp. necklace) designs with n sectors (n beads), k of the coloured blue and the rest red. (The symmetry group is $\mathbb{Z}/n\mathbb{Z}$ for the first case, and D_{2n} in the second case.)
- (8) (*) Let $p \neq q$ be primes. Prove that a group of order p^2q is not simple. (Hint: assume both *p*-Sylow and *q*-Sylow are not normal and count how many elements are accounted for by *p* and *q* Sylow subgroups.)
- (9) Let p < q be primes such that $p \nmid (q-1)$. Prove that a group of order pq is necessarily cyclic.
- (10) Prove that a group of order pqr is solvable, where p < q < r are primes.
- (11) Prove that every group of order less than 60 is solvable.
- (12) Show that G is solvable iff it has a normal series with cyclic quotients.
- (13) Prove that S_4 is solvable but not supersolvable.
- (14) Prove that a nilpotent group is supersolvable but the converse doesn't hold.
- (15) (\star) Prove that a subgroup and quotient group of a nilpotent group are nilpotent.

EYAL Z. GOREN

- (16) Prove that every maximal subgroup of a nilpotent group has index which is a prime power.
- (17) Let $G \neq \{e\}$ be a nilpotent group. Prove that every maximal subgroup H of G has index which is a prime and H is normal in G.
- (18) Prove that every element w of a free group $\mathscr{F}(X)$ (namely, an equivalence class of words in the alphabet X) has a unique representative of minimal length among all the words in the equivalence class w.
- (19) (*) Let $G : \text{Top.Sp.} \to \text{Sets}$ be a the forgetful functor from the category of topological spaces to the category of sets. Prove that G has both a left adjoint and a right adjoint.
- (20) (*) Write the quaternion group Q of 8 elements in the form $\langle X|R\rangle$. Prove that your presentation is correct!
- (21) Based on Zorn's lemma prove that every vector space has a basis. (We shall assume in this course that every two bases of a vector space have the same cardinality).
- (22) Let R be a non-zero ring. Based on Zorn's lemma prove that R has a maximal left ideal.
- (23) $(\star\star)$ Let R be a commutative ring. Let M be a free R-module on a set X and N a free R-module on a set Y. Prove that $M \cong N$ if and only if X and Y have the same cardinality (i.e., there's a bijective function $f : X \to Y$). Hint: reduce to the case of vector spaces making use of the previous exercise.
- (24) Give an example of a torsion-free module over an integral domain R which is not free. Can you give such an example which is also finitely generated?
- (25) (**) Let R be an integral domain and $0 \to M_1 \to M \to M_2 \to 0$ an exact sequence of *R*-modules of finite rank. Prove that $\operatorname{rk}(M) = \operatorname{rk}(M_1) + \operatorname{rk}(M_2)$.
- (26) Let R be an integral domain. Prove that $M \mapsto \operatorname{Tors}(M)$ is a covariant functor from the category of R modules to itself. Is it an exact functor? (Namely, is it the case that $0 \to M_1 \to M \to M_2 \to 0$ exact implies $0 \to \operatorname{Tors}(M_1) \to \operatorname{Tors}(M) \to \operatorname{Tors}(M_2) \to 0$ exact?)
- (27) Let $f : \mathbb{Z}^n \to \mathbb{Z}^n$ be a homomorphism represented by a matrix $M \in M_n(\mathbb{Z})$. Assume that $\det(M) \neq 0$. Prove that $[\mathbb{Z}^n : f(\mathbb{Z}^n)] = |\det(M)|$.
- (28) Let R be an integral domain and $0 \to M_1 \to M \to M_2 \to 0$ an exact sequence of R-modules. Prove that if M_1 and M_2 are free then so is M.
- (29) $(\star\star)$ Let \mathbb{F} be a field, V a finite dimensional vector space over \mathbb{F} and $T: V \to V$ a linear transformation. We view V as an $\mathbb{F}[x]$ module where x acts through T. Prove that there is a vector $v \in V$ such that $\{v, Tv, T^2v, \ldots T^mv\}$ is a basis for V (for some m) if and only the minimal polynomial of T is equal to its characteristic polynomial.
- (30) Let p(n) denote the partition function, $p : \mathbb{N}_0 \to \mathbb{N}$. For a positive integer n, p(n) is the number of ways one can write n as $\lambda_1 + \cdots + \lambda_t$ (for some t), where the λ_i are increasing positive integers.

