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Part 1. Basic Concepts and Key Examples

Groups are among the most basic of algebraic structures. Because of their simplicity, in terms of

their definition, their complexity is large. For example, vector spaces, which have very complex

definition, are easy to classify; once the field and dimension are known, the vector space is unique

up to isomorphism. In contrast, it is difficult to list all groups of a given order, or even obtain an

asymptotic formula for that number.

In the study of vector spaces the objects are well understood and so one focuses on the study of

maps between them. One studies canonical forms (e.g., the Jordan canonical form), diagonalization,

and other special properties of linear transformations (normal, unitary, nilpotent, etc.). In contrast,

at least in the theory of finite groups on which this course focuses, there is no comparable theory of

maps. A theory exist mostly for maps into matrix groups (such maps are called linear representations

and will not be studied in this course).

While we shall define such maps (called homomorphisms) between groups in general, there will

be a large set of so-called simple groups for which there are essentially no such maps: the image

of a simple group under a homomorphism is for all practical purposes just the group itself. To an

extent the simple groups serve as basic building blocks, or atoms, from which all other finite groups

are composed.The set of atoms is large, infinite in fact. The classification of all simple groups was

completed in the second half of the 20-th century and has required thousands of pages of difficult

math. There will be little we’ll be able to say about simple groups in this course, besides their

existence and some key examples. Thus, our focus - apart from the three isomorphism theorems -

will be on the structure of the objects themselves. We will occupy ourselves with understanding the

structure of subgroups of a finite group, with groups acting as symmetries of a given set and with

special classes of groups (cyclic, simple, abelian, solvable, etc.).

1. First definitions

1.1. Group. A group G is a non-empty set with a function

m : G × G → G,

where we usually abbreviate m(g, h) to g ⋆ h or simply gh, such that the following hold:

(1) (Associativity) f (gh) = (f g)h for all f , g, h ∈ G. 1
(2) (Identity) There is an element e ∈ G such that for all g ∈ G we have eg = ge = g.
(3) (Inverse) For every g ∈ G there is an element h ∈ G such that gh = hg = e.

We call m(g, h) the product of g and h. It follows quite easily from associativity that given any

n elements g1, . . . , gn of G we can put parentheses as we like in g1 ⋆ · · · ⋆ gn without changing
the final outcome. For that reason we allow ourselves to write simply g1 · · · gn (though the actual
computation of such product is done by successively by multiplying two elements at the time, e.g.

(((g1g2)(g3g4))g5) is a way to compute g1g2g3g4g5.)

The identity element is unique: if e′ has the same property then e′ = ee′ = e. Sometimes we will
denote the identity element by 1 (or by 0 is the group is commutative - see below). The element

1In fuller notation m(f ,m(g, h)) = m(m(f , g), h).
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h provided in axiom (3) is unique as well: if h′ has the same property then hg = e = h′g and so
hgh = h′gh, thus h = he = hgh = h′gh = h′e = h′. We may therefore denote this h unambiguously
by g−1 and call it the inverse of g. Note that if h is the inverse of g then g is the inverse of h and so
(g−1)−1 = g. Another useful identity is (f g)−1 = g−1f −1. It is verified just by checking that g−1f −1

indeed functions as (f g)−1. And it does: (g−1f −1)(f g) = g−1(f −1f )g = g−1eg = g−1g = e.
We define by induction gn = gn−1g for n > 0 and gn = (g−n)−1 for n < 0. Also g0 = e, by

definition. One proves that gn+m = gngm for any n,m ∈ Z.

A group is called of finite order if it has finitely many elements. It is called abelian if it is commu-

tative: gh = hg for all g, h ∈ G.

1.2. Subgroup and order. A subgroup H of a group G is a non-empty subset of G such that (i)

e ∈ H, (ii) if g, h ∈ H then gh ∈ H, and (iii) if g ∈ H then also g−1 ∈ H. One readily checks that in
fact H is a group. One checks that {e} and G are always subgroups, called the trivial subgroups.
We will use the notation

H < G

to indicate that H is a subgroup of G.

One calls a subgroup H cyclic if there is an element h ∈ H such that H = {hn : n ∈ Z}. Note
that {hn : n ∈ Z} is always a cyclic subgroup. We denote it by 〈h〉. The order of an element h ∈ G,
ord(h), is defined to be the minimal positive integer n such that hn = e. If no such n exists, we say

h has infinite order.

Lemma 1.2.1. For every h ∈ G we have ord(h) = ♯〈h〉.
Proof. Assume first that ord(h) is finite. Since for every n we have hn+ord(h) = hnhord(h) = hn we

see that 〈h〉 = {e, h, h2, . . . , hord(h)−1}. Thus, also ♯〈h〉 is finite and is at most ord(h).
Suppose conversely that ♯〈h〉 is finite, say of order n. Then the elements {e = h0, h, . . . , hn}

cannot be distinct and thus for some 0 ≤ i < j ≤ n we have hi = hj . Therefore, hj−i = e and we
conclude that ord(h) is finite and ord(h) is at most ♯〈h〉. This concludes the proof. �

Corollary 1.2.2. If h has a finite order n then 〈h〉 = {e, h, . . . , hn−1} and consists of precisely n
elements (that is, there are no repetitions in this list.)

It is ease to check that if {Hα : α ∈ J} is a non-empty set of subgroups of G then ∩α∈JHα is a
subgroup as well. Let {gα : α ∈ I} be a set consisting of elements of G (here I is some index set).
We denote by 〈{gα : α ∈ I}〉 the minimal subgroup of G containing {gα : α ∈ I}. It is clearly the
intersection of all subgroups of G containing {gα : α ∈ I}.
Lemma 1.2.3. The subgroup 〈{gα : α ∈ I}〉 is the set of all finite expressions h1 · · · ht where each
hi is some gα or g

−1
α .

Proof. Clearly 〈{gα : α ∈ I}〉 contains each gα hence all the expressions h1 · · · ht where each hi is
some gα or g

−1
α . Thus, it is enough to show that the set of all finite expressions h1 · · · ht , where

each hi is some gα or g
−1
α , is a subgroup. Clearly e (equal to the empty product, or to gαg

−1
α if

you prefer) is in it. Also, from the definition it is clear that it is closed under multiplication. Finally,

since (h1 · · · ht)−1 = h−1t · · · h−11 it is also closed under taking inverses. �

We call 〈{gα : α ∈ I}〉 the subgroup of G generated by {gα : α ∈ I}; if it is equal to G, we say
that {gα : α ∈ I} are generators for G.
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2. Main examples

2.1. Z, Z/nZ and (Z/nZ)×. The set of integers Z = {. . . ,−2,−1, 0, 1, 2, 3, . . .}, with the addition
operation, is an infinite abelian group. It is cyclic; both 1 and −1 are generators.
The group Z/nZ of integers modulo n, {0, 1, 2, . . . , n − 1}, with addition modulo n, is a finite

abelian group. The group Z/nZ is a cyclic group with generator 1. In fact (see the section on cyclic
groups), an element x generates Z/nZ if and only if (x, n) := gcd(x, n) = 1.
Consider (Z/nZ)× = {a ∈ Z/nZ : (a, n) = 1} with multiplication. Its order is denoted by φ(n)

(the function n 7→ φ(n) is call Euler’s phi function; See the exercises for further properties of this

function). To see it is a group, note that multiplication is associative and if (a, n) = 1, (b, n) = 1

then also (ab, n) = 1 and so indeed we get an operation on Z/nZ×. The congruence class 1 is the
identity and the existence of inverse follows from finiteness: given a ∈ Z/nZ× consider the function
x 7→ ax . It is injective: if ax = ay then a(x − y) = 0 (mod n), that is (using the same letters
to denote integers in these congruence classes), n|a(x − y). Since (a, n) = 1, we conclude that
n|(x − y), that is, x = y in Z/nZ. It follows that x 7→ ax is also surjective and thus there is an

element x such that ax = 1.

The Euclidean algorithm gives another proof that inverses exists. Since (a, n) = 1, there are x, y

such that ax + ny = 1, and the algorithm allows us to find x and y . Note that ax ≡ 1 (mod n)
and so x is the multiplicative inverse to a modulo n.

2.2. Fields. Let F be a field. This structure was introduced in the course MATH 235. Then (F,+),
the set F with the addition operation, is a commutative group. As well, (F×,×), the non-zero
elements with the product operation, is a commutative group. Thus, for example, Q,R,C,Z/pZ
(p prime) are groups with respect to addition. The sets Q−{0},R− {0},C− {0},Z/pZ− {0} (p
prime) are groups with respect to multiplication. The unit circle {z ∈ C : |z | = 1} is a subgroup.

2.3. The dihedral group Dn. Let n ≥ 3. Consider the linear transformations of the plane that take
a regular polygon with n sides, symmetric about zero, onto itself. One easily sees that every such

symmetry is determine by its action of the vertices 1, 2 (thought of as vectors, they form a basis)

and that it takes these vertices to the vertices i , i + 1 or i + 1, i , where 1 ≤ i ≤ n (and the labels
of the vertices are read modulo n). One concludes that every such symmetry is of the form yaxb

for suitable and unique a ∈ {0, 1}, b ∈ {1, . . . , n}, where y is the reflection fixing 1 (so takes n, 2
to 2, n) and x is the rotation taking 1, 2 to 2, 3. One finds that y2 = e = xn and that yxy = x−1.
All other relations are consequences of these.

The Dihedral group, the group of all these symmetries, is thus a group of order 2n generated by

a reflection y and a rotation x satisfying y2 = xn = xyxy = e. This makes sense also for n = 1, 2.

The elements {1, x , x2, . . . , xn−1} are rotations clock-wise by angles {0, 2πn , 4πn , . . . ,
2(n−1)π

n },
respectively. The elements {y , xy , x2y , . . . , xn−1y} are all reflections.

2.4. The symmetric group Sn. Consider the set Sn consisting of all injective (hence bijective)

functions, called permutations,

σ : {1, 2, . . . , n} → {1, 2, . . . , n}.
We define

m(σ, τ) = σ ◦ τ.
This makes Sn into a group, whose identity e is the identity function e(i) = i , ∀i .
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Figure 1. Symmetries of a regular Polygon with n vertices.

We may describe the elements of Sn in the form of a table:
(
1 2 . . . n

i1 i2 . . . in

)

.

This defines a permutation σ by the rule σ(a) = ia.

Another device is to use the notation (n1 n2 . . . ns), where the nj are distinct elements of

{1, 2, . . . , n}. This defines a permutation σ according to the following convention: σ(na) = na+1
for 1 ≤ a < s , σ(ns) = n1, and for any other element x of {1, 2, . . . , n} we let σ(x) = x . Such a
permutation is called a cycle. A cycle of length 2 is called a transposition. One can easily prove

the following facts:

(1) Disjoint cycles commute.

(2) Every permutation is a product of disjoint cycles (uniquely up to permuting the cycles and

omitting cycles of length one).

(3) The order of (n1 n2 . . . ns) is s .

(4) If σ1, . . . , σt are disjoint cycles of orders r1, . . . , rt then the order of σ1 ◦ · · · ◦σt is the least
common multiple of r1, . . . , rt .

(5) The symmetric group has order n!.

Example 2.4.1. The order of the permutation (1 2 3 4) is 4. Indeed, it is not trivial and (1 2 3 4)2 =

(1 3)(2 4), (1 2 3 4)3 = (4 3 2 1), (1 2 3 4)4 = 1.

The permutation
(
1 2 3 4 5 6
6 1 3 5 4 2

)
is equal to the product of cycles (1 6 2)(4 5). It is of order 6.

2.4.1. Sign; permutations as linear transformations.

Lemma 2.4.2. Let n ≥ 2. Let Sn be the group of permutations of {1, 2, . . . , n}. There exists a
surjective function

sgn : Sn → {±1}
(called the sign). It has the property that for every i 6= j ,

sgn( (i j) ) = −1,
and for any two permutations σ, τ ,

sgn(στ) = sgn(σ) · sgn(τ).
Terminology: We will refer to the property sgn(στ) = sgn(σ) · sgn(τ) by saying sgn is a homo-
morphism. The terminology will be justified later.
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Proof. Consider the polynomial in n-variables2

p(x1, . . . , xn) =
∏

i<j

(xi − xj).

Given a permutation σ we may define a new polynomial
∏

i<j

(xσ(i) − xσ(j)).

Note that σ(i) 6= σ(j) and for any pair k < ℓ we obtain in the new product either (xk − xℓ) or
(xℓ − xk). Thus, for a suitable choice of a sign sgn(σ) ∈ {±1}, we have3

∏

i<j

(xσ(i) − xσ(j)) = sgn(σ)
∏

i<j

(xi − xj).

We obtain a function

sgn : Sn → {±1}.
This function satisfies sgn( (kℓ) ) = −1 (for k < ℓ): Let σ = (kℓ) and consider the product

∏

i<j

(xσ(i) − xσ(j)) = (xℓ − xk)
∏

i<j
i 6=k,j 6=ℓ

(xσ(i) − xσ(j))
∏

k<j
j 6=ℓ

(xℓ − xj)
∏

i<ℓ
i 6=k

(xi − xk).

(This corresponds to the cases (i) i = k, j = ℓ; (ii) i 6= k, j 6= ℓ; (iii)i = k, j 6= ℓ(⇒ j > k);

(iv) i 6= k, j = ℓ(⇒ i < ℓ).) Counting the number of signs changes (note that case (ii) doesn’t

contribute at all!), we find that
∏

i<j

(xσ(i) − xσ(j)) = (−1)(−1)♯{j:k<j<ℓ}(−1)♯{i:k<i<ℓ}
∏

i<j

(xi − xj) = −
∏

i<j

(xi − xj).

It remains to show that sgn satisfies sgn(στ) = sgn(σ) · sgn(τ). We first make the innocuous
observation that for any variables y1, . . . , yn and for any permutation σ we have

∏

i<j

(yσ(i) − yσ(j)) = sgn(σ)
∏

i<j

(yi − yj).

Let τ be a permutation. We apply this observation for the variables yi := xτ(i). We get

sgn(τσ) · p(x1, . . . , xn) = p(xτσ(1), . . . , xτσ(n))
= p(yσ(1), . . . , yσ(n))

= sgn(σ)· (y1, . . . , yn)
= sgn(σ) · p(xτ(1), . . . , xτ(n))
= sgn(σ) · sgn(τ) · p(x1, . . . , xn).

This gives

sgn(τσ) = sgn(τ) · sgn(σ).
�

Calculating sgn in practice. Recall that every permutation σ can be written as a product of disjoint

cycles

σ = (a1 . . . aℓ)(b1 . . . bm) . . . (f1 . . . fn).

2For n = 2 we get x1 − x2. For n = 3 we get (x1 − x2)(x1 − x3)(x2 − x3).
3For example, if n = 3 and σ is the cycle (123) we have

(xσ(1) − xσ(2))(xσ(1) − xσ(3))(xσ(2) − xσ(3)) = (x2 − x3)(x2 − x1)(x3 − x1) = (x1 − x2)(x1 − x3)(x2 − x3).

Hence, sgn( (1 2 3) ) = 1.
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Lemma 2.4.3. sgn(a1 . . . aℓ) = (−1)ℓ−1.

Proof. We write

(a1 . . . aℓ) = (a1aℓ) . . . (a1a3)(a1a2)
︸ ︷︷ ︸

ℓ−1 transpositions

.

Since a transposition has sign −1 and sgn is a homomorphism, the claim follows. �

Corollary 2.4.4. sgn(σ) = (−1)♯ even length cycles.

A Numerical example. Let n = 11 and

σ =

(
1 2 3 4 5 6 7 8 9 10

2 5 4 3 1 7 8 10 6 9

)

.

Then

σ = (1 2 5)(3 4)(6 7 8 10 9).

Now,

sgn( (1 2 5) ) = 1, sgn( (3 4) ) = −1, sgn( (6 7 8 10 9) ) = 1.

We conclude that sgn(σ) = −1.

Realizing Sn as linear transformations. Let F be any field. Let σ ∈ Sn. There is a unique linear
transformation

Tσ : Fn → Fn,

such that

Tσ(ei) = eσ(i), i = 1, . . . n,

where, as usual, e1, . . . , en are the standard basis of Fn. Note that

Tσ








x1
x2
...

xn







=








xσ−1(1)
xσ−1(2)
...

xσ−1(n)







.

(For example, because Tσx1e1 = x1eσ(1), the σ(1) coordinate is x1, namely, in the σ(1) place we

have the entry xσ−1(σ(1)).) Since for every i we have TσTτ(ei) = Tσeτ(i) = eστ(i) = Tστei , we have

the relation

TσTτ = Tστ .

The matrix representing Tσ is the matrix (ai j) with ai j = 0 unless i = σ(j). For example, for n = 4

the matrices representing the permutations (12)(34) and (1 2 3 4) are, respectively







0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0






,







0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0






.
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Otherwise said,4

Tσ =
(
eσ(1) | eσ(2) | . . . | eσ(n)

)
=














eσ−1(1)
——–

eσ−1(2)
——–
...

——–

eσ−1(n)














.

It follows that

sgn(σ) det(Tσ) = sgn(σ) det
(
eσ(1) | eσ(2) | . . . | eσ(n)

)

= det
(
e1 | e2 | . . . | en

)

= det(In)

= 1.

Recall that sgn(σ) ∈ {±1}. We get
det(Tσ) = sgn(σ).

2.4.2. Transpositions and generators for Sn. For 1 ≤ i < j ≤ n we have the transposition σ = (i j).
Let T be the set of all transpositions (T has n(n − 1)/2 elements). Then T generates Sn. In fact,
the transpositions (12), (23), . . . , (n− 1 n) alone generate Sn. We leave these facts as an exercise.

2.4.3. The alternating group An. Consider the set An of all permutations in Sn whose sign is 1.

They are called the even permutations (those with sign −1 are called odd). We see that e ∈ An and
that if σ, τ ∈ An also στ and σ−1 are in An. This follows from sgn(στ) = sgn(σ)sgn(τ), sgn(σ−1) =
sgn(σ)−1.
Thus, An is a group. It is called the alternating group. It has n!/2 elements (use multiplication

by (12) to create a bijection between the odd and even permutations). Here are some examples

n An

2 {1}
3 {1, (123), (132)}
4 {1, (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23)}

2.4.4. A useful formula for conjugation. Let σ, τ ∈ Sn. There is a nice formula for τστ−1 (this is
called conjugating σ by τ). If σ is written as a product of cycles then the permutation τστ−1 is
obtained by applying τ to the numbers appearing in the cycles of σ. That is, if σ takes i to j then

τστ−1 takes τ(i) to τ(j). Indeed,

τστ−1(τ(i)) = τ(σ(i)) = τ(j).

Here is an example: say σ = (1 4)(2 5)(3 7 6) and τ = (1 2 3 4)(6 7) then τστ−1 =
(τ(1) τ(4)) (τ(2) τ(5)) (τ(3) τ(7) τ(6)) = (2 1)(3 5)(4 6 7).

4This gives the interesting relation Tσ−1 = T
t
σ . Because σ 7→ Tσ is a group homomorphism we may conclude that

T−1σ = T tσ . Of course for a general matrix this doesn’t hold.
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2.5. Matrix groups and the quaternions. Let R be a commutative ring with 1. We let GLn(R)

denote the n × n matrices with entries with R, whose determinant is a unit in R.

Proposition 2.5.1. GLn(R) is a group under matrix multiplication.

Proof. Multiplication of matrices is associative and the identity matrix is in GLn(R). If A,B ∈
GLn(R) then det(AB) = det(A) det(B) gives that det(AB) is a unit of R and so AB ∈ GLn(R).
The adjoint matrix satisfies Adj(A)A = det(A)In and so every matrix A in GLn(R) has an inverse

equal to det(A)−1Adj(A). Note that A−1A = Id implies that det(A−1) = det(A)−1, hence an
invertible element of R. Thus A−1 is in GLn(R). �

Proposition 2.5.2. If R is a finite field of q elements then GLn(R) is a finite group of cardinality

(qn − 1)(qn − q) · · · (qn − qn−1).

Proof. To give a matrix in GLn(R) is to give a basis of R
n (consisting of the columns of the matrix).

The first vector v1 in a basis can be chosen to be any non-zero vector and there are q
n − 1 such

vectors. The second vector v2 can be chosen to be any vector not in Span(v1); there are q
n − q

such vectors. The third vector v3 can be chosen to be any vector not in Span(v1, v2); there are

qn − q2 such vectors. And so on. �

Exercise 2.5.3. Prove that the set of upper triangular matrices in GLn(F), where F is any field, forms
a subgroup of GLn(F ). It is also called a Borel subgroup. Prove that the set of upper triangular

matrices in GLn(F) with 1 on the diagonal, where F is any field, forms a subgroup of GLn(F ). It is
also called a unipotent subgroup. Calculate the cardinality of these groups when F is a finite field
of q elements.

Consider the case R = C, the complex numbers, and the set of eight matrices
{

±
(
1 0

0 1

)

,±
(
i 0

0 −i

)

,±
(
0 1

−1 0

)

,±
(
0 i

i 0

)}

.

One verifies that this is a subgroup of GL2(C), called the Quaternion group. One can use the
notation

±1,±i ,±j,±k
for the matrices, respectively. Then we have

i2 = j2 = k2 = −1, i j = −j i = k, jk = i , ki = j.

2.6. Direct product. Let G,H be two groups. Define on the cartesian product G×H multiplication
by

m : (G ×H)× (G ×H)→ G ×H, m((a, x), (b, y)) = (ab, xy).

This makes G ×H into a group, called the direct product (also direct sum) of G and H.
One checks that G ×H is abelian if and only if both G and H are abelian. The following relation

among orders hold: ord((x, y)) = lcm(ord(x), ord(y)). It follows that if G,H are cyclic groups

whose orders are co-prime then G ×H is also a cyclic group.

Example 2.6.1. If H1 < H,G1 < G are subgroups then H1 ×G1 is a subgroup of H ×G. However,
not every subgroup of H × G is of this form. For example, the subgroups of Z/2Z × Z/2Z are
{0} × {0}, {0} ×Z/2Z,Z/2Z× {0},Z/2Z×Z/2Z and the subgroup {(0, 0), (1, 1)} which is not a
product of subgroups.
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2.7. Groups of small order. One can show that in a suitable sense (namely, “up to isomorphism”;

see § 7.1) the following is a complete list of groups for the given orders. (In the middle column we
give the abelian groups and in the right column the non-abelian groups).

order abelian groups non-abelian groups

1 {1}
2 Z/2Z

3 Z/3Z

4 Z/2Z× Z/2Z, Z/4Z
5 Z/5Z

6 Z/6Z S3

7 Z/7Z

8 Z/2Z× Z/2Z× Z/2Z, Z/2Z× Z/4Z, Z/8Z D4, Q

9 Z/3Z× Z/3Z, Z/9Z
10 Z/10Z D5

11 Z/11Z

12 Z/2Z× Z/6Z, Z/12Z D6, A4, T

In the following table we list for every n the number G(n) of subgroups of order n (this is taken

from J. Rotman/An introduction to the theory of groups):

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

G(n) 1 1 1 2 1 2 1 5 2 2 1 5 1 2 1 14 1 5 1

n 20 21 22 23 24 25 26 27 28 29 30 31 32

G(n) 5 2 2 1 15 2 2 5 4 1 4 1 51

3. Cosets and Lagrange’s theorem

3.1. Cosets. Let G be a group and H a subgroup of G. A left coset of H in G is a subset S of G

of the form

gH := {gh : h ∈ H},
for some g ∈ G. A right coset is a subset of G of the form

Hg := {hg : h ∈ H},

for some g ∈ G. For brevity we shall discuss only left cosets but the discussion with minor changes
applies to right cosets as well.

Example 3.1.1. Consider the group S3 and the subgroup H = {1, (12)}. The following table lists
the left cosets of H. For an element g, we list the coset gH in the middle column, and the coset

Hg in the last column.
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g gH Hg

1 {1, (12)} {1, (12)}
(12) {(12), 1} {(12), 1}
(13) {(13), (123)} {(13), (132)}
(23) {(23), (132))} {(23), (123))}
(123) {(123), (13)} {(123), (23)}
(132) {(132), (23)} {(132), (13)}

The first observation is that the element g such that S = gH is not unique. In fact, as the following

lemma implies, gH = kH if and only if g−1k ∈ H. The second observation is that two left cosets
are either equal or disjoint (but a left coset can intersect a right coset in a more complicated way);

this is a consequence of the following lemma.

Lemma 3.1.2. Define a relation g ∼ k if ∃h ∈ H such that gh = k. This is an equivalence relation
such that the equivalence class of g is precisely gH.

Proof. Since g = ge and e ∈ H the relation is reflexive. If gh = k for some h ∈ H then kh−1 = g
and h−1 ∈ H. Thus, the relation is symmetric. Finally, if g ∼ k ∼ ℓ then gh = k, kh′ = ℓ for

some h, h′ ∈ H and so g(hh′) = ℓ. Since hh′ ∈ H we conclude that g ∼ ℓ and the relation is

transitive. �

Thus, pictorially the cosets look like that:

g1H g2H

G

gtH

Figure 2. Cosets of a subgroup H of a group G.

Remark 3.1.3. One should note that in general gH 6= Hg; The table above provides an example.

Moreover, (13)H is not a right coset of H at all. A difficult theorem of P. Hall asserts that given a

finite group G and a subgroup H one can find a set g1, . . . , gd such that g1H, . . . , gdH are precisely

the lest cosets of H and Hg1, . . . , Hgd are precisely the right cosets of H.

3.2. Lagrange’s theorem.

Theorem 3.2.1. Let H < G. The group G is a disjoint union of left cosets of H. If G is of finite

order then the number of left cosets of H in G is |G|/|H|. We call the number of left cosets the
index of H in G and denote it by [G : H].
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Proof. We have seen that there is an equivalence relation whose equivalence classes are the cosets

of H. Recall that different equivalence classes are disjoint. Thus,

G = ·∪si=1giH,
a disjoint union of s cosets, where the gi are chosen appropriately. We next show that for every

x, y ∈ G the cosets xH, yH have the same number of elements.
Define a function

f : xH → yH, f (g) = yx−1g.

Note that f is well defined: since g = xh for some h ∈ H, f (g) = yh, which is an element of yH.
Similarly, the function f ′ : yH → xH, f ′(g) = xy−1g is well-defined. Clearly, f ◦ f ′ and f ′ ◦ f are the
identity functions of yH and xH, respectively. This shows that f is bijective and so |xH| = |yH| for
any x, y ∈ G. Thus, |G| = s · |H| and s = [G : H] = |G|/|H|. �

Corollary 3.2.2. If G is a finite group then |H| divides |G|.
Remark 3.2.3. The converse does not hold. The group A4, which is of order 12, does not have a

subgroup of order 6.

Corollary 3.2.4. If G is a finite group then ord(g) | |G| for all g ∈ G.
Proof. We saw that ord(g) = |〈g〉|. �

Remark 3.2.5. The converse does not hold. If G is not a cyclic group then there is no element

g ∈ G such that ord(g) = |G|.
Corollary 3.2.6. If the order of G is a prime number then G is cyclic.

Proof. From Corollary 3.2.4 we deduce that every element different from the identity has order

equal to |G|. Thus, every such element generates the group. �

4. Cyclic groups

Let G be a finite cyclic group of order n, G = 〈g〉.
4.1. Orders of elements and subgroups.

Lemma 4.1.1. We have ord(ga) = n/gcd(a, n).

Proof. Note that gt = gt−n and so gt = e if and only if n|t (cf. Corollary 1.2.2). Thus, the order
of ga is the minimal r such that ar is divisible by n. Clearly a · n/gcd(a, n) is divisible by n so the
order of ga is less or equal to n/gcd(a, n). On the other hand if ar is divisible by n then, because

n = gcd(a, n) · n/gcd(a, n), r is divisible by n/gcd(a, n). �

Corollary 4.1.2. The element ga generates G, i.e. 〈ga〉 = G, if and only if (a, n) = 1. Thus, the
number of generators of G is φ(n) := ♯{1 ≤ a ≤ n : (a, n) = 1}.
Proposition 4.1.3. For every h|n the group G has a unique subgroup of order h. This subgroup is
cyclic.

Proof. We first show that every subgroup is cyclic. Let H be a non trivial subgroup. Then there is

a minimal 0 < a < n such that ga ∈ H and hence H ⊇ 〈ga〉. Let gr ∈ H. We may assume that
r > 0. Write r = ka + k ′ for 0 ≤ k ′ < a. Note that gr−ka ∈ H. The choice of a then implies that
k ′ = 0. Thus, H = 〈ga〉.
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Since gcd(a, n) = αa + βn for some integers α, β, we have ggcd(a,n) = (gn)β(ga)α ∈ H. Thus,
ga−gcd(a,n) ∈ H. Therefore, by the choice of a, a = gcd(a, n); that is, a|n. Thus, every subgroup
is cyclic and of the form 〈ga〉 for a|n. Its order is n/a. We conclude that for every b|n there is a
unique subgroup of order b and it is cyclic, generated by gn/b. �

4.2. F× is cyclic.

Lemma 4.2.1. We have

n =
∑

d|n
φ(d).

(The summation is over positive divisors of n, including 1 and n.)

Proof. Let G be a cyclic group of order n. Then we have

n = |G|
=

∑

1≤d≤n
♯{g ∈ G : ord(g) = d}

=
∑

d|n
♯{g ∈ G : ord(g) = d},

where we have used that the order of an element divides the order of the group.

Now, if h ∈ G has order d it generates a subgroup of order d . Such subgroup being unique,
it follows that all the elements of order d generate the same subgroup. That subgroup is a cyclic

group of order d and thus has φ(d) generators that are exactly the elements of order d . The formula

follows. �

Proposition 4.2.2. Let G be a finite group of order n such that for h|n the group G has at most
one subgroup of order h then G is cyclic.

Proof. Consider an element g ∈ G of order h. The subgroup 〈g〉 it generates is of order h and has
φ(h) generators. We conclude that every element of order h must belong to this subgroup (because

there is a unique subgroup of order h in G) and that there are exactly φ(h) elements of order h in

G.

On the one hand n =
∑n
d|n{num. elts. of order d} =

∑

d|n φ(d)ǫd , where ǫd is 1 if there is an
element of order d and is zero otherwise. But, n =

∑

d|n φ(d). We conclude that ǫd = 1 for all
d |n and, in particular, ǫn = 1 and so there is an element of order n. This element is a generator
of G. �

Corollary 4.2.3. Let F be a finite field then F× is a cyclic group.

Proof. Let q be the number of elements of F. To show that for every h dividing q − 1 there is at
most one subgroup of order h we note that every element in that subgroup - call it H - will have

order dividing h and hence will solve the polynomial xh−1. That is, the h elements in that subgroup
must be the h solutions of xh − 1. In particular, this subgroup is unique. �

The proof shows an interesting fact. If F is a field of q elements, then F is the union of {0} and
the q−1 roots of xq−1−1, equivalently F is the solutions to the polynomial xq−x . We note that F
has finite characteristic p and that therefore q is a power of p. Conversely, suppose that L is a field

of characteristic p and the polynomial xq−x splits completely in L. Then F := {a ∈ L : aq−a = 0}
is a field with q elements. Indeed, one only need to verify that this set is closed under addition,

multiplication and inverse (multiplicative and additive). The only tricky one to check is addition.

However, since for p prime, p|
(
p
i

)
, 1 < i < p, one concludes from the binomial theorem that

(x + y)p = xp + yp in L and, by iteration, that (x + y)q = xq + yq in L. This gives immediately

that F is closed under addition.
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Remark 4.2.4. Although the groups (Z/pZ)× are cyclic for every prime p, that doesn’t mean we
know an explicit generator. Artin’s primitive root conjecture states that 2 is a generator for

infinitely many primes p (the conjecture is the same for any prime number instead of 2). Work

starting with R. Murty and R. Gupta, and continued with K. Murty and Heath-Brown, had shown

that for infinitely many primes p either 2, 3 or 5 are a primitive root.

5. Constructing subgroups

5.1. Commutator subgroup. Let G be a group. Define its commutator subgroup G′, or [G,G],
to be the subgroup generated by {xyx−1y−1; x, y ∈ G}. An element of the form xyx−1y−1 is called
a commutator. We use the notation [x, y ] = xyx−1y−1. It is not true in general that every element
in G′ is a commutator, though every element is a product of commutators, by definition.

Example 5.1.1. We calculate the commutator subgroup of S3. First, note that every commutator

is an even permutation, hence contained in A3. Next, (12)(13)(12)(13) = (123) is in S
′
3. It follows

that S′3 = A3.

5.2. Centralizer subgroup. Let H be a subgroup of G. We define its centralizer CG(H) to be the

set {g ∈ G : gh = hg, ∀h ∈ H}. One checks that it is a subgroup of G called the centralizer of H
in G.

Given an element h ∈ G we may define CG(h) = {g ∈ G : gh = hg}. It is a subgroup of G called
the centralizer of h in G. One checks that CG(h) = CG(〈h〉) and that CG(H) = ∩h∈HCG(h).
Taking H = G, the subgroup CG(G) is the set of elements of G such that each of them commutes

with every other element of G. It has a special name; it is called the center of G and denoted Z(G).

In this course we will not be using the centralizer of a proper subgroup much, but the centralizer of

G, namely, it centre, will be often used.

Example 5.2.1. If G is abelian then G = Z(G) = CG(H) for any subgroup H < G. If H1 ⊆ H2 ⊂ G
then CG(H2) ⊆ CG(H1). If G = G1×G2 then CG1×G2(G1×{1}) = Z(G1)×G2 and, more generaly,
CG1×G2(H1 × {H2}) = CG1(H1)× CG2(H2).
Example 5.2.2. We calculate the centralizer of (12) in S5. First recall the useful observation from

§2.4.4: τστ−1 is the permutation obtained from σ by changing its entries according to τ . For

example: (1234)[(12)(35)](1234)−1 = (1234)[(12)(35)](1432) = (1234)(1453) = (23)(45) and
(23)(45) is indeed obtained from (12)(35) by changing the labels 1, 2, 3, 4, 5 according to the rule

(1234).

Using this, we see that the centralizer of (12) in S5 is just S2×S3 (Here S2 are the permutations
of 1, 2 and S3 are the permutations of 3, 4, 5. Viewed this way they are subgroups of S5).

5.3. Normalizer subgroup. Let H be a subgroup of G. Define the normalizer of H in G, NG(H),

to be the set {g ∈ G : gHg−1 = H}. It is a subgroup of G. Note that H ⊂ NG(H), CG(H) ⊂ NG(H)
and H ∩ CG(H) = Z(H).
Example 5.3.1. Consider S3 < S4. If τ ∈ NS4(S3) then τ(123)τ−1 ∈ S3 and so τ takes 1, 2 and
3 to 1, 2 and 3 (perhaps scrambling their order). Thus, τ ∈ S3. That is, NS4(S3) = S3.
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6. Normal subgroups and quotient groups

Let N < G. We say that N is a normal subgroup if for all g ∈ G we have gN = Ng; equivalently,
gNg−1 = N for all g ∈ G; equivalently, gN ⊂ Ng for all g ∈ G; equivalently, gNg−1 ⊂ N for all

g ∈ G. We will use the notation N⊳G to signify that N is a normal subgroup of G. Note that an
equivalent way to say that N⊳G is to say that N < G and NG(N) = G.

Example 6.0.2. The group A3 is normal in S3. If σ ∈ A3 and τ ∈ S3 then τστ−1 is an even
permutation because its sign is sgn(τ)sgn(σ)sgn(τ−1) = sgn(τ)2sgn(σ) = 1. Thus, τA3τ−1 ⊂ A3.
The subgroup H = {1, (12)} is not a normal subgroup. Use the table above to see that (13)H 6=

H(13).

Let N⊳G. Let G/N denote the set of left cosets of N in G. We show that G/N has a natural

structure of a group; it is called the quotient group of G by N.

Given two cosets aN and bN we define

aN ⋆ bN = abN.

We need to show this is well defined: if aN = a′N and bN = b′N then we should have abN =
a′b′N. Now, we know that for a suitable α, β ∈ N we have a′α = a, b′β = b. Thus, a′b′N =
aαbβN = abb−1αbβN = ab(b−1αb)N. Note that since N⊳G and α ∈ N also b−1αb ∈ N and so
ab(b−1αb)N = abN.
One checks easily that N = eN is the identity of G/N and that (gN)−1 = g−1N. (Note that

(gN)−1 - the inverse of the element gN in the group G/N is also the set {(gn)−1 : n ∈ N} =
Ng−1 = g−1N.)

Definition 6.0.3. A group is called simple if its only normal subgroups are the trivial ones {e}
and G.

Remark 6.0.4. We shall later prove that An is a simple group for n ≥ 5. By inspection one find
that also An is simple for n ≤ 3. On the other hand A4 is not simple. The “Klein 4 group”
V := {1, (12)(34), (13)(24), (14)(23)} is a normal subgroup of A4.
Recall the definition of the commutator subgroup G′ of G from §5.1. In particular, the notation
[x, y ] = xyx−1y−1. One easily checks that g[x, y ]g−1 = [gxg−1, gyg−1] and that [x, y ]−1 = [y , x ].
Hence, also g[x, y ]−1g−1 = [gxg−1, gyg−1]−1.

Proposition 6.0.5. The subgroup G′ is normal in G. The group G/G′ is abelian (it is called the
abelianization of G). Furthermore, if G/N is abelian then N ⊇ G′.
Proof. We know that G′ = {[x1, y1]ǫ1 · · · [xr , yr ]ǫr : xi , yi ∈ G, ǫi = ±1}. It follows that

gG′g−1 = {[gx1g−1, gy1g−1]ǫ1 · · · [gxrg−1, gyrg−1]ǫr : xi , yi ∈ G, ǫi = ±1} ⊆ G′,
hence G′⊳G.
For every x, y ∈ G we have xG′ · yG′ = xyG′ = xy(y−1x−1yx)G′ = yxG′ = yG′ · xG′. Thus,

G/G′ is abelian. If G/N is abelian then for every x, y ∈ G we have xN · yN = yN · xN. That is,
xyN = yxN; equivalently, x−1y−1xyN = N. Thus, for every x, y ∈ G we have xyx−1y−1 ∈ N. So
N contains all the generators of G′ and so N ⊇ G′. �

Example 6.0.6. Abelianization of Dn. Recall that the dihedral group Dn – the symmetries of a

regular n-gon – is generated by x, y subject to the relations y2 = xn = yxyx = 1. Let H = 〈x2〉.
Note that if n is odd, H = 〈x〉, while for n even H has index 2 in 〈x〉. We check first that H is
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normal. Since Dn is generated by x, y , it is enough to check for conjugations by these elements.

Clearly xHx−1 = H, and the identity yx2y−1 = (yxy)2 = x−2 implies that yHy−1 = H.
We next claim that in fact H = D′n. First, since x

2 = [y , x ] we have H ⊆ D′n. To show equality
it is enough to show that Dn/H is abelian. Since Dn/H is generated by the images x̄ , ȳ of the

elements x, y , it is enough to show that x̄ , ȳ commute. That is, that [ȳ , x̄ ] is the identity element;

otherwise said, that [y , x ] ∈ H. But [y , x ] = x−2 ∈ H.
Note that for n odd, the group Dabn has order 2 and so is isomorphic to Z/2Z. For n even, the

group Dabn has order 4 and it is not hard to check that it is isomorphic to Z/2Z × Z/2Z (under
x̄ 7→ (1, 0), ȳ 7→ (0, 1), say).

Example 6.0.7. Abelianization of the unipotent group Let F be a field and n ≥ 2 an integer.
Consider the unipotent group N in GLn(F) comprised all upper-triangular matrices with 1’s along
the diagonal. Let H be the collection of matrices in N that have 0’s in all the (i , i +1) entries. For

example, for n = 4 we are talking about the groups






1 ∗ ∗ ∗
1 ∗ ∗
1 ∗
1







and







1 0 ∗ ∗
1 0 ∗
1 0

1







We claim that H = N′. First we check that H is normal in N. This is easily followed because, for
instance,







1 a ∗ ∗
1 b ∗
1 c

1













1 a′ ∗ ∗
1 b′ ∗
1 c ′

1






=







1 a + a′ ∗ ∗
1 b + b′ ∗

1 c + c ′

1






,

from which we deduce that also






1 a ∗ ∗
1 b ∗
1 c

1







−1

=







1 −a ∗ ∗
1 −b ∗

1 −c
1






.

Then, we quickly see that H is normal and even that each commutator lies in H. To show that

H = N′ more work is done. We leave it as a (challenging) exercise for the interested reader. At the
very least, verify that for n = 3 (and that’s not hard).

Lemma 6.0.8. Let B and N be subgroups of G, N⊳G.

(1) B ∩ N is a normal subgroup of B.
(2) BN := {bn : b ∈ B, n ∈ N} is a subgroup of G. Also, NB is a subgroup of G. In fact,

BN = NB.

(3) If B⊳G then BN⊳G and B ∩N⊳G.
(4) If B and N are finite then |BN| = |B||N|/|B ∩ N|. The same holds for NB.

Proof. (1) B ∩N is a normal subgroup of B: First B ∩N is a subgroup of G, hence of B. Let
b ∈ B and n ∈ B ∩ N. Then bnb−1 ∈ B because b, n ∈ B and bnb−1 ∈ N because N⊳G.

(2) BN := {bn : b ∈ B, n ∈ N} is a subgroup of G: Note that ee = e ∈ BN. If bn, b′n′ ∈ BN
then bnb′n′ = [bb′][{(b′)−1nb′}n′] ∈ BN. Finally, if bn ∈ BN then (bn)−1 = n−1b−1 =
b−1[bn−1b−1] ∈ BN.
Note that BN = ∪b∈BbN = ∪b∈BNb = NB.

(3) If B⊳G then BN⊳G: We saw that BN is a subgroup. Let g ∈ G and bn ∈ BN then
gbng−1 = [gbg−1][gng−1] ∈ BN, using the normality of both B and N. If x ∈ B∩N, g ∈ G
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then gxg−1 ∈ B and gxg−1 ∈ N, because both are normal. Thus, gxg−1 ∈ B ∩ N, which
shows B ∩ N is a normal subgroup of G.

(4) If B and N are finite then |BN| = |B||N|/|B ∩ N|: Define a map of sets,

f : B ×N → BN, (b, n)
f7→ bn.

to prove the assertion it is enough to prove that every fibre f −1x , x ∈ BN, has cardinality
|B ∩N|.
Suppose that x = bn, then for every y ∈ B ∩ N we have (by)(y−1n) = bn. This

shows that f −1(x) ⊇ {(by, y−1n) : y ∈ B ∩ N}, a set of |B ∩ N| elements. On the other
hand, if bn = b1n1 then y1 = b−11 b = n1n

−1 and hence y1 ∈ B ∩ N. Let y = y−11 then

(by)(y−1n) = b1n1. Thus, f −1(x) = {(by, y−1n) : y ∈ B ∩ N}. 5
�

Remark 6.0.9. In general, if B,N are subgroups of G (that are not normal) then BN need not

be a subgroup of G. Indeed, consider the case of G = S3, B = {1, (12)}, N = {1, (13)} then
BN = {1, (12), (13), (132)} which is not a subgroup of S3. Thus, in general < B,N >⊃ BN and
equality does not hold. We can deduce though that

| < B,N > | ≥ |B| · |N||B ∩ N| .

This is a very useful formula. Suppose, for example, that (|B|, |N|) = 1 then |B ∩ N| = 1 because
B ∩ N is a subgroup of both B and N and so by Lagrange’s theorem: |B ∩ N| divides both |B|
and |N|. In this case then | < B,N > | ≥ |B| · |N|. For example, and subgroup of order 3 of A4
generates A4 together with the Klein group.

Simple Groups.

A group G is called simple if it has no non-trivial normal subgroups. Every group of

prime order is simple. A group of odd order, which is not prime, is not simple (Theorem

of Feit and Thompson). The classification of all finite simple groups is known. We shall

later prove that the alternating group An is a simple group for n ≥ 5.
Another family of simple groups is the following: Let F be a finite field and let SLn(F)
be the n× n matrices with determinant 1. It’s a group. Let T be the diagonal matrices
with all elements on the diagonal begin equal (hence the elements of T are in bijection

with solutions of xn = 1 in F); it is the center of SL2(F). Let PSLn(F) = SLn(F)/T .
This is a simple group for n ≥ 2 and any F, the only exceptions being n = 2 and
F ∼= Z/2Z,Z/3Z. (See Rotman, op. cit., §8).
One can gain some understanding about the structure of a group from its normal sub-

groups. If N⊳G then we have a short exact sequence

1→ N → G → G/N → 1.
(That means that all the arrows are group homomorphisms and the image of an arrow

is exactly the kernel of the next one.) Thus, might hope that the knowledge of N and

G/N allows to find the properties of G. This works best when the map G → G/N has

a section, i.e., there is a homomorphism f : G/N → N such that πN ◦ f = Id . Then G
is a semi-direct product. We’ll come back to this later in the course.

5Note that we do need to assume BN is a subgroup. In particular, we do not need to assume that B or N are

normal.
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Part 2. The Isomorphism Theorems

7. Homomorphisms

7.1. Basic definitions. Let G and H be two groups. A homomorphism f : G → H is a function

satisfying f (ab) = f (a)f (b). It is a consequence of the definition that f (eG) = eH and that

f (a−1) = f (a)−1.
A homomorphism is called an isomorphism if it is 1 : 1 and surjective. In that case, the set

theoretic inverse function f −1 is automatically a homomorphism too. Thus, f is an isomorphism if
and only if there exists a homomorphism g : H → G such that h ◦ g = idG , g ◦ h = idH.
Two groups, G and H, are called isomorphic if there exists an isomorphism f : G → H. We use

the notation G ∼= H. For all practical purposes two isomorphic groups should be considered as the
same group. Being isomorphic is an equivalence relation on groups.

Example 7.1.1. Let n ≥ 2. The sign map sgn : Sn → {±1} is a surjective group homomorphism.
Example 7.1.2. Let G be a cyclic group of order n, say G =< g >. The group G is isomorphic to

Z/nZ: Indeed, define a function f : G → Z/nZ by f (ga) = a. Note that f is well defined because if
ga = gb then n|(b−a). It is a homomorphism: gagb = ga+b. It is easy to check that f is surjective.
It is injective, because f (ga) = 0 implies that n|a and so ga = g0 = e in the group G.
Example 7.1.3. We have an isomorphism S3 ∼= D3 coming from the fact that a symmetry of a

triangle (an element of D3) is completely determined by its action on the vertices.

Example 7.1.4. The Klein four group V = {1, (12)(34), (13)(24), (14)(23)} is isomorphic to
Z/2Z× Z/2Z by (12)(34) 7→ (0, 1), (13)(24) 7→ (1, 0), (14)(23) 7→ (1, 1).

The kernel Ker(f ) of a homomorphism f : G → H is by definition the set

Ker(f ) = {g ∈ G : f (g) = eH}.
For example, the kernel of the sign homomorphism Sn → {±1} is the alternating group An.
Lemma 7.1.5. The set Ker(f ) is a normal subgroup of G; f is injective if and only if Ker(f ) = {e}.
For every h ∈ H the preimage f −1(h) := {g ∈ G : f (g) = h} is a coset of Ker(f ).
Proof. First, since f (e) = e we have e ∈ Ker(f ). If x, y ∈ Ker(f ) then f (xy) = f (x)f (y) = ee = e
so xy ∈ Ker(f ) and f (x−1) = f (x)−1 = e−1 = e so x−1 ∈ Ker(f ). That shows that Ker(f ) is
a subgroup. If g ∈ G, x ∈ Ker(f ) then f (gxg−1) = f (g)f (x)f (g−1) = f (g)ef (g)−1 = e. Thus,

Ker(f )⊳G.

If f is injective then there is a unique element x such that f (x) = e. Thus, Ker(f ) = {e}.
Suppose that Ker(f ) = {e} and f (x) = f (y). Then e = f (x)f (y)−1 = f (xy−1) so xy−1 = e.

That is x = y and f is injective.

More generally, note that f (x) = f (y) iff f (x−1y) = e iff x−1y ∈ Ker(f ) iff y ∈ xKer(f ). Thus,
if h ∈ H and f (x) = h then the fibre f −1(h) is precisely xKer(f ). �

Lemma 7.1.6. If N⊳G then the canonical map πN : G → G/N, given by πN(a) = aN, is a surjective

homomorphism with kernel N.

Proof. We first check that π = πN is a homomorphism: π(ab) = abN = aNbN = π(a)π(b). Since

every element of G/N is of the form aN for some a ∈ G, π is surjective. Finally, a ∈ Ker(π) iff
π(a) = aN = N (the identity element of G/N) iff a ∈ N. �
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Corollary 7.1.7. A subgroup N < G is normal if and only if it is the kernel of a homomorphism.

7.2. Behavior of subgroups under homomorphisms. Let f : G → H be a group homomorphism.

Proposition 7.2.1. If A < G then f (A) < H, in particular f (G) < H. If B < H then f −1(B) < G.

Furthermore, if B⊳H then f −1(B)⊳G. If, moreover, f is surjective then A⊳G implies f (A)⊳H.

Proof. Since f (e) = e, e ∈ f (A). Furthermore, the identities f (x)f (y) = f (xy), f (x)−1 = f (x−1)
show that f (A) is closed under multiplication and inverses. Thus, f (A) is a subgroup.

Let B < H. Since f (e) = e we see that e ∈ f −1(B). Let x, y ∈ f −1(B) then f (xy) = f (x)f (y) ∈
B because both f (x) and f (y) are in B. Thus, xy ∈ f −1(B). Also, f (x−1) = f (x)−1 ∈ B and so
x−1 ∈ f −1(B). This shows that f −1(B) < G.

Suppose now that B⊳H. Let x ∈ f −1(B), g ∈ G. Then f (gxg−1) = f (g)f (x)f (g)−1. Since
f (x) ∈ B and B⊳H it follows that f (g)f (x)f (g)−1 ∈ B and so gxg−1 ∈ f −1(B). Thus, f −1(B)⊳G.
The last claim follows with similar arguments. �

Remark 7.2.2. It is not necessarily true that if A⊳G then f (A)⊳H. For example, consider G =

{1, (12)} with its embedding into S3.

8. The first isomorphism theorem

Theorem 8.0.3. (The First Isomorphism Theorem) Let f : G → H be a homomorphism of groups.

There is an injective homomorphism f ′ : G/Ker(f )→ H such that the following diagram commutes:

G
f //

πKer(f ) $$I
II

II
II

II
I H

G/Ker(f )
f ′

::uuuuuuuuuu

.

In particular, G/Ker(f ) ∼= f (G).
Proof. Let N = Ker(f ). We define f ′ by

f ′(aN) = f (a).

The map f ′ is well defined: if aN = bN then a = bn for some n ∈ N. Then f ′(aN) = f (a) =

f (bn) = f (b)f (n) = f (b) = f ′(bN). Therefore, f ′ is well defined. Now f ′(aNbN) = f ′(abN) =
f (ab) = f (a)f (b) = f ′(aN)f ′(bN), which shows f ′ is a homomorphism. If f ′(aN) = f (a) = e then
a ∈ N and so aN = N. That is, f ′ is injective and surjective onto its image. We conclude that
f ′ : G/N → f (G) is an isomorphism.

Finally, f ′(πN(a)) = f ′(aN) = f (a) so f ′ ◦ πN = f . Therefore, the diagram commutes. �

Example 8.0.4. Let us construct two homomorphisms

fi : D4 → S2.

We get the first homomorphism f1 be looking at the action of the symmetries on the axes {a, b}.
Thus, f1(x) = (ab), f1(y) = 1 (x permutes the axes, while y fixes the axes – though not point-

wise). Similarly, if we let A,B be the lines whose equation is a = b and a = −b, then D4 acts as
permutations on {A,B} and we get a homomorphism f2 : D4 → S2 such that f2(x) = (AB), f2(y) =

(AB).
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b

B

A

a

The homomorphism fi is surjective and therefore the kernel Ni = Ker(fi) has 4 elements. We find

that N1 = {1, x2, y , x2y} and N2 = {1, x2, xy , x3y}. By the first isomorphism theorem we have
D4/Ni ∼= S2.
Now, quite generally, if gi : G → Hi are group homomorphisms then g : G → H1 × H2, defined

by g(r) = (g1(r), g2(r)) is a group homomorphism with kernel Ker(g1) ∩ Ker(g2). One uses the
notation g = (g1, g2). Applying this to our situation, we get a homomorphism

f = (f1, f2) : D4 → S2 × S2,
whose kernel is {1, x2}. It follows that the image of f has 4 elements and hence f is surjective.
That is,

D4/ < x2 >∼= S2 × S2.

Example 8.0.5. A homomorphism, especially if it is injective, could be a mean to realize a group

defined abstractly in a more concrete fashion. We have already done so, without making a big

deal out of it. Recall that Dn was defined as the group of symmetries of a regular n-gon. Buy

enumerating the vertices we realized Dn as a subgroup of Sn. In effect, we have constructed an

injective homomorphism Dn → Sn under which y 7→ (1)(2 n)(3 n − 1) · · · , x 7→ (1 2 3 · · · n).

Example 8.0.6. Consider the group G = GL3(F2), a group with 168 = (8 − 1)(8 − 2)(8 − 4)
elements. This is a famous group in fact, being the only simple group (namely a group with no

non-trivial normal subgroups of order 168; All other simple groups of order less 168 are the cyclic

abelian groups of prime order and the alternating group A5 of order 60). By considering its action

on F32 – the vector space of dimension 3 over F2 – or even just its action on the 7 non-zero vectors
F32−{0} we get an injective group homomorphism GL3(F2) →֒ S7. Now, the only element of order 7

of S7 up to conjugation is a cycle of length 7. It will follow from theorems we shall prove later that

since 7|168 the group G must have an element of order 7. We can therefore conclude that there
is a matrix in GL3(F2) of order 7 and that matrix permutes cyclically the non-zero vectors of the
space. Can you find that matrix?? This example illustrates the use of homomorphisms between

groups to conclude facts about a given group from facts about its homomorphic images.

Example 8.0.7. Let G be an abelian group and fix an integer n. Consider G[n] = {g ∈ G : gn = 1G}
and let Gn := {gn : g ∈ G}. Making use of the fact G is abelian one easily checks that these are
subgroups. If G is not abelian this need not be true. For example, take G = S3 and n = 2. Then

S3[2] = {1, (12), (13), (23)} which is not a subgroup. In this case S23 = {(1), (123), (132)} is a
subgroup, but if we take n = 3 we find that S33 = {1, (12), (13), (23)}, which is not a subgroup.
Getting back to the case where G is abelian, we notice that we have a surjective homomorphism:

[n] : G → Gn, [n](g) := gn.
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The kernel of this homomorphism is G[n] and so, using the first isomorphism theorem, we conclude

G/G[n] ∼= Gn.
Here is a simple application. Suppose that p ≡ 2 (mod 3) then the equation x3 − a ≡ 0 (mod p)
has a unique solution for every non-zero congruence class a. Indeed, since 3 ∤ (p − 1), there are
no elements of order 3 in the group Z/pZ×. Thus, (Z/pZ×)3 = Z/pZ×, that is, every element is
a cube. But more is true; since the kernel of the homomorphism [3] : Z/pZ× → Z/pZ×, g 7→ g3

is trivial in this case, every a is obtained from a unique g as a = g3. That is, we have a unique

solution.

9. The second isomorphism theorem

Theorem 9.0.8. Let G be a group. Let B < G,N⊳G. Then

BN/N ∼= B/(B ∩ N).

Proof. Recall from Lemma 6.0.8 that B ∩ N⊳B. We define a function
f : BN → B/B ∩ N, f (bn) = b ·B ∩ N.

We need first to show it is well defined. Recall from the proof of Lemma 6.0.8 that if bn = b′n′

then b′ = by for some y ∈ B ∩ N. Therefore, b · B ∩ N = by · B ∩ N = b′ · B ∩ N and f is well
defined.

We show now that f is a homomorphism. Note that (bn)(b1n1) = (bb1)(b
−1
1 nb1)n1 and so

f (bn · b1n1) = bb1 ·B ∩N = b ·B ∩N · b1 ·B ∩N = f (b)f (b1), which shows f is a homomorphism.
Moreover, f is surjective: b ·B ∩ N = f (b).
The kernel of f is {bn : f (b) = e, b ∈ B, n ∈ N} = {bn : b ∈ B∩N, b ∈ B, n ∈ N} = (B∩N)N =

N. By the First Isomorphism Theorem BN/N ∼= B/B ∩ N. �

Remark 9.0.9. This is often used as follows: Let f : G → H be a group homomorphism with kernel

N. Let B < G. What can we say about the image of B under f ? Well f (B) = f (BN) and

f : BN → H has kernel N. We conclude that f (B) ∼= BN/N ∼= B/(B ∩ N).
In fact, this idea gives another proof of the theorem. Consider the homomorphism π : G → G/N.

Its restriction to BN is a homomorphism with kernel N and so, by the First Isomorphism Theorem,

f (BN) ∼= BN/N. The restriction of f to B is also a group homomorphism with kernel B∩N. Thus,
f (B) ∼= B/(B ∩N). But, f (B) = f (BN) and we are done.

10. The third isomorphism theorem

Theorem 10.0.10. Let f : G → H be a surjective homomorphism of groups.

(1) f induces a bijection:

{subgps of G containing Ker(f )} ↔ {subgps of H}.
Given by G1 7→ f (G1), G1 < G, and in the other direction by H1 7→ f −1(H1), H1 < H.

(2) Suppose that Ker(f ) < G1 < G2. Then G1⊳G2 if and only if f (G1)⊳f (G2). Moreover, in

that case,

G2/G1 ∼= f (G2)/f (G1).
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(3) Let N < K < G be groups, such that N⊳G,K⊳G. Then

(G/N)/(K/N) ∼= G/K.

G

G/N

N

K

K/N

Proof. We proved in general (Prop. 7.2.1) that if G1 < G then f (G1) < H and if H1 < H then

f −1(H1) < G. Since f is a surjective map we have f (f −1(H1) = H1. We need to show that

if Ker(f ) < G1 then f
−1(f (G1)) = G1. Clearly f

−1(f (G1)) ⊇ G1. Let x ∈ f −1(f (G1)) then
f (x) ∈ f (G1). Choose then g ∈ G1 such that f (g1) = f (x) and write x = g(g−1x). Note that
f (g−1x) = eH and so g−1x ∈ Ker(f ) ⊆ G1. Thus, xg(g−1x) ∈ G1.
Consider the restriction of f to G2 as a surjective group homomorphism f : G2 → f (G2). We proved

under those conditions that if G1⊳G2 then f (G1)⊳f (G2). If f (G1)⊳f (G2) then we also proved that

f −1(f (G1))⊳G2. Since G1 ⊂ Ker(f ) we have f −1(f (G1)) = G1.
It remains to show that if Ker(f ) < G1⊳G2 then G2/G1 ∼= f (G2)/f (G1). The homomorphism

obtained by composition

G2 → f (G2)→ f (G2)/f (G1),

is surjective and has kernel f −1(f (G1)) = G1. The claim now follows from the First Isomorphism
Theorem.

We apply the previous results in the case where H = G/N and f : G → G/N is the canonical

map. We consider the case G1 = K,G2 = G. Then G/K ∼= f (G)/f (K) = (G/N)/(K/N). �

Example 10.0.11. Consider again the group homomorphism f : D4 → S2 × S2 constructed in
Example 8.0.4. Using the third isomorphism theorem we conclude that the graph of the subgroups

of D4 containing < x2 > is exactly that of S2 × S2 (analyzed in Example 2.6.1). Hence we have:
D4

ww
ww

www
ww

HH
HH

HHH
HH

K1

GG
GG

GG
GG

G
K2 K3

ww
ww

ww
ww

w

< x2 >

{1}

S2 × S2

vvv
vvvvvv

HHHHH
HHHH

H1

HH
HH

HHH
HH

H2 H3

vvv
vv

vvv
v

{e}

We’ll see later that this does not exhaust the list of subgroups of D4. Here we have

K1 =< x >,

K2 =< y, x2 >,

K3 =< xy, x2 >
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and

H1 = f (K1) = {(1, 1), ((ab), (AB))},
H2 = f (K2) = {(1, 1), (1, (AB))},
H3 = f (K3) = {(1, 1), ((ab), 1)}.

Example 10.0.12. Let F be a field and let N = {diag[f , f , . . . , f ] : f ∈ F×} be the set of diagonal
matrices with the same non-zero element in each diagonal entry. We proved in an assignment that

N = Z(GLn(F)) and is therefore a normal subgroup. The quotient group

PGLn(F) := GLn(F)/N

is called the projective linear group.

Let Pn−1(F) be the set of equivalence classes of non-zero vectors in Fn under the equivalence
v ∼ w if there is f ∈ F∗ such that f v = w ; that is, the set of lines through the origin. The

importance of the group PGLn(F) is that it acts as automorphisms on the projective n − 1-space
Pn−1(F).
Let

π : GLn(F)→ PGLn(F)
be the canonical homomorphism. The function

det : GLn(F)→ F∗

is a group homomorphism, whose kernel, the matrices with determinant one, is denoted SLn(F).
Consider the image of SLn(F) in PGLn(F); it is denoted PSLn(F). We want to analyze it and the
quotient PGLn(F)/PSLn(F).
The group PSLn(F) is equal to π(SLn(F)) = π(SLn(F)N) and is therefore isomorphic to SLn(F)N/N ∼=

SLn(F)/SLn(F)∩N = SLn(F)/µn(F), where by µN(F) we mean the group {f ∈ F× : f n = 1} (where
we identify f with diag[f , f , . . . , f ]). Therefore,

PSLn(F) ∼= SLn(F)/µn(F).

We have PGLn(F)/PSLn(F) ∼= (GLn(F)/N)/(SLn(F)N/N) ∼= GLn(F)/SLn(F)N. Let F×(n) be the
subgroup of F× consisting of the elements {f n : f ∈ F×}. Under the isomorphism GLn(F)/SLn(F) ∼=
F× the subgroup SLn(F)N corresponds to F×(n). We conclude that

PGLn(F)/PSLn(F) ∼= F×/F×(n).

11. The lattice of subgroups of a group

Let G be a group. Consider the set Λ(G) of all subgroups of G. Define an order on this set by

A ≤ B if A is a subgroup of B. This relation is transitive and A ≤ B ≤ A implies A = B. That is,
the relation is really an order.

The set Λ(G) is a lattice. Every two elements A,B have a minimum A∩B (that is if C ≤ A,C ≤ B
then C ≤ A ∩ B) and a maximum < A,B > - the subgroup generated by A and B (that is

C ≥ A,C ≥ B then C ≥< A,B >). If A ∈ Λ(G) then let ΛA(G) to be the set of all elements in
Λ(G) that are greater or equal to A. It is a lattice in its own right. We have the property that

if N⊳G then ΛN(G) ∼= Λ(G/N) as lattices – This is the Third Isomorphism Theorem.
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Here is the lattice of subgroups of D4. Normal subgroup are boxed.

D4

LLLLLLLLLLL

VVVVVVVVVVVVVVVVVVVVVVVV

< x > < y, x2 >

VVVVVVVVVVVVVVVVVVVVVVV

sssssssss

< yx, x2 >

iiiiiiiiiiiiiiiiiiiiii

UUUUUUUUUUUUUUUUUUUU
subgroups of order 4

< x2 > < y >

rrrrrrrrrrrr
< yx >

hhhhhhhhhhhhhhhhhhhhhhhhhh < yx2 >

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee < yx3 >

dddddddddddddddddddddddddddddddddddddddddddddddddddddd subgroups of order 2

{e}

How to prove that these are all the subgroups? Note that every proper subgroup has order 2 or 4 by

Lagrange’s theorem. If it is cyclic then it must be one of the above, because the diagram certainly

contains all cyclic subgroups. Else, it can only be of order 4 and every element different from e has

order 2. It is east to verify that any two distinct elements of order 2 generate one of the subgroups

we have listed.

There are at least two ways in which one uses this concept:

• To examine whether two groups can be isomorphic. Isomorphic groups have isomorphic
lattices of subgroups. For example, the groups D4 and Q both have 8 elements. The lattice

of subgroups of Q is

Q

zz
zz

zz
zz

z

EE
EE

EE
EE

E

〈i〉

DD
DD

DD
DD

〈j〉 〈k〉

zz
zz

zz
zz

〈−1〉

{1}
We conclude that Q and D4 are not isomorphic.

• To recognize quotients. Consider for example D4/〈x2〉. This is a group of 4 elements. Let
us give ourselves that there are only two groups of order 4 up to isomorphism and those are

(Z/2Z)2 and Z/4Z. The lattice of subgroups for them are

(Z/2Z)2

mmmmmmmmmmmmm

QQQQQQQQQQQQQ

{(0, 0), (0, 1)}

QQQQQQQQQQQQQ
{(0, 0), (1, 1)} {(0, 0), (1, 0)}

mmmmmmmmmmmmm

{(0, 0)}

Z/4Z

{0, 2}

{0}

We conclude that D4/〈x2〉 ∼= (Z/2Z)2.
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Part 3. Group Actions on Sets

12. Basic definitions

Let G be a group and let S be a non-empty set. We say that G acts on S if we are given a

function

G × S → S, (g, s) 7−→ g ⋆ s,

such that;

(i) e ⋆ s = s for all s ∈ S;
(ii) (g1g2) ⋆ s = g1 ⋆ (g2 ⋆ s) for all g1, g2 ∈ G and s ∈ S.

Given an action of G on S we can define the following sets. Let s ∈ S. Define the orbit of s
Orb(s) = {g ⋆ s : g ∈ G}.

Note that Orb(s) is a subset of S, equal to all the images of the element s under the action of the

elements of the group G. We also define the stabilizer of s to be

Stab(s) = {g ∈ G : g ⋆ s = s}.
Note that Stab(s) is a subset of G. In fact, it is a subgroup, as the next Lemma states.

One should think of every element of the group as becoming a symmetry of the set S. We’ll make

more precise later. For now, we just note that every element g ∈ G defines a function S → S by

s 7→ gs . This function, we’ll see later, is bijective.

13. Basic properties

Lemma 13.0.13. (1) Let s1, s2 ∈ S. We say that s1 is related to s2, i.e., s1 ∼ s2, if there exists
g ∈ G such that

g ⋆ s1 = s2.

This is an equivalence relation. The equivalence class of s1 is its orbit Orb(s1).

(2) Let s ∈ S. The set Stab(s) is a subgroup of G.
(3) Suppose that both G and S have finitely many elements. Then

|Orb(s)| = |G|
|Stab(s)| .

Proof. (1) We need to show reflexive, symmetric and transitive. First, we have e ⋆ s = s and

hence s ∼ s , meaning the relation is reflexive. Second, if s1 ∼ s2 then for a suitable g ∈ G
we have g ⋆ s1 = s2. Therefore

g−1 ⋆ (g ⋆ s1) = g
−1 ⋆ s2

⇒ (g−1g) ⋆ s1 = g
−1 ⋆ s2

⇒ e ⋆ s1 = g
−1 ⋆ s2

⇒ s1 = g
−1 ⋆ s2

⇒ g−1 ⋆ s2 = s1

⇒ s2 ∼ s1.
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It remains to show transitive. If s1 ∼ s2 and s2 ∼ s3 then for suitable g1, g2 ∈ G we have
g1 ⋆ s1 = s2, g2 ⋆ s2 = s3.

Therefore,

(g2g1) ⋆ s1 = g2 ⋆ (g1 ⋆ s1) = g2 ⋆ s2 = s3,

and hence s1 ∼ s3.
Moreover, by the very definition the equivalence class of an element s1 of S is all the

elements of the form g ⋆ s1 for some g ∈ G, namely, Orb(s1).
(2) Let H = Stab(s). We have to show that: (i) e ∈ H; (2) If g1, g2 ∈ H then g1g2 ∈ H; (iii)
If g ∈ H then g−1 ∈ H.

First, by definition of group action we have

e ⋆ s = s.

Therefore e ∈ H. Next suppose that g1, g2 ∈ H, i.e.,
g1 ⋆ s = s, g2 ⋆ s = s.

Then

(g1g2) ⋆ s = g1 ⋆ (g2 ⋆ s) = g1 ⋆ s = s.

Thus, g1g2 ∈ H. Finally, if g ∈ H then g ⋆ s = s and so
g−1 ⋆ (g ⋆ s) = g−1 ⋆ s

⇒ (g−1g) ⋆ s = g−1 ⋆ s

⇒ e ⋆ s = g−1 ⋆ s

⇒ s = g−1 ⋆ s,

and therefore g−1 ∈ H.
(3) We claim that there exists a bijection between the left cosets of H and the orbit of s . If we

show that, then by Lagrange’s theorem,

|Orb(s)| = no. of left cosets of H = index of H = |G|/|H|.
Define a function

{left cosets of H} φ→ Orb(s),
by

φ(gH) = g ⋆ s.

We claim that φ is a well defined bijection. First

Well-defined: Suppose that g1H = g2H. We need to show that the rule φ would give the same

result whether we take the representative g1 or the representative g2 to the coset, that is, we need

to show

g1 ⋆ s = g2 ⋆ s.

Note that g−11 g2 ∈ H, i.e., (g−11 g2) ⋆ s = s . We get

g1 ⋆ s = g1 ⋆ ((g
−1
1 g2) ⋆ s)

= (g1(g
−1
1 g2)) ⋆ s

= g2 ⋆ s.

φ is surjective: Let t ∈ Orb(s) then t = g ⋆ s for some g ∈ G. Thus,
φ(gH) = g ⋆ s = t,
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and we get that φ is surjective.

φ is injective: Suppose that φ(g1H) = φ(g2H). We need to show that g1H = g2H. Indeed,

φ(g1H) = φ(g2H)

⇒ g1 ⋆ s = g2 ⋆ s

⇒ g−12 ⋆ (g1 ⋆ s) = g
−1
2 ⋆ (g2 ⋆ s)

⇒ (g−12 g1) ⋆ s = (g
−1
2 g2) ⋆ s

⇒ (g−12 g1) ⋆ s = e ⋆ s

⇒ (g−12 g1) ⋆ s = s

⇒ g−12 g1 ∈ Stab(s) = H
⇒ g1H = g2H.

�

Corollary 13.0.14. The set S is a disjoint union of orbits.

Proof. The orbits are the equivalence classes of the equivalence relation ∼ defined in Lemma 13.0.13.
Any equivalence relation partitions the set into disjoint equivalence classes. �

We have in fact seen that every orbit is in bijection with the cosets of some group. If H is any

subgroup of G let us use the notation G/H for its cosets (note though that if H is not normal

this is not a group, but just a set). We saw that if s ∈ S then there is a natural bijection

G/Stab(s)↔ Orb(s). Thus, the picture of S is as follows

 S

Orb(a) = G/Stab(a)

Orb(b) = G/Stab(b)

Orb(c) = G/Stab(c)

a

b c

Figure 3. The set decomposes into orbits; each is the cosets of a subgroup.

14. Some examples

Example 14.0.15. The group Sn acts on the set {1, 2, . . . , n}. The action is transitive, i.e., there
is only one orbit. The stabilizer of i is S{1,2,...,i−1,i+1,...,n} ∼= Sn−1.

Example 14.0.16. The group GLn(F) acts on Fn, and also Fn − {0}. The action is transitive on
Fn − {0} and has two orbits on Fn. The stabilizer of 0 is of course GLn(F); the stabilizer of a
non-zero vector v1 can be written in a basis w1, w2, . . . , wn with w1 = v1 as the matrices of the

shape







1 ∗ . . . ∗
0 ∗ . . . ∗
...
... . . .

...

0 ∗ . . . ∗







.
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Example 14.0.17. Let H be a subgroup of G then we have an action

H × G → G, (h, g) 7→ hg.

In this example, H is “the group” and G is “the set”. Here the orbits are right cosets of H and

the stabilizers are trivial. Since G =
∐
Orb(gi) =

∐
Hgi we conclude that |G| =

∑

i |Orb(gi )| =∑

i |H|/|Stab(gi)| =
∑

i |H| and therefore that |H| | |G| and that [G : H], the number of cosets, is
|G|/|H|. We have recovered Lagrange’s theorem.
Example 14.0.18. Let H be a subgroup of G. Let S = {gH : g ∈ G} be the set of left cosets of
H in G. Then we have an action

G × S → S, (a, bH) 7→ abH.

Here there is a unique orbit (we say G acts transitively). The stabilizer of gH is the subgroup

gHg−1.

Example 14.0.19. Let G = R/2πZ. It acts on the sphere by rotations: an element θ ∈ G rotates
the sphere by angle θ around the north-south axes. The orbits are latitude lines and the stabilizers

of every point is trivial, except for the poles whose stabilizer is G. See Figure 4.

θ

Figure 4. Action on the sphere by rotation.

Example 14.0.20. Let G be the dihedral group D8. Recall that G is the group of symmetries of a

regular octagon in the plane.

G = {e, x, x2, . . . , x7, y , yx, yx2, . . . , yx7},
where x is the rotation clockwise by angle 2π/8 and y is the reflection through the y -axis. We have

the relations

x8 = y2 = e, yxy = x−1.

We let S be the set of colorings of the octagon ( = necklaces laid on the table) having 4 red vertices

(rubies) and 4 green vertices (sapphires). The group G acts on S by its action on the octagon.

For example, the coloring s0 in Figure 5 is certainly preserved under x
2 and under y . Therefore,

the stabilizer of s0 contains at least the set of eight elements

(1) {e, x2, x4, x6, y , yx2, yx4, yx6}.
Remember that the stabilizer is a subgroup and, by Lagrange’s theorem, of order dividing 16 = |G|.
On the other hand, Stab(s0) 6= G because x 6∈ Stab(s0). It follows that the stabilizer has exactly 8
elements and is equal to the set in (1).
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y

x

Figure 5. A necklace with 4 rubies and 4 sapphires.

According to Lemma 13.0.13 the orbit of s0 is in bijection with the left cosets of Stab(s0) =

{e, x2, x4, x6, y , yx2, yx4, yx6}. By Lagrange’s theorem there are two cosets. For example, Stab(s0)
and xStab(s0) are distinct cosets. The proof of Lemma 13.0.13 tells us how to find the orbit: it is

the set

{s0, xs0},
portrayed in Figure 6.

Figure 6. The orbit of the necklace.

Example 14.0.21. Let Γ be the group of symmetries of the cube obtained by rigid motions (so

reflections are not allowed). The action of Γ on the 8 vertices gives an injective homomorphism

Γ →֒ S8. But, as we shall see that are much more useful realizations of Γ .

Firstly, it is easy to see that Γ acts transitively on the 6 faces of the cube. The stabilizer of a face

is rotations that keep the face but rotate it around its middle point. The orbit-stabilizer formula

then gives that

♯Γ = 24.

By considering the action of Γ on two adjacent faces we see that the homomorphism Γ → S6 must

be injective. We obtain that Γ can be realized as a transitive subgroup of S6.

Now consider the action of Γ on the 4 long diagonals of the cube. A rotation keeping the front

face has the effect (1243), while a rotation keeping the right-facing face has the effect (2314).

The cyclic subgroups generated by those two cycles are {1, a = (1243), b = (14)(23), (3421)} and
{1, c = (2314), d = (21)(34), (4132)}. We see that the subgroup they generate contains the Klein
group (calculate bd), and a short calculation shows that it in facts contains a subgroup of order

8 (for instance the subgroup generated by the Klein group and (1243)). Thus, the order of the

subgroup they generate is divisible by 8. On the other hand, its order is also divisible by 3 because

it contains ac = (132). Therefore, the image of Γ is S4 and since Γ has also 24 elements, we

conclude that

Γ ∼= S4.
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15. Cayley’s theorem

Theorem 15.0.22. Every finite group of order n is isomorphic to a subgroup of Sn.

We first prove a lemma that puts group actions in a different context. Let A be a finite set. Let

ΣA be the set of bijective functions A→ A. Then, ΣA is a group. In fact, if we let s1, . . . , sn be

the elements of A, we can identify bijective functions A→ A with permutations of {1, . . . , n} and
we see that ΣA ∼= Sn.
Lemma 15.0.23. To give an action of a group G on a set A is equivalent to giving a homomorphism

G → ΣA. The kernel of this homomorphism is ∩a∈AStab(a).
Proof. An element g define a function φg : A→ A by φg(a) = ga. We have φe being the identity

function. Note that φhφg(a) = φh(ga) = hga = φhg(a) for every a and hence φhφg = φhg. In

particular, φgφg−1 = φg−1φg = Id . This shows that every φg is a bijection and the map

Ψ : G → ΣA, g
Ψ7→ φg,

is a homomorphism. (Conversely, given such a homomorphism Ψ, define a group action by g ⋆ a :=

Ψ(g)(a).)

The kernel of this homomorphism is the elements g such that φg is the identity, i.e., φg(a) = a for

all a ∈ A. That is, g ∈ Stab(a) for every a ∈ A. The set of such elements g is just ∩a∈AStab(a). �
Proof. (of Theorem) Consider the action of G on itself by multiplication (Example 14.0.17), (g, g′) 7→
gg′. Recall that all stabilizers are trivial. Thus this action gives an injective homomorphism

G → ΣG ∼= Sn,
where n = |G|. �

16. The coset representation

Let G be a group and H a subgroup of finite index n. Consider the action of G on the set of

cosets G/H of H and the resulting homomorphism

Ψ : G → ΣG/H ∼= Σn,
where n = [G : H]. We shall refer to it as the coset representation of G. The kernel K of Ψ is

∩a∈G/HStab(a) = ∩g∈GStab(gH) = ∩g∈GgHg−1.
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Being a kernel of a homomorphism, K is normal in G and is contained in H. Furthermore, since the

resulting homomorphism G/K → Sn is injective we get that |G/K| = [G : K] divides [G : H]! = |Sn|.
In particular, we conclude that every subgroup H of G contains a subgroup K which is normal in G

and of index at most [G : H]!. Thus, for example, a simple infinite group has no subgroups of finite

index.

In fact, the formula K = ∩g∈GgHg−1 shows that K is the maximal subgroup of H which is normal
in G. Indeed, if K′⊳G,K′ < H then K′ = gK′g−1 ⊂ gHg−1 and we see that K′ ⊆ K.

17. The Cauchy-Frobenius formula

The Cauchy-Frobenius formula, sometime called Burnside’s lemma, is a very useful formula for

combinatorial problems.

17.1. A formula for the number of orbits.

Theorem 17.1.1. (CFF) Let G be a finite group acting on a finite set S. Let N be the number of

orbits of G in S. Define

I(g) = |{s ∈ S : g ⋆ s = s}|

(the number of elements of S fixed by the action of g). Then

(2) N =
1

|G|
∑

g∈G
I(g).

Remark 17.1.2. If N = 1 we say that G acts transitively on S. It means exactly that: For every

s1, s2 ∈ S there exists g ∈ G such that g ⋆ s1 = s2.

Proof. We define a function

T : G × S → {0, 1}, T (g, s) =

{

1 g ⋆ s = s

0 g ⋆ s 6= s
.

Note that for a fixed g ∈ G we have

I(g) =
∑

s∈S
T (g, s),

and that for a fixed s ∈ S we have

|Stab(s)| =
∑

g∈G
T (g, s).
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Let us fix representatives s1, . . . , sN for the N disjoint orbits of G in S. Now,

∑

g∈G
I(g) =

∑

g∈G

(
∑

s∈S
T (g, s)

)

=
∑

s∈S




∑

g∈G
T (g, s)





=
∑

s∈S
|Stab(s)| =

∑

s∈S

|G|
|Orb(s)|

=

N∑

i=1

∑

s∈Orb(si )

|G|
|Orb(s)| =

N∑

i=1

∑

s∈Orb(si )

|G|
|Orb(si)|

=

N∑

i=1

|G|
|Orb(si)|

· |Orb(si)| =
N∑

i=1

|G|

= N · |G|.
�

Corollary 17.1.3. Let G be a finite group acting transitively on a finite S. Suppose that |S| > 1.
Then there exists g ∈ G without fixed points.
Proof. By contradiction. Suppose that every g ∈ G has a fixed point in S. That is, suppose that
for every g ∈ G we have

I(g) ≥ 1.
Since I(e) = |S| > 1 we have that

∑

g∈G
I(g) > |G|.

By Cauchy-Frobenius formula, the number of orbits N is greater than 1. Contradiction. �

Example 17.1.4. The symmetry group of the cube Γ acts transitively on the faces. It follows that

there is a symmetry of the cube leaving no face fixed (there are many, in fact). Can you find it?

Example 17.1.5. A subgroup G of Sn is called transitive if its action on {1, 2, . . . , n} is transitive.
If n > 1, the Corollary says that such a subgroup contains a permutation with no fixed points.

Moreover, by the orbit-stabilizer formula, G has a subgroup of index n and so n|♯G. Such results
are used in the classification of transitive subgroups of Sn for small values of n - a classification

important to Galois theory because the Galois group of an irreducible separable polynomial of degree

n is a transitive subgroup of Sn. For example, for S3 we find that A3 and S3 are the only transitive

subgroups. For S4 we are looking for subgroups of order divisible by 4 (so 4, 8, 12 and 24) that act

transitively and also contain a permutation with no fixed point. After conjugation, we may therefore

assume that either (1234) or (12)(34) belongs to the subgroup. Continuing the analysis, one finds

that up to conjugation the transitive subgroups are V, 〈(1234)〉, D4, A4, S4.

17.2. Applications to combinatorics.

Example 17.2.1. How many roulettes with 11 wedges painted 2 blue, 2 green and 7 red are there

when we allow rotations?

Let S be the set of painted roulettes. Let us enumerate the sectors of a roulette by the numbers

1, . . . , 11. The set S is a set of

(
11

2

)(
9

2

)

= 1980 elements (choose which 2 are blue, and then

choose out of the nine left which 2 are green).
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Let G be the group Z/11Z. It acts on S by rotations. The element 1 rotates a painted roulette
by angle 2π/11 anti-clockwise. The element n rotates a painted roulette by angle 2nπ/11 anti-

clockwise. We are interested in N – the number of orbits for this action. We use CFF.

The identity element always fixes the whole set. Thus I(0) = 1980. We claim that if 1 ≤ i ≤ 10
then i doesn’t fix any element of S. Indeed, suppose that 1 ≤ i ≤ 10 and i fixes s . Then so does
〈i〉 = Z/11Z (the stabilizer is a subgroup). But any coloring fixed under rotation by 1 must be
single colored! Contradiction.

Applying CFF we get

N =
1

11

10∑

n=0

I(n) =
1

11
· 1980 = 180.

Example 17.2.2. How many roulettes with 12 wedges painted 2 blue, 2 green and 8 red are there

when we allow rotations?

Let S be the set of painted roulettes. Let us enumerate the sectors of a roulette by the numbers

1, . . . , 12. The set S is a set of

(
12

2

)(
10

2

)

= 2970 elements (choose which 2 are blue, and then

choose out of the ten left which 2 are green).

Let G be the group Z/12Z. It acts on S by rotations. The element 1 rotates a painted roulette
by angle 2π/12 anti-clockwise. The element n rotates a painted roulette by angle 2nπ/12 anti-

clockwise. We are interested in N – the number of orbits for this action. We use CFF.

The identity element always fixes the whole set. Thus I(0) = 2970. We claim that if 1 ≤ i ≤ 11
and i 6= 6 then i doesn’t fix any element of S. Indeed, suppose that i fixes a painted roulette. Say
in that roulette the r-th sector is blue. Then so must be the i + r sector (because the r-th sector

goes under the action of i to the r + i-th sector). Therefore so must be the r +2i sector. But there

are only 2 blue sectors! The only possibility is that the r + 2i sector is the same as the r sector,

namely, i = 6.

If i is equal to 6 and we enumerate the sectors of a roulette by the numbers 1, . . . , 12 we may

write i as the permutation

(1 7)(2 8)(3 9)(4 10)(5 11)(6 12).

In any coloring fixed by i = 6 the colors of the pairs (1 7), (2 8), (3 9), (4 10), (5 11) and (6 12)

must be the same. We may choose one pair for blue, one pair for green. The rest would be red.

Thus there are 30 = 6 · 5 possible choices. We summarize:

element g I(g)

0 2970

i 6= 6 0

i = 6 30

Applying CFF we get that there are

N =
1

12
(2970 + 30) = 250

different roulettes.

Example 17.2.3. In this example S is the set of necklaces made of four rubies and four sapphires

laid on the table. We ask how many necklaces there are when we allow rotations and flipping-over.

We may talk of S as the colorings of a regular octagon, four vertices are green and four are red.

The group G = D8 acts on S and we are interested in the number of orbits for the group G.

The results are the following
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element g I(g)

e 70

x, x3, x5, x7 0

x2, x6 2

x4 6

yx i for i = 0, . . . , 7 6

We explain how the entries in the table are obtained:

The identity always fixes the whole set S. The number of elements in S is

(
8

4

)

= 70 (choosing

which 4 would be green).

The element x cannot fix any coloring, because any coloring fixed by x must have all sections

of the same color (because x = (1 2 3 4 5 6 7 8)). If x r fixes a coloring s0 so does (x
r )r = x (r

2)

because the stabilizer is a subgroup. Apply that for r = 3, 5, 7 to see that if x r fixes a coloring so

does x , which is impossible. 6

Now, x2 written as a permutation is (1 3 5 7)(2 4 6 8). We see that if, say 1 is green so are

3, 5, 7 and the rest must be red. That is, all the freedom we have is to choose whether the cycle

(1 3 5 7) is green or red. This gives us two colorings fixed by x2. The same rational applies to

x6 = (8 6 4 2)(7 5 3 1).

Consider now x4. It may written in permutation notation as (1 5)(2 6)(3 7)(4 8). In any coloring

fixed by x4 each of the cycles (1 5)(2 6)(3 7) and (4 8) must be single colored. There are thus
(
4

2

)

= 6 possibilities (Choosing which 2 out of the four cycles would be green).

It remains to deal with the elements yx i . We recall that these are all reflections. There are two

kinds of reflections. One may be written using permutation notation as

(i1 i2)(i3 i4)(i5 i6)

(with the other two vertices being fixed. For example y = (2 8)(3 7)(4 6) is of this form). The

other kind is of the form

(i1 i2)(i3 i4)(i5 i6)(i7 i8).

(For example yx = (1 8)(2 7)(3 6)(4 5) is of this sort). Whatever is the case, one uses similar

reasoning to deduce that there are 6 colorings preserved by a reflection.

One needs only apply CFF to get that there are

N =
1

16
(70 + 2 · 2 + 6 + 8 · 6) = 8

distinct necklaces.

17.3. The game of 16 squares. 7 Sam Loyd (1841-1911) was America’s greatest puzzle expert

and invented thousands of ingenious and tremendously popular puzzles.

In this game, we are given a 4× 4 box with 15 squares numbered 1, 2, . . . , 15 and one free spot.
At every step one is allowed to move an adjacent square into the vacant spot. For example

6x (3
2) = x9 = x because x8 = e, etc.

7This doesn’t have much to do with group theory. At least an elementary solution is available with no notions from

groups. It is given here for sheer fun and as illustration of “acting on a set”.
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

7→
1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

7→
1 2 3 4

5 6 7 8

9 10 12

13 14 11 15

7→
1 2 3 4

5 6 7 8

9 10 12

13 14 11 15

7→
1 2 3 4

5 6 7 8

9 14 10 12

13 11 15

Can one pass from the original position to the position below?

1 2 3 4

5 6 7 8

9 10 11 12

13 15 14

It turns out that the answer is no. Can you prove it? Apparently, the puzzle was originally marketed

with the tiles in the impossible position with the challenge to rearrange them into the initial position!

Figure 7. Loyd’s 14− 15 puzzle.

17.4. Rubik’s cube. 8

Figure 8. The Rubik Cube.

In the case of the Rubik cube there is a group G acting on the cube. The group G is generated

by 6 basic moves a, b, c, d, e, f (each is a rotation of a certain “third of the cube”) and could be

thought of as a subgroup of the symmetric group on 54 = 9× 6 letters. It is called the cube group.
The structure of this group is known. It is isomorphic to

(Z/3Z7 × Z/2Z11)⋊ ((A8 × A12)⋊ Z/2Z)
8Also known as the Hungarian cube.
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(the notation will make sense once we have defined semi-direct products). The order of the cube

group is

227 · 314 · 53 · 72 · 11 = 43, 252, 003, 274, 489, 856, 000,

while the order of S54 is

230843697339241380472092742683027581083278564571807941132288000000000000.

One is usually interested in solving the cube. Namely, reverting it to its original position. Since

the current position was gotten by applying an element τ of G, in group theoretic terms we attempt

to find an algorithm of writing every G in terms of the generators a, b, c, d, e, f since then also τ−1

will have such an expression, which is nothing else than a series of moves that return the cube to its

original position. It is natural do deal with the set of generators a±1, b±1, . . . , f ±1 (why do 3 times
a when you can do a−1??). A common question is what is the maximal number of basic operations
that may be required to return a cube to its original position. Otherwise said, what is the diameter

of the Cayley graph? But more than that, is there a simple algorithm of finding for every element

of G an expression in terms of the generators?

The Cayley graph.

Suppose that {gα : α ∈ I} are generators for G. We define an oriented graph taking as vertices the elements
of G and taking for every g ∈ G an oriented edge from g to ggα. If we forget the orientation, the property

of {gα : α ∈ I} being a set of generators is equivalent to the graph being connected.
Suppose that the set of generators consists of n elements. Then, by definition, from every vertex we have n

vertices emanating and also n arriving. We see therefore that all Cayley graphs are regular graphs. This, in

turn, gives a systematic way of constructing regular graphs.

Suppose we take as a group the symmetric group (see below) Sn and the transpositions as generators. One

can think as a permutation as being performed in practice by successively swapping the places of two elements.

Thus, in the Cayley graph, the distance between a permutation and the identity (the distance is defined as the

minimal length of a path between the two vertices) is the minimal way to write a permutation as a product

of transpositions, and could be thought of as a certain measure of the complexity of a permutation.

The figure below gives the Cayley graph of S3 with respect to the generating set of transpositions. It is a

3-regular oriented graph and a 6 regular graph.
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Now, since the Cayley graph of G has 12 edges emanating from each vertex (and is connected

by definition of the cube group) it follows that to reach all positions one is forced to allow at least

log12 |G| ∼ 18.2, thus at least 19, moves.9

9There is a subtle point we are glossing over here. It is that perhaps there are operations that move the cube but

leave the overall coloring fixed (”we move the pieces but in the end it looks the same”). That is, is the stabilizer of

every position of the cube trivial? It seems that the answer is yes; note that it is enough to prove that for the original

position (as stabilizers of elements in the same orbit are conjugate subgroups). Here, it seems that the key point is

to consider the corner pieces and then the edge pieces.
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Part 4. The Symmetric Group

18. Conjugacy classes

Let σ ∈ Sn. We write σ as a product of disjoint cycles:
σ = σ1σ2 · · ·σr .

Since disjoint cycles commute, the order does not matter and we may assume that the length of

the cycles is non-decreasing. Namely, if we let |(i1i2 . . . it)| = t (we shall call it the length of the

cycle; it is equal to its order as an element of Sn), then

|σ1| ≤ |σ2| ≤ · · · ≤ |σr |.
We may also allow cycles of length 1 (they simple stand for the identity permutation) and then we

find that

n = |σ1|+ |σ2|+ · · ·+ |σr |.
We therefore get a partition p(σ) of the number n, that is, a set of non-decreasing positive integers

1 ≤ a1 ≤ a2 ≤ · · · ≤ ar such that n = a1+ a2+ · · ·+ ar . Note that every partition is obtained from
a suitable σ.

Lemma 18.0.1. Two permutations, σ and ρ, are conjugate (namely there is a τ such that τστ−1 =
ρ) if and only if p(σ) = p(ρ).

Proof. Recall the formula we used before, if σ(i) = j then (τστ−1)(τ(i)) = τ(j). This implies that
for every cycle (i1 i2 . . . it) we have

τ(i1 i2 . . . it)τ
−1 = (τ(i1) τ(i2) . . . τ(it )).

In particular, since τστ−1 = (τσ1τ−1)(τσ2τ−1) · · · (τσrτ−1), a product of disjoint cycles, we get
that p(σ) = p(τστ−1).

Conversely, suppose that p(σ) = p(ρ). Say

σ = σ1σ2 . . . σr

= (i11 . . . i
1
t(1))(i

2
1 . . . i

2
t(2)) . . . (i

r
1 . . . i

r
t(r)),

and

ρ = ρ1ρ2 . . . ρr

= (j11 . . . j
1
t(1))(j

2
1 . . . j

2
t(2)) . . . (j

r
1 . . . j

r
t(r)).

Define τ by

τ(iab ) = j
a
b ,

then τστ−1 = ρ. �

Corollary 18.0.2. Let p(n) be the number of partitions of n.10 There are p(n) conjugacy classes

in Sn.

10Since 2 = 2 = 1 + 1, 3 = 3 = 1 + 2 = 1 + 1 + 1, 4 = 4 = 2 + 2 = 1 + 3 = 1 + 1 + 2 = 1 + 1 +

1 + 1, 5 = 5 = 2 + 3 = 1 + 4 = 1 + 1 + 3 = 1 + 2 + 2 = 1 + 1 + 1 + 2 = 1 + 1 + 1 + 1 + 1 . . . we get

p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5, p(5) = 7, p(6) = 11, . . . . The function p(n) is asymptotic to eπ
√
2n/3

4n
√
3
.
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Next, we discuss conjugacy classes in An. Note that if σ ∈ An then since An⊳Sn also τστ−1 ∈ An.
That is, all the Sn-conjugacy classes of elements of An are in An. However, we would like to consider

the An-conjugacy classes of elements of An.

Lemma 18.0.3. The Sn-conjugacy class of an element σ ∈ An is a disjoint union of [Sn : AnCSn(σ)]
An-conjugacy classes. In particular, it is one An-conjugacy class if there is an odd permutation

commuting with σ and is two An-conjugacy class if there is no odd permutation commuting with σ.

In the latter case, the Sn-conjugacy class of σ is the disjoint union of the An-conjugacy class of σ

and the An-conjugacy class of τστ
−1, where τ can be chosen to be any odd permutation.

Proof. Let A be the Sn-conjugacy class of σ. Write A =
∐

α∈J Aα, a disjoint union of An-conjugacy
classes. We first note that Sn acts on the set B = {Aα : α ∈ J}. Indeed, if Aα is the An-conjugacy
class of σα, and ρ ∈ Sn then define ρAαρ

−1 to be the An-conjugacy class of ρσαρ−1. This is
well defined: if σ′α is another representative for the An-conjugacy class of σα then σ

′
α = τσατ

−1

for some τ ∈ An. It follows that ρσ′αρ−1 = ρτσατ−1ρ−1 = (ρτρ−1)(ρσαρ−1)(ρτρ−1)−1 is in the
An-conjugacy class of ρσαρ

−1 (because ρτρ−1 ∈ An).
The action of Sn is transitive on B. Consider the An-conjugacy class of σ and denote it by A0.

The stabilizer of A0 is just AnCSn(σ). Indeed, ρA0ρ
−1 = A0 if and only if ρσρ

−1 is in the same
An-conjugacy class as σ. Namely, if and only if ρσρ

−1 = τστ−1 for some τ ∈ An, equivalently,
(τ−1ρ)σ = σ(τ−1ρ), that is (τ−1ρ) ∈ CSn(σ) which is to say that ρ ∈ AnCSn(σ).
We conclude that the size of B is the length of the orbit of A0 and hence is of size [Sn : AnCSn(σ)].

Since [Sn : An] = 2, we get that [Sn : AnCSn(σ)] = 1 or 2, with the latter happening if and only

if An ⊇ CSn(σ). That is, if and only if σ does not commute with any odd permutation. Moreover,
the orbit consists of the An-conjugacy classes of the elements gσ, g running over a complete set of

representatives for the cosets of AnCSn(σ) in Sn. �

In the case we need this lemma, that is in the case of A5 one can decide the situation “by

inspection”. However, it is interesting to understand in general when does the centralizer contain

an odd permeation.

Lemma 18.0.4. Let σ be a permutation and write σ as a product of disjoint cycles of non-increasing

length:

σ = c1c2 · · · ca = (i11 , i12 , . . . , i1r1)(i21 , . . . , i2r2) · · · (ia1 , . . . , iara).
Thus, r1 ≥ r2 ≥ · · · ≥ ra and we have also listed cycles of length 1 if any. The centralizer of σ

contains an odd permutation unless each cycle has odd length and all the length are different, that

is, unless each ri is odd and r1 > r2 > · · · > ra. In that case, the centralizer of σ consists of even

permutations only.

Proof. Suppose first that there is a cycle cj of even length, which is thus an odd permutation.

Since disjoint cycles commute cjcic
−1
j = ci and so cjσc

−1
j = (cjc1c

−1
j )(cjc2c

−1
j ) · · · (cjcac−1j ) =

c1 · · · ca = σ. Thus, the centralizer of σ contains the odd permutation cj .
Suppose now that there are two cycles of the same length. To ease notation, let’s assume these

are c1 and c2, but the same argument works in general. We may assume that they are both of odd

length, otherwise we have already shown that the centralizer contains an odd permutation. Then,

let τ = (i11 i
2
1 )(i

1
2 i
2
2 ) · · · (i1r1 i2r1). Then τ is an odd permutation and we find τστ−1 = σ.

The case left at this point is when σ is a product of disjoint cycles, all of odd lengths and strictly

decreasing order: r1 > r2 > · · · > ra. In this case, if τστ
−1 = σ, that is,

(τ(i11 ), τ(i
1
2 ), . . . , τ((i

1
r1))(τ(i

2
1 ), . . . , τ((i

2
r2)) · · · (τ(ia1 ), . . . , τ(iara))

= (i11 , i
1
2 , . . . , i

1
r1
)(i21 , . . . , i

2
r2
) · · · (ia1 , . . . , iara),
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then, by comparing sizes of cycles, we see that τciτ
−1 = ci . But that means that τ = c

b1
1 c

b2
2 · · · cbaa

for some bi and so τ is even. �

19. The simplicity of An

In this section we prove that An is a simple group for n 6= 4. The cases where n < 4 are trivial; for
n = 4 we have seen it fails (the Klein 4-group is normal). We shall focus on the case n ≥ 5 and
prove the theorem inductively. We therefore first consider the case n = 5.

We make the following general observation:

Lemma 19.0.5. Let N⊳G then N is a disjoint union of G-conjugacy classes.

Proof. Distinct conjugacy classes, being orbits for a group action, are always disjoint. If N is normal

and n ∈ N then its conjugacy class {gng−1 : g ∈ G} is contained in N. �

Let us list the conjugacy classes of S5 and their sizes.

Conjugacy classes in S5

cycle type representative size of conjugacy class order even?

5 (12345) 24 5 X

1+4 (1234) 30 4 ×
1+1+3 (123) 20 3 X

1+ 2+ 2 (12)(34) 15 2 X

1 + 1 + 1 + 2 (12) 10 2 ×
1 + 1+ 1+ 1+ 1 1 1 1 X

2+ 3 (12)(345) 20 6 ×
Let τ be a permutation commuting with (12345). Then

(12345) = τ(12345)τ−1 = (τ(1) τ(2) τ(3) τ(4) τ(5))

and so τ is the permutation i 7→ i + n for n = τ(1) − 1. In particular, τ = (12345)n−1 and
so is an even permutation. We conclude that the S5-conjugacy class of (12345) breaks into two

A5-conjugacy classes, with representatives (12345), (21345).

One checks that (123) commutes with the odd permutation (45). Therefore, the S5-conjugacy

class of (123) is also an A5-conjugacy class. Similarly, the permutation (12)(34) commutes with

the odd permutation (12). Therefore, the S5-conjugacy class of (12)(34) is also an A5-conjugacy

class. We get the following table for conjugacy classes in A5.

Conjugacy classes in A5

cycle type representative size of conjugacy class order

5 (12345) 12 5

5 (21345) 12 5

1+1+3 (123) 20 3

1+ 2+ 2 (12)(34) 15 2

1 + 1+ 1+ 1+ 1 1 1 1

If N⊳A5 then |N| divides 60 and is the sum of 1 and some of the numbers in (12, 12, 20, 15). One
checks that this is impossible unless N = A5. We deduce
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Lemma 19.0.6. The group A5 is simple.

Theorem 19.0.7. The group An is simple for n ≥ 5.
Proof. The proof is by induction on n. We may assume that n ≥ 6. Let N be a normal subgroup
of An and assume N 6= {1}.

First step: There is a permutation ρ ∈ N, ρ 6= 1 and 1 ≤ i ≤ n such that ρ(i) = i .
Indeed, let σ ∈ N be a non-trivial permutation and write it as a product of disjoint non-trivial

cycles, σ = σ1σ2 . . . σs , say in decreasing length. Suppose that σ1 is (i1i2 . . . ir ), where r ≥ 3. Then
conjugating by the transposition τ = (i1i2)(i5i6), we get that τστ

−1σ ∈ N, τστ−1σ(i1) = i1 and

if r > 3 τστ−1σ(i2) = i4 6= i2. If r = 3 then σ = (i1i2i3)(i4 . . . ) . . . . Take τ = (i1i2)(i3i4) then

τστ−1σ(i1) = i1 and τστ−1σ(i2) = τσ(i4) ∈ {i3, i5}. Thus, τστ−1σ is a permutation of the kind
we were seeking.

It still remains to consider the case where each σi is a transposition. Then, if σ = (i1i2)(i3i4) then

σ moves only 4 elements and thus fixes some element and we are done, else σ = (i1i2)(i3i4)(i5i6) . . . .

Let τ = (i1i2)(i3i5) then τστ
−1σ = (i2i1)(i5i4)(i3i6) . . . (i1i2)(i3i4)(i5i6) · · · = (i3i5)(i4i6) . . . and so

is a permutation of the sort we were seeking.

Second step: N = An.

Consider the subgroups Gi = {σ ∈ An : σ(i) = i}. We note that each Gi is isomorphic to An−1
and hence is simple. By the preceding step, for some i we have that N ∩ Gi is a non-trivial normal
subgroup of Gi , hence equal to Gi .

Next, note that (12)(34)G1(12)(34) = G2 and, similarly, all the groups Gi are conjugate in An
to each other. It follows that N ⊇< G1, G2, . . . , Gn >. Now, every element in Sn is a product of

(usually not disjoint) transpositions and so every element σ in An is a product of an even number of

transpositions, σ = λ1µ1 . . . λrµr (λi , µi transpositions). Since n > 4 every product λiµi belongs

to some Gj and we conclude that < G1, G2, . . . , Gn >= An.

�
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Part 5. p-groups, Cauchy’s and Sylow’s Theorems

20. The class equation

Let G be a finite group. G acts on itself by conjugation: g ⋆ h = ghg−1. The class equation is
the partition of G to orbits obtained this way. The orbits are called in this case conjugacy classes.

Note that the stabilizer of h ∈ G is CG(h) and so its orbit has length [G : CG(h)]. Note thus the
elements with orbit of length 1 are precisely the elements in the center Z(G) of G. We get

(3) |G| = |Z(G)|+
∑

reps.x 6∈Z(G)

|G|
|CG(x)|

.

Remark 20.0.8. One can prove that for every n > 0 there are only finitely many finite groups with

exactly n conjugacy classes. (One uses the following fact: Given n > 0 and a rational number q

there are only finitely many n-tuples (c1, . . . , cn) of natural numbers such that q =
1
c1
+ · · ·+ 1

cn
.)

For example, the only group with one conjugacy class is the trivial group {1}; the only group with
two conjugacy classes is Z/2Z; the only groups with 3 conjugacy classes are Z/3Z and S3.

21. p-groups

Let p be a prime. A finite group G is called a p-group if its order is a positive power of p.

Lemma 21.0.9. Let G be a finite p group. Then the center of G is not trivial.

Proof. We use the class equation 3. Note that if x 6∈ Z(G) then CG(x) 6= G and so the integer
|G|

|CG(x)| is divisible by p. Thus, the left hand side of

|G| −
∑

reps.x 6∈Z(G)

|G|
|CG(x)|

= |Z(G)|

is divisible by p, hence so is the right hand side. In particular |Z(G)| ≥ p. �

Theorem 21.0.10. Let G be a finite p group, |G| = pn.
(1) For every normal subgroup H⊳G, H 6= G, there is a subgroup K⊳G such that H < K < G

and [K : H] = p.

(2) There is a chain of subgroups H0 = {1} < H1 < · · · < Hn = G, such that each Hi⊳G and

|Hi | = pi .

Proof. (1) The group G/H is a p group and hence its center is a non-trivial group. Take an

element e 6= x ∈ Z(G/H); its order is pr for some r . Then y = xpr−1 has exact order p.
Let K′ =< y >. It is a normal subgroup of G/H of order p (y commutes with any other

element). Let K = π−1H (K
′). By the Third Isomorphism Theorem K is a normal subgroup

of G, K/H ∼= K′ so [K : H] = p.
(2) The proof just given shows that every p group has a normal subgroup of p elements. Now

apply repeatedly the first part.

�

A variant of the theorem above is the following.
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Proposition 21.0.11. Let G be a p-group and let H be a proper subgroup of G, then there is a

subgroup H+ ⊃ H such that [H+ : H] = p and, if H is not the identity subgroup, there is a subgroup
H− ⊂ H such that [H : H−] = p.
Proof. We argue by induction on the order of G. If |G| = p the Proposition is clear. Assume the
result for groups of order pr and let G have order pr+1 with r ≥ 1. From the Theorem applied to
H = {1}, we know that G has a normal subgroup with p elements, say J. If J is not contained in
H let H+ = JH. As J is normal, H+ is a subgroup and |H+| = |J| · |H|/|J ∩H| = p · |H|.
If J ⊆ H, consider G/J that has order pr and the proper subgroup H/J. There is a subgroup K

of G/J in which H/J is contained with index p. Let H+ be the pre image of K under the natural

homomorphism G → G/J. Then H+ ⊃ H and K/(H/J) = (H+/J)/(H/J) ∼= H+/H and thus H

has index p in H+. That finishes the first part of the Proposition.

As to the second part, this follows easily from the Theorem. H is itself a p-group and so it has

a series of subgroups as in part (2) of the theorem, in particular a subgroup of index p. �

21.1. Examples of p groups.

21.1.1. Groups of order p. We proved in the assignments that every such group is cyclic, thus

isomorphic to Z/pZ.

21.1.2. Groups of order p2. We shall prove in the assignments that every such group is commutative.

It then follows from the structure theorem for finite abelian groups that such a group is either

isomorphic to Z/p2Z or to (Z/pZ)2.

21.1.3. Groups of order p3. First, there are the abelian groups Z/p3Z, Z/p2Z×Z/pZ and (Z/pZ)3.
We shall prove in the assignments that if G is not abelian then G/Z(G) cannot be cyclic. It

follows that Z(G) ∼= Z/pZ and G/Z(G) ∼= (Z/pZ)2. One example of such a group is provided by
the matrices 



1 a b

0 1 c

0 0 1



 ,

where a, b, c ∈ Fp. Note that if p ≥ 3 then every element in this group is of order p (use
(I+N)p = I+Np), yet the group is non-abelian. (This group, using a terminology to be introduced

later, is a semi-direct product (Z/pZ)2 ⋊ Z/pZ.) More generally the upper unipotent matrices in
GLn(Fp) are a group of order pn(n−1)/2 in which every element has order p if p ≥ n. Notice that

these groups are non-abelian.

Getting back to the issue of non-abelian groups of order p3, one can prove that there is precisely

one additional non-abelian group of order p3. It is generated by two elements x, y satisfying:

xp = yp
2
= 1, xyx−1 = y1+p. (This group is a semi-direct product (Z/p2Z)⋊ Z/pZ.)

21.2. The Frattini subgroup. Let G be a group. Define the Frattini subgroup Φ(G) of G to be

the intersection of all maximal subgroups of G, where by a maximal subgroup we mean a subgroup

of G, not equal to G and not contained in any proper subgroup of G. If G has no such subgroup

(for example, if G = {1}, or if G = Q with addition) then we define Φ(G) = G.
Proposition 21.2.1. Let G be a finite p-group. The Frattini subgroup of G is a normal subgroup

of G and has the following properties:

(1) G/Φ(G) is a non-trivial abelian group and every non-zero element in it has order p. It is the

largest quotient of G with this property.

(2) Φ(G) = GpG′, where G′ is the commutator subgroup of G and Gp is the subgroup of G
generated by the set {gp : g ∈ G}.
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Proof. Any automorphism f : G → G takes maximal subgroups to maximal subgroups. Therefore,

Φ(G) is a characteristic subgroup, in particular normal.

Since any maximal subgroup H has index p (by our previous results), it follows from the exercises

that it is normal because p is the minimal prime dividing the order of G. Thus, G/H is a group

with p elements and so abelian. Thus, H ⊇ G′. It follows that Φ(G) ⊃ G′ and therefore G/Φ(G) is
abelian. Further, let g ∈ G then gH has order 1 or p in G/H and, in particular gpH = (gH)p = H.
That is, H ⊃ Gp and so Φ(G) ⊇ GpG′ and every non-trivial element of G/Φ(G) has order p.
Let N be a normal subgroup of G and suppose G/N is elementary abelian. The same argument

as above shows that N ⊇ GpG′.
It remains to show that Φ(G) ⊆ GpG′. First, note that since G′ is normal in G, indeed GpG′ is a

subgroup of G. If G/GpG′ is cyclic it has a unique maximal subgroup {0} and its preimage GpG′ is
a maximal subgroup of G, in particular containing Φ(G). Suppose then that G/GpG′ is not cyclic.
Suppose there is an element g ∈ Φ(G) \ GpG′. Pass to G/GpG′ and to the image of g, ḡ in it.
Then ḡ 6= 0 and G/GpG′ is isomorphic to Frp for some r > 1, where Fp is the field of p elements
Z/pZ. In that case, we can find a hyperplane of codimension 1, say W , such that ḡ 6∈ W . The pre
image of W in G is a maximal subgroup that doesn’t contain g and that’s a contradiction. �

22. Cauchy’s Theorem

One application of group actions is to provide a simple proof of an important theorem in the

theory of finite groups.

Theorem 22.0.2. (Cauchy) Let G be a finite group of order n and let p be a prime dividing n. Then

G has an element of order p.

Proof. Let S be the set consisting of p-tuples (g1, . . . , gp) of elements of G, considered up to cyclic

permutations. Thus if T is the set of p-tuples (g1, . . . , gp) of elements of G, S is the set of orbits

for the action of Z/pZ on T by cyclic shifts . One may therefore apply CFF and get

|S| = np − n
p
+ n.

Note that n 6 ||S| .
Now define an action of G on S. Given g ∈ G and (g1, . . . , gp) ∈ S we define

g(g1, . . . , gp) = (gg1, . . . , ggp).

This is a well defined action .

Since the order of G is n, since n 6 ||S|, and since S is a disjoint union of orbits of G, there must be
an orbit Orb(s) whose size is not n. However, the size of an orbit is |G|/|Stab(s)|, and we conclude
that there must an element (g1, . . . , gp) in S with a non-trivial stabilizer. This means that for some

g ∈ G, such that g 6= e, we have
(gg1, . . . , ggp) is equal to (g1, . . . , gp) up to a cyclic shift.

This means that for some i we have

(gg1, . . . , ggp) = (gi+1, gi+2, gi+3, . . . , gp, g1, g2, . . . , gi).

Therefore, gg1 = gi+1, g
2g1 = ggi+1 = g2i+1, . . . , g

pg1 = · · · = gpi+1 = g1 (we always read the
indices mod p). That is, there exists g 6= e with

gp = e.

�



44 EYAL Z. GOREN, MCGILL UNIVERSITY

23. Sylow’s Theorems

Let G be a finite group and let p be a prime dividing its order. Write |G| = prm, where (p,m) = 1.
By a p-subgroup of G we mean a subgroup whose order is a positive power of p. By a maximal p

subgroup of G we mean a p-subgroup of G not contained in a strictly larger p-subgroup.

Theorem 23.0.3. Every maximal p-subgroup of G has order pr (such a subgroup is called a Sylow

p-subgroup) and such a subgroup exists. All Sylow p-subgroups are conjugate to each other. The

number np of Sylow p-subgroups satisfies: (i) np|m; (ii) np ≡ 1 (mod p).

Remark 23.0.4. To say that P is conjugate to Q means that there is a g ∈ G such that gPg−1 = Q.
Recall that the map x 7→ gxg−1 is an automorphism of G. This implies that P and Q are isomorphic
as groups.

Another consequence is that to say there is a unique p-Sylow subgroup is the same as saying that

a p-Sylow is normal. This is often used this way: given a finite group G the first check in ascertaining

whether it is simple or not is to check whether the p-Sylow subgroup is unique for some p dividing

the order of G. Often one engages in combinatorics of counting how many p-Sylow subgroups can

be, trying to conclude there can be only one for a given p and hence getting a normal subgroup.

We first prove a lemma that is a special case of Cauchy’s Theorem 22.0.2, but much easier. Hence,

we supply a self-contained proof that doesn’t use Cauchy’s theorem.

Lemma 23.0.5. Let A be a finite abelian group, let p be a prime dividing the order of A. Then A

has an element of order p.

Proof. We prove the result by induction on |A|. Let N be a maximal subgroup of A, distinct from
A. If p divides the order of N we are done by induction. Otherwise, let x 6∈ N and let B =< x >.

By maximality the subgroup BN is equal to A. On the other hand |BN| = |B| · |N|/|B ∩ N|.
Thus, p divides the order of B. That is the order of x is pa for some a and so the order of xa is

precisely p. �

Proposition 23.0.6. There is a p-subgroup of G of order pr .

Proof. We prove the result by induction on the order of G. Assume first that p divides the order of

Z(G). Let x be an element of Z(G) of order p and let N =< x >, a normal subgroup. The order

of G/N is pr−1m and by induction it has a p-subgroup H′ of order pr−1. Let H be the preimage of
H′. It is a subgroup of G such that H/N ∼= H′ and thus H has order |H′| · |N| = pr .
Consider now the case where p does not divide the order of Z(G). Consider the class equation

|G| = |Z(G)|+
∑

reps.x 6∈Z(G)

|G|
|CG(x)|

.

We see that for some x 6∈ Z(G) we have that p does not divide |G|
|CG(x)| . Thus, p

r divides CG(x).

The subgroup CG(x) is a proper subgroup of G because x 6∈ Z(G). Thus, by induction CG(x), and
hence G, has a p-subgroup of order pr . �

Lemma 23.0.7. Let P be a maximal p-subgroup and Q any p-subgroup then

Q ∩ P = Q ∩ NG(P ).

Proof. Since P ⊂ NG(P ) also Q ∩ P ⊂ Q ∩ NG(P ). Let H = Q ∩ NG(P ). Then, since P⊳NG(P )
we have that HP is a subgroup of NG(P ). Its order is |H| · |P |/|H ∩ P | and so a power of p. Since
P is a maximal p-subgroup we must have HP = P and thus H ⊂ P . �
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Proof. (Of Theorem) Let P be a Sylow subgroup of G. Such exists by Proposition 23.0.6. Let

S = {P1, . . . , Pa}

be the set of conjugates of P = P1. That is, the subgroups gPg
−1 one gets by letting g vary over

G. Note that for a fixed g the map P → gPg−1, x 7→ gxg−1 is a group isomorphism. Thus, every
Pi is a Sylow p-subgroup. Our task is to show that every maximal p-subgroup is an element of S

and find out properties of a.

Let Q be any p-subgroup of G. The subgroup Q acts by conjugation on S. The size of Orb(Pi)

is |Q|/|StabQ(Pi)|. Now StabQ(Pi) = Q ∩ NG(Pi) = Q ∩ Pi by Lemma 23.0.7. Thus, the orbit
consists of one element if Q ⊂ Pi and is a proper power of p otherwise.
Take first Q to be P1. Then, the orbit of P1 has size 1. Since P1 is a maximal p-subgroup it is

not contained in any other p-subgroup, thus the size of every other orbit is a power of p. It follows,

using that S is a disjoint union of orbits, that a = 1+tp for some t. Note also that a = |G|/|NG(P )|
and thus divides |G|.
We now show that all maximal p-subgroups are conjugate. Suppose, to the contrary, that Q is a

maximal p-subgroup which is not conjugate to P . Thus, for all i , Q 6= Pi and so Q ∩ Pi is a proper
subgroup of Q. It follows then that S is a union of disjoint orbit all having size a proper power of

p. Thus, p|a. This is a contradiction. �

23.1. Examples and applications.

23.1.1. p-groups. Every finite p-group is of course the only p-Sylow subgroup (trivial case).

23.1.2. Z/6Z. In every abelian group the p-Sylow subgroups are normal and unique. The 2-Sylow
subgroup is < 3 > and the 3-Sylow subgroup is < 2 >.

23.1.3. S3. Consider the symmetric group S3. Its 2-Sylow subgroups are given by {1, (12)},
{1, (13)}, {1, (23)}. Note that indeed 3|3 = 3!/2 and 3 ≡ 1 (mod 2). It has a unique 3-Sylow
subgroup {1, (123), (132)}. This is expected since n3|2 = 3!/3 and n3 ≡ 1 (mod 3) implies n3 = 1.

23.1.4. S4. We want to find the 2-Sylow subgroups. Their number n2|3 = 24/8 and is congruent
to 1 modulo 2. It is thus either 1 or 3. Note that every element of S4 has order 1, 2, 3, 4. The

number of elements of order 3 is 8 (the 3-cycles). Thus, we cannot have a unique subgroup of order

8 (it will contain any element of order 2 or 4). We conclude that n2 = 3. One such subgroup is

D8 ⊂ S4; the rest are conjugates of it.
Further, n3|24/3 and n3 ≡ 1 (mod 3). If n3 = 1 then that unique 3-Sylow would need to contain

all 8 element of order 3 but is itself of order 3. Thus, n3 = 4.

Remark 23.1.1. A group of order 24 is never simple, though it does not mean that one of the Sylow

subgroups is normal, as the example of S4 shows. However, consider the representation of a group

G of order 24 on the cosets of P , where P is its 2-Sylow subgroup. It gives us, as we have seen in

the past, a normal subgroup of G, contained in P , whose index divides 6 = [G : P ]! and hence is

non-trivial.
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Call this subgroup K. Then, we see that |K| = 4; it is preserved under conjugation hence is a
subgroup of all three 2-Sylow subgroups, say P, P ′, P ′′. We have the following picture

S4

{{
{{ EE

EE

P

CC
CC

C P ′ P ′′

yy
yy

y

K

{e}

23.1.5. Groups of order pq. Let p < q be primes. Let G be a group of order pq. Then nq|p, nq ≡ 1
(mod q). Since p < q we have nq = 1 and the q-Sylow subgroup is normal (in particular, G is never

simple). Also, np|q, np ≡ 1 (mod p). Thus, either np = 1, or np = q and the last possibility can
happen only for q ≡ 1 (mod p).
We conclude that if p 6 |(q − 1) then both the p-Sylow P subgroup and the q-Sylow subgroup Q

are normal. Note that the order of P ∩Q divides both p and q and so is equal to 1. Let x ∈ P, y ∈ Q
then [x, y ] = (xyx−1)y−1 = x(yx−1y−1) ∈ P ∩Q = {1}. Thus, PQ, which is equal to G, is abelian.
We shall later see that whenever p|(q − 1) there is a non-abelian group of order pq (in fact,

unique up to isomorphism). The case of S3 falls under this.

23.1.6. Groups of order p2q. Let G be a group of order p2q, where p and q are distinct primes.

We prove that G is not simple:

If q < p then np ≡ 1 (mod p) and np|q < p, which implies that np = 1 and the p-Sylow subgroup

is normal.

Suppose that p < q, then nq ≡ 1 (mod q) and nq|p2, which implies that nq = 1 or p2. If
nq = 1 then the q-Sylow subgroup is normal. Assume that nq = p

2. Each pair of the p2 q-Sylow

subgroups intersect only at the identity (since q is prime). Hence they account for 1 + p2(q − 1)
elements. Suppose that there were 2 p-Sylow subgroups. They intersect at most at a subgroup

of order p. Thus, they contribute at least 2p2 − p new elements. All together we got at least
1+ p2(q− 1)+ 2p2− p = p2q+ p2− p+1 > p2q elements. That’s a contradiction and so np = 1;

the p-Sylow subgroup is normal.

Remark 23.1.2. A theorem of Burnside states that a group of order paqb with a + b > 1 is not

simple. You will prove in the assignments that groups of order pqr (p < q < r primes) are not

simple. Note that |A5| = 60 = 22 · 3 · 5 and A5 is simple. A theorem of Feit and Tompson says that
a finite simple group is either of prime order, or of even order. We can also state it as saying that

non-commutative finite simple group has even order.

23.1.7. GLn(F). Let F be a finite field with q elements. The order of GLn(F) is
(qn − 1)(qn − q) · · · (qn − qn−1) = q(n−1)n/2(qn − 1)(qn−1 − 1) · · · (q − 1). Thus, a p-Sylow has
order q(n−1)n/2. One such subgroup consists of the upper triangular matrices with 1 on the diagonal
(the unipotent group):








1 ∗ . . . ∗
0 1 · · · ∗

. . .

0 0 . . . 1







.

See the exercises for further treatment of this example.

Let us look at the particular case of G = GL2(F3) that is a group with (32 − 1)(32 − 3) = 48
elements. As 48 = 243, we are looking for 2-Sylow subgroups and for 3-Sylow subgroups, one of

which we already know. The stabilizer of the unipotent subgroup under conjugation can be checked
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to be the upper triangular matrices. And so, the number of 3-Sylow subgroups is 48/12 = 4. How

does a 2-Sylow subgroup Q of G looks like?

To give a subgroup Q of index 3 is to give a transitive action of G on 3 elements, Q being the

stabilizer of one of the elements in this action. Can we find a set of 3 elements on which G acts? I

don’t have a good idea for that, but we will find Q in a different way. Consider the dihedral group

of 8 elements. We can realize it as matrices in GL2(R); as such, it is generated by the matrices
y =

(−1
1

)
and x =

(
1

−1
)
. We can view these matrices as having entries in F3 and that way D4

is realized as a subgroup of GL2(F3) consisting of the matrices
{(±1

±1
)
,
( ±1
±1

)}
. Now consider

the matrix t =
(−1 1
1 1

)
. It is invertible and t2 =

(−1
−1
)
. So t has order 4, t2 ∈ D4. It is therefore

a good guess that Q = 〈t, D4〉. To check 〈t, D4〉 is a subgroup we need to check that t normalizes
D4. We find that tyt

−1 = xy and txt−1 = (txyt−1)(tyt−1) = (t2yt−2)(xy) = yxy = x−1 and
that’s enough to show that t normalizes D4. Now |〈t, D4〉| = |〈t〉| · |D4|/|〈t〉 ∩D4| = 4 · 8/2 = 16
and so we may take Q to be 〈t, D4〉.
23.2. Being a product of Sylow subgroups.

Proposition 23.2.1. Let G be a finite group of order pa11 p
a2
2 · · · parr , where the pi are distinct primes

and the ai > 0. Choose for every prime pi a Sylow subgroup Pi . Then

G ∼= P1 × P2 × · · · × Pr ⇐⇒ Pi⊳G, ∀i .
Before the proof we need to collect a few more facts. The proofs are easy and we leave them as

exercises.

Lemma 23.2.2. Let G be a finite group, p 6= q primes dividing the order of G and P,Q corresponding
Sylow subgroups then P ∩Q = {1}.
Lemma 23.2.3. Let G be a group with normal subgroups A,B. If A ∩ B = {1} then the elements
of A commute with those of B, namely, for all a ∈ A, b ∈ B,

ab = ba.

We now prove the Proposition 23.2.1. Suppose that each Pi is normal. Define a function

f : P1 × · · · Pr → G, f (x1, . . . , xr) = x1x2 · · · xr .
Using the lemmas above, we see that Pi and Pj commutes for all i 6= j . A direct verification

now gives that f is a homomorphism. One proves by induction on i that the order of P1 · · ·Pi
is pa11 · · · paii and that it is a subgroup. For example, since P2 is normal, P1P2 is a subgroup and
♯P1P2 = ♯P1♯P2/(♯(P1 ∩ P2)). But by the first lemma P1 ∩ P2 = {1} and so ♯P1P2 = ♯P1♯P2.
Conversely, if G ∼= P1×P2×· · ·×Pr , then, in the left hand side, each group {1}×· · ·×Pi×· · ·×{1}

is a normal pi -Sylow subgroup. Thus, also, in the right hand side, each pi -Sylow is normal.
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Part 6. Composition series, the Jordan-Hölder theorem and solvable groups

24. Composition series

24.1. Two philosophies. In the study of finite groups one can sketch two broad philosophies:

The first one, that we may call the “Sylow philosophy” (though such was not made by Sylow,

I believe), is given a finite group to study its p-subgroups and then study how they fit together.

Sylow’s theorems guarantee that the size of p-subgroup is as big as one can hope for, guaranteeing

the first step can be taken. The theory of p-groups, the second step, is a beautiful and powerful

theory, which is quite successful. I know little about a theory that tells us how p-groups fit together.11

The second philosophy, that one may call the “Jordan-Hölder philosophy”, suggests given a group

G to find a non-trivial normal subgroup N in G and study the possibilities for G given N and G/N.

The first step then is to hope for the classification of all finite simple groups. Quite astonishingly,

this is possible and was completed towards the end of the last (20th) century.

The second step is figuring out how to create groups G from two given subgroups N and H such

that N will be a normal subgroup of G and H isomorphic to G/H. There is a lot known here. We

have seen one machinery, the semi-direct product N ⋊H.

25. The Jordan-Hölder theorem and solvable groups

25.1. Composition series and composition factors. Let G be a group. A normal series for G is

a series of subgroups

G = G0 ⊲ G1 ⊲ · · · ⊲ Gn = {1}.

A composition series for G is a series of subgroups

G = G0 ⊲ G1 ⊲ · · · ⊲ Gn = {1},

such that Gi−1/Gi is a nontrivial simple group for all i = 1, . . . , n. The composition factors are the
quotients {Gi−1/Gi : i = 1, 2, . . . , n}. The quotients are considered up to isomorphism, where the
order of the quotients doesn’t matter, but we do take the quotients with multiplicity. For example,

the group D4 has a composition series

D4 ⊲ 〈y〉 ⊲ 〈y2〉 ⊲ {1}.

The composition factors are {Z/2Z,Z/2Z,Z/2Z}.
A group G is called solvable if it has a normal series in which all the composition factors are

abelian groups.

Lemma 25.1.1. Let G be a finite group. G is solvable if and only if it has a composition series

whose composition factors are cyclic groups of prime order.

Proof. to be added... (see class notes for proof). �

11The class of nilpotent groups turns out to be the same as the class of groups that are a direct product of their

p-Sylow subgroups.
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25.2. Jordan-Hölder Theorem. The Jordan-Holder theorem clarifies greatly the yoga behind the

concept of composition series.

Theorem 25.2.1. Let G be a finite group. Any two composition series for G have the same

composition factors (considered with multiplicity).

Note that a consequence of the theorem is that any two composition series have the same length,

since the length determines the number of composition factors.

The proof of the theorem is quite technical, unfortunately. It rests on the following lemma.12

Lemma 25.2.2. (Zassenhaus) Let A⊳A∗, B⊳B∗ be subgroups of a group G. Then

A(A∗ ∩B)⊳A(A∗ ∩B∗), B(B∗ ∩ A)⊳B(B∗ ∩ A∗),

and
A(A∗ ∩B∗)
A(A∗ ∩ B)

∼= B(B∗ ∩ A∗)
B(B∗ ∩ A) .

Before the proof, recall some easy to prove facts: (i) Let S⊳G, T < G be subgroups of a group G.

Then ST is a subgroup of G (and ST = TS). (ii) If also T⊳G then ST⊳G.

Proof. Let D be the following set:

D = (A∗ ∩ B)(A ∩ B∗).

We show that D is a normal subgroup of A∗ ∩ B∗, D = (A ∩B∗)(A∗ ∩ B) and
B(B∗ ∩ A∗)
B(B∗ ∩ A)

∼= A∗ ∩ B∗
D

.

The lemma then follows from the symmetric role played by A and B.

It is easy to check directly from the definitions that (A∗∩B)⊳A∗∩B∗ and, similarly, (A∩B∗)⊳A∗∩
B∗. It follows that D⊳A∗ ∩ B∗ and that D = (A ∩ B∗)(A∗ ∩ B). The subtle point of the proof is
to construct a homomorphism

f : B(B∗ ∩ A∗)→ A∗ ∩B∗
D

.

Let x ∈ B(B∗ ∩ A∗), say x = bc for b ∈ B, c ∈ (B∗ ∩ A∗). Let
f (x) = cD

(which is an element of A
∗∩B∗
D .)

First, f is well defined. If x = b1c1 then c1c
−1 = b−11 b ∈ (B∗ ∩ A∗) ∩ B ⊂ D. As D⊳(B∗ ∩ A∗)

and c1 ∈ (B∗ ∩A∗) also c−1c1 ∈ D, and so cD = c1D. Next, f is a homomorphism. Suppose that
x = bc, y = b1c1 and so xy = bcb1c1. Note that cb1c

−1 ∈ B (as B is normal in B∗ and c ∈ B∗)
and so xy = bb′cc1 for some b′ ∈ B. It now follows that f (xy) = f (x)f (y).
It is clear from the definition that f is a surjective homomorphism. When is x = bc ∈ Ker(f )?

This happens if and only if c ∈ D, that is x ∈ B(A∗ ∩ B)(A ∩ B∗) = B(A ∩ B∗). This shows that
B(A ∩ B∗)⊳B(A∗ ∩ B∗) and the desired isomorphism. �

Theorem 25.2.3. Let G be a group. Any two finite composition series for G are equivalent; namely,

have the same composition factors.

12Our proof follows Rotman’s in An introduction to the theory of groups.
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Proof. More generally, we prove that any two normal series for G have refinements that are equiv-

alent; namely, have the same composition factors (with the same multiplicities). This holds also

for infinite groups that may not have composition series, and so is useful in other situations. In the

case of composition series, since they cannot be refined in a non-trivial, as the quotients are simple

groups, we get that any two composition series for G (if they exist at all) are equivalent.

Thus, let

G = G0 ⊲ G1 ⊲ · · · ⊲ Gn = {1},
and

G = H0 ⊲ H1 ⊲ · · · ⊲ Hm = {1}.
First, use the second series to refine the first. Define:

Gi j = Gi+1(Gi ∩Hj).
For fixed i , this is a descending series of sets, beginning at Gi0 = Gi and ending at Gim = Gi+1.

Taking in the Zassenhaus lemma A = Gi+1, A
∗ = Gi , B = Hj+1, B

∗ = Hj gives us that Gi ,j+1 =

A(A∗B)⊳Gi j = A(A∗ ∩ B∗) (and, in particular, that these are subgroups).
Similarly, now use the first series to refine the second by defining

Hi j = Hj+1(Hj ∩ Gi).
As above, the series Hj = H0j ⊃ H1j ⊃ · · · ⊃ Hnj = Hj+1 is a series of subgroups, each normal in the
former. Finally, applying the Zassenhaus lemma again to A = Gi+1, A

∗ = Gi , B = Hj+1, B∗ = Hj ,
we find that

Gi j
Gi ,j+1

=
A(A∗ ∩ B∗)
A(A∗ ∩B)

∼= B(B∗ ∩ A∗)
B(B∗ ∩ A) =

Hi j
Hi+1,j

.

This gives a precise matching of the factors. �

Note that every finite group G has a composition series. While the composition series itself is

not unique, the composition factors are. So, in a sense, the Jordan-Hölder theorem is a unique

factorization theorem for groups. From this point of view, the simplest groups are the solvable

groups. These are the groups with the simplest factors - cyclic groups of prime order. We therefore

now focus our attention on solvable groups for a while. Their study is further motivated by Galois

theory and we shall return to this point later in §??.
25.3. Solvable groups. We first introduce some terminology. A sequence of groups and homo-

morphisms

· · · Ga
fa // Ga+1

fa+1 // Ga+2
fa+2 // · · ·

is called exact, if for every a, Im(fa) = Ker(fa+1). If the sequence terminates at Ga there is no

condition on Im(fa), and if it begins with Ga there is no condition on Ker(fa). A short exact

sequence (or ses, for short) is an exact sequence of the sort

1 // G1
f // G2

g // G3 // 1 ,

where 1 stands for the group of 1 element. Note that the maps 1→ G1 and G3 → 1 are uniquely
determined, hence we do not specify them. Thus, a sequence is short exact if f is injective, g is

surjective and Im(f ) = Ker(g).

Recall that a group G is called solvable if there is a finite normal series for G,

G = G0 ⊲ G1 ⊲ · · · ⊲ Gn = {1},
with abelian quotients. Every abelian group is solvable. Any group of order pq, where p < q are

primes is solvable as the q-Sylow is always normal and the quotient is a group of order p, hence
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cyclic. Similarly, we have seen that groups of order p2q and pqr , where p, q, r are distinct primes,

are solvable. A theorem of Burnside states that groups of order paqb are solvable.

Of course, not every group is solvable. Any non-abelian simple group (such as An for n ≥ 5, and
PSLn(Fq) for n ≥ 2 and (n, q) 6= (2, 2) or (2, 3)) is non solvable.
The class of solvable groups is closed under basic operations. More precisely we have the following

results.

Proposition 25.3.1. Let G be a solvable group and H < G a subgroup. Then H is solvable.

Proof. to be added... (see class notes for proof).

�

Proposition 25.3.2. Let

0→ G1 → G → G2 → 0
be an exact sequence of groups. Then G is solvable if and only if both G1 and G2 are solvable.

Proof. to be added... (see class notes for proof). �

Example 25.3.3. Every abelian group is solvable. Proof to be added... (see class notes for proof).

Example 25.3.4. Every finite p-group is solvable. Proof to be added... (see class notes for proof).

Example 25.3.5. Every group of order pq, where p < q are primes, is solvable. Proof to be added...

(see class notes for proof).

Example 25.3.6. Every group of order pq, where p, q are distinct primes, is solvable. Proof to be

added... (see class notes for proof).

Example 25.3.7. Every group of order paqb, where p, q is are distinct primes and pa! < paqb has

a non-trivial normal subgroup.

Example 25.3.8. Every group of order less than 60 is solvable.

First note that the following numbers are prime:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59.

The following are a prime power:

4, 8, 9, 16, 25, 27, 32, 49.

The following are a product of two distinct primes:

6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58.

The following are of the form p2q, where p and q are distinct primes:

12, 18, 20, 28, 44, 45, 50, 52.

The following are for the form pqr for distinct primes p, q, r :

30, 42.

Groups whose order is one of the integers above are solvable. The orders left to consider are

24, 36, 40, 48, 54, 56

Of those, 24 = 3 · 23, 36 = 22 · 32, 48 = 3 · 24 and 54 = 2 · 33 are of the form paqb, where p, q is

are distinct primes and pa! < paqb, so solvable. It remains to consider groups of order 40 = 23 · 5
and 56 = 23 · 7.
Let G be a group of order 40. If the 5-Sylow are not normal there are 8 of them. Counting

elements, the 5 Sylow contribute 1 + 8(5− 1) = 33 elements and one 2-Sylow contributes 7 more
elements. It follows that there is a unique 2-Sylow; call it P . By induction P and G/P are solvable

and so G is.

Let G be a group of order 56. Suppose that the 7-Sylow of G is not normal. Then there are 8

7-Sylow subgroups. These already account for a set S consisting of 1 + (7 − 1)× 8 = 49 distinct
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elements of G. If P is a 2-Sylow subgroup then P ∩ S = {e} and it follows that P = G \ S ∪ {e}.
Since this holds for any 2-Sylow subgroup, we conclude that P is the unique 2-Sylow subgroup and

hence normal.

The motivation for the study of solvable groups comes from Galois theory. Let f (x) = xn+an1x
n−1+

· · · + a0 be an irreducible polynomial with rational coefficients. In Galois theory one associates to
f a finite group Gf ⊆ Sn, called the Galois group of f . One of Galois’s main achievements is to

prove that one can solve f in radicals (meaning, express the solutions of f using operations as taking

roots, adding and multiplying) if and on if Gf is a solvable group.

It follows that there are formulas in radicals to solve equations of degree ≤ 4 (every group that
can possibly arise as Gf has order less than 60, hence is solvable). On the other hand, one can

produce easily an equation f of degree 5 such that Gf = S5, hence is not solvable.

Remark 25.3.9. Here are two theorems concerning solvable groups. The first is hard, but can be

done in a graduate course in algebra. The second is among the most difficult proof in algebra ever

written. (Please do not use these theorems in the assignments.)

Theorem 25.3.10 (Burnside). Let p, q be primes. A finite group of order paqb is solvable.

Theorem 25.3.11 (Feit-Thompson). Every finite group of odd order is solvable.
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Part 7. Finitely Generated Abelian Groups, Semi-direct Products and Groups of Low Order

26. The structure theorem for finitely generated abelian groups

26.1. Generators. Recall that a group G is called finitely generated if there are g1, g2, . . . , gn in

G such that G = 〈g1, . . . , gn〉. We saw two interpretation of this: (i) G is the minimal subgroup of
G that contains all the elements g1, . . . , gn (namely, no proper subgroup of G will contain all these

elements). (ii) Every element of G can be written in the form x1x2 · · · xN , where each xi is either gj
or g−1j for some j .

It is sometimes easier to use the first, seemingly more abstract definition. For example, consider

the elements {(1234), (13), (123), (12345)} of S5. S5 is generated by them. Indeed, the first two
elements generate a copy of D4 and so it follows that every subgroup containing these elements will

have order divisible by 8, 3 and 5 and so of order divisible by 120, thus equal to S5.

Let G be now an abelian group and use additive notation. It is easy then to conclude that G is

finitely generated if and only if there exist elements g1, g2, . . . , gn of G such that

G =

{
n∑

i=1

aigi : ai ∈ Z
}

.

Lemma 26.1.1. An abelian group G is finitely generated if and only if for some positive integer n

there is a surjective homomorphism

Zn → G.

Proof. Proof to be added... (see class notes for now). �

26.2. The structure theorem. The structure theorem will proved in the next semester as a corollary

of the structure theorem for modules over a principal ideal domain. That same theorem will also

yield the Jordan canonical form of a matrix. It is really the “correct way” to prove both these

theorems, