SAMI'S QUESTION

EYAL GOREN

Sami Douba had asked me the following question. We have proven in the tutorial session that there is a real number α such that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 4$ and such that there is no field M with $\mathbb{Q}(\alpha) \supseteq M \supseteq \mathbb{Q}$. This allows us to conclude that we cannot construct α by adjoining a square root to \mathbb{Q} , getting a field M and then adjoining a square root of an element of M to get $\mathbb{Q}(\alpha)$, but

why does that prove that α is not constructible??

That is, maybe there is another sequence of real fields

(1)
$$\mathbb{Q} = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_n,$$

such that $K_i = K_{i-1}(\sqrt{\alpha_i})$, i = 1, ..., n, where α_i is a positive element of K_{i-1} , and such that $\alpha \in K_n$? We will show that this is not the case.

We introduce a convenient terminology. We say that a finite extension K/\mathbb{Q} is **weakly constructible** if there is a sequence of fields as in (1), with $K = K_n$, but where we do not require the α_i to necessarily be positive.

Lemma 0.0.1. If K/\mathbb{Q} is weakly constructible then there is a weakly constructible Galois extension L/\mathbb{Q} that contains K.

Proof. We prove that by induction on the degree $[K : \mathbb{Q}]$, which is a power of 2. The case of $[K : \mathbb{Q}] = 1$, or 2, are clear. In that case K/\mathbb{Q} is Galois.

In the general case, by assumption K contains a subfield $K' := K_{n-1}$ such that [K : K'] = 2and K' is constructible. In addition $K = K'(\beta)$, for some element $\beta \in K'$. Applying the induction hypothesis to K' we find a Galois extension L' containing K' that is weakly constructible over \mathbb{Q} .

Consider now the extension

$$L := L'(\{\sqrt{\sigma(\beta)} : \sigma \in \operatorname{Gal}(L'/\mathbb{Q})\}).$$

We organize the information in the following diagram:

We note the following. First $L \supseteq K$ and since L/L' is obtained from L' by successively adding a root from the set $\{\sqrt{\sigma(\beta)} : \sigma \in \text{Gal}(L'/\mathbb{Q})\}$, its degree is power of 2 and, in fact, it is a weakly constructible extension of \mathbb{Q} . Furthermore, L is Galois over \mathbb{Q} . To show that, take an element θ such that $L' = \mathbb{Q}(\theta)$ and let f be its minimal polynomial over \mathbb{Q} (such θ exists by the Primitive Element Theorem). Then, clearly L is the splitting field over \mathbb{Q} of

$$f \cdot \prod_{\sigma \in \mathsf{Gal}(L'/\mathbb{Q})} (x^2 - \sigma(\beta)),$$

which is a polynomial with rational coefficients.

An alternative proof. Start with \tilde{K} a finite Galois extension of \mathbb{Q} containing K. Argue that for every $\sigma \in \text{Gal}(\tilde{K}/\mathbb{Q})$ also $\sigma(K)$ is also weakly-constructible. Then, $\prod_{\sigma \in \text{Gal}(\tilde{K}/\mathbb{Q})} \sigma(K)$ is a Galois extension of \mathbb{Q} that contains K and is weakly-constructible. To fill in the details in this argument, in particular the very last claim, see the proof of Proposition 13.2.1.

Now let us consider the situation of an extension $\mathbb{Q}(\alpha)/\mathbb{Q}$ such that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 4$ with no quadratic subfield. If α is constructible then α belongs to some finite extension K/\mathbb{Q} such that K is weakly constructible over \mathbb{Q} (in fact, by definition, there is such real field K and then K is constructible; there is a sequence as in (1) with each α_i positive real number). Thus, by the Lemma, α belongs to some weakly constructible Galois extension L/\mathbb{Q} . Since L/\mathbb{Q} is weakly constructible the Galois group $G = \text{Gal}(L/\mathbb{Q})$ is a 2-group. Let H be its subgroup such that

$$\mathbb{Q}(\alpha) = L^H$$
.

Since G is a 2-group, we can find a subgroup H_1 of G such that $H \subsetneq H_1 \subsetneq G$ (Proposition 21.0.11 in my notes for MATH370). But that gives a subfield

$$\mathbb{Q}(\alpha) = L^H \supsetneq L^{H_1} \supsetneq \mathbb{Q},$$

and that is a contradiction.

 \diamond \diamond \diamond

There is something more that we can learn from our discussion. If we examine our arguments we will see that they imply the following. Suppose that we know that α is constructible and that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 2^r$, then, by taking successively *r* roots we can construct the field $\mathbb{Q}(\alpha)$. If you wish, heuristically, to construct α we need to draw no more than *r* circles.