For example, p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5 and p(5) = 7 and the partitions of 5 are 1 + 1 + 1 + 1 + 1 + 1 + 1 + 2, 1 + 1 + 3, 1 + 2 + 2, 1 + 4, 2 + 3, 5. Let *n* be a positive integer and $n = p_1^{a_1} \cdots p_r^{a_r}$ its unique factorization. Prove that the number of abelian groups of order *n*, up to isomorphism, is $p(a_1) \cdot p(a_2) \cdots p(a_r)$.

(31) Prove that the ring $\mathbb{Z}[i] = \{a + bi : a, b, \in \mathbb{Z}\}$ of Gaussian integers is a principal ideal domain. Suggestion: given an ideal consider a non-zero element z in that ideal of minimal norm $||z|| = \sqrt{a^2 + b^2}$. Given another non-zero element try to perform "division by z with residue".

Show that the units of $\mathbb{Z}[i]$ are precisely $\{\pm 1, \pm i\}$ and that these are precisely the elements of norm 1. Show that 2 is not a prime in $\mathbb{Z}[i]$. Let n > 2 be an integer. Show

that if n is prime in $\mathbb{Z}[i]$ then n is a prime number and is congruent to 3 modulo 4, and vice versa. (You are not supposed to use any result about representation of numbers as a sum of 2 squares.) Hint: in a commutative ring R an ideal (z) is prime if and only if z is prime, if and only if R/(z) is an integral domain; think about $\mathbb{Z}[i]/(p)$ as $(\mathbb{Z}/p\mathbb{Z})[x]/(x^2+1)$, but justify that too.

Conclude now that if n is a prime number congruent to 3 modulo 4 then one cannot write $n = x^2 + y^2$, a sum of squares of integers, but if n is a prime number congruent to 1 modulo 4 then one can in fact write n as a sum of squares. Hint: note that $x^2 + y^2 = (x + iy)(x - iy)$; use unique factorization in the PID $\mathbb{Z}[i]$.

- (32) $(\star\star)$ Let \mathbb{F} be a field with q elements. Give a formula for the number of conjugacy classes of $n \times n$ matrices with entries in \mathbb{F} for n = 1, 2, 3. Based on that, can you can prove a formula for every n?
- (33) $(\star\star)$ Prove that if F is an additive functor between categories of modules (of either variance) then F(0) = 0, where 0 is either the zero module, or the zero homomorphism.
- (34) Let R be a commutative ring and let

$$0 \longrightarrow M_1 \xrightarrow{f} M_2 \xrightarrow{g} M_3 \longrightarrow 0_{\mathfrak{f}}$$

be a complex of *R*-modules (that is, $\text{Im}(f) \subseteq \text{Ker}(g)$). Prove that this sequence is exact, if and only if, for every prime ideal \mathfrak{p} of *R* the localized sequence

$$0 \longrightarrow M_{1,\mathfrak{p}} \xrightarrow{f_{\mathfrak{p}}} M_{2,\mathfrak{p}} \xrightarrow{g_{\mathfrak{p}}} M_{3,\mathfrak{p}} \longrightarrow 0,$$

is exact. Suggestion: prove first that $\operatorname{Ker}(f)_{\mathfrak{p}} = \operatorname{Ker}(f_{\mathfrak{p}})$ and similar for the image.

- (35) Prove that projective and injective limits exist in the category of sets.
- (36) Prove that the category of topological spaces has projective and injective limits.
- (37) Prove that projective and injective limits exist in the category of groups.
- (38) Let (F,G) be an adjoint pair of covariant functors. Prove that F commutes with direct limits and G with projective limits.
- (39) Prove that the category of rings does not have injective limits, in general. (The problem is with the identity element!)
- (40) Let **C** be a category where direct limit exist. Consider the diagram below, where M is the push-out of σB ,

$$C \xrightarrow{\beta} B$$

$$\alpha \downarrow \qquad \downarrow$$

$$A \longrightarrow M$$

Does it follow that C is the pull-back?

(41) Recall the definition of \mathbb{Z}_p as $\lim_{\leftarrow} \mathbb{Z}/p^n\mathbb{Z}$. We defined

$$\operatorname{val}(\dots, r_n, \dots, r_1) = \max\{n : r_n \equiv 0 \pmod{p^n}.$$

Prove that this is a discrete valuation. Namely, that the following holds: (i) $\operatorname{val}(x) < \infty$ if $x \neq 0$; (ii) $\operatorname{val}(x + y) \geq \min\{\operatorname{val}(x), \operatorname{val}(y)\}$ with equality if $\operatorname{val}(x) \neq \operatorname{val}(y)$; (iii) $\operatorname{val}(xy) = \operatorname{val}(x) + \operatorname{val}(y)$.

EYAL Z. GOREN

- (42) Prove that in \mathbb{Z}_p , x|y if and only if $\operatorname{val}(x) \leq \operatorname{val}(y)$. Deduce that $\mathbb{Z}_p^{\times} = \{x : \operatorname{val}(x) = 0\}$. Deduce that every ideal of \mathbb{Z}_p is principal and is generated by p^n for a suitable n.
- (43) (\triangle) Consider the following system of \mathbb{Z} -modules:
 - (a) $\ldots \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z} \to \ldots$
 - $(b)\ \ldots\ \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}.$
 - (c) $\mathbb{Z} \to \mathbb{Z} \to \mathbb{Z} \to \dots$

In each case, all arrows are multiplication by a prime p. Find in each case the direct and projective limit of the system.

- (44) Give an example of a category that doesn't have projective limits.
- (45) (\triangle) Consider the ring $\mathbb{Z}[x]$. For each of the following ideals find the *I*-adic completion $\lim_{k \to \infty} \mathbb{Z}[x]/I^n$. "Find" means to give some concrete reasonable description of the limit.
 - (a) I = (p);
 - (b) I = (x);
 - (c) I = (p, x).
- (46) For every open disk D in the complex plane around 0 let A(D) be the ring of analytic functions on D. The collection of these disks is a directed poset, where we say $D \ge D'$ if $D \subseteq D'$. We have the restriction maps $A(D') \to A(D)$ and so we get a direct system. Find a concrete description in terms of powerseries for $\lim_{n \to D} A(D)$.
- (47) Let R be a PID and Q its quotient ring. Recall that we have unique factorization in both R and Q, similar to the situation for \mathbb{Z} and \mathbb{Q} . Prove Gauss' lemma: a monic polynomial $f(x) \in R[x]$ is irreducible in R[x] if and only if it is irreducible in Q[x]. (Remark: if you are able to do the proof for $R = \mathbb{Z}$, you'll be able to do it in the general case!)
- (48) Let $f(x) \in F[x]$ be a non-zero polynomial of degree d. We say f is separable if f has d distinct roots in some splitting field. Prove that f is separable if and only if gcd(f(x), f'(x)) = 1.
- (49) (\triangle) Prove that $x^{p^n} x = \prod f(x)$, where the product is over all irreducible polynomials $f(x) \in \mathbb{F}_p[x]$ of degree d, where d runs over integers dividing n. (Suggestion: use the theory of finite fields!)
- (50) (\triangle) Let $f(x) \in \mathbb{F}_p[x]$ be a non-zero polynomial of degree r. Then f is irreducible if and only if for all $n \leq r/2$ we have $\gcd(f(x), x^{p^n} - x) = 1$. In particular, f has a root in $\mathbb{F}_p[x]$ if and only if $\gcd(f(x), x^p - x) \neq 1$. (Note that these criteria do not require factoring f!)
- (51) The Mobius function μ is defined as follows. It is a function defined on positive integers n and

$$\mu(n) = \begin{cases} 1 & n = 1\\ 0 & \exists d > 1, d^2 | n\\ (-1)^r & n = p_1 p_2 \cdots p_r \text{ (distinct primes)} \end{cases}$$

Note that μ is a multiplicative function; if (n, m) = 1 then $\mu(nm) = \mu(n)\mu(m)$.

Mobius inversion formula: let $f : \mathbb{N}_{>0} \to \mathbb{C}$ be a function. Then,

$$f(n) = \sum_{d|n} F(d) \mu(n/d).$$

4

Apply this to prove that the number of monic irreducible polynomials of degree n in $\mathbb{F}_p[x]$ is

$$\frac{1}{n}\sum_{d|n}p^d\mu(n/d)$$

- (52) Let F be a field. Prove that F(x) is a purely transcendental extension of F.
- (53) Let $f(x) \in \mathbb{Q}[x]$ be a cubic irreducible polynomial. Prove that the splitting field of f has degree either 3 or 6 over \mathbb{Q} . Give an example of each case.
- (54) (\triangle) Give an example of a degree 4 irreducible polynomial over $\mathbb{Q}[x]$ whose splitting field has degree: (i) 4; (ii) 8.
- (55) Find the degree of the splitting field of the polynomial $x^3 3$ over \mathbb{Q} , over $\mathbb{Q}[i]$, and over the finite fields with 2, 3, 4, 5, 7 elements. The same with $x^4 1$.
- (56) (\triangle) Let K be a finite extension of F.
 - (a) Prove that K is a splitting field over F if and only if every irreducible polynomial in F[x] that has a root in K splits completely in K[x].
 - (b) Let K_1, K_2 be finite extensions of F contained in the field K, and assume both are splitting fields over F. Prove that K_1K_2 and $K_1 \cap K_2$ are splitting fields over F.
 - (Remark: (b) follows rather easily from (a), and one direction of (a) is easy.)
- (57) Calculate the automorphism group $\operatorname{Aut}(K/F)$ for the following pairs of fields. In each case where the extension is a finite Galois extension write the lattice of subgroups and subfields and how they correspond. Also, in these cases, write each field as $F(\alpha)$ for a suitable α and find the minimal polynomial of α over F.
 - (1) $F = \mathbb{Q}$ and K the splitting field of $x^3 + 3$.
 - (2) $F = \mathbb{Q}$ and K the splitting field of $(x^3 1)(x^2 + 3)$.
 - (3) $F = \mathbb{Q}$ and K the splitting field of $(x^3 1)(x^2 3)$.
 - (4) $F = \mathbb{C}$ and $K = \mathbb{C}(t)$ (hint: a matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ defines an automorphism by $t \mapsto \frac{at+b}{ct+d}$).

(5) $F = \mathbb{Q}$ and $K = \mathbb{Q}(\sqrt{2} + \sqrt{2})$.

- (58) Let G be a finite group. Prove that there is a Galois extension of fields K/F such that $\operatorname{Aut}(K/F) \cong G$. (Hint: Show, for example, that S_n acts as automorphisms on the field $\mathbb{Q}(x_1, ..., x_n)$ the field of fractions of the ring of polynomials in n variables $\mathbb{Q}[x_1, ..., x_n]$.)
- (59) Give an example of an extension of fields $K \supset F$ such that [K : F] = 4 and such that there is no subfield $K \supset L \supset F$ with [K : L] = 2. (Hint: start the construction with a Galois extension of fields whose Galois group is A_4 .)
- (60) Exhibit an extension like in the previous exercise with $F = \mathbb{Q}$ and K explicitly described as $\mathbb{Q}[x]/(f(x))$.
- (61) Construct, for any group G of order less than 9, a Galois extension of \mathbb{Q} with Galois group isomorphic to G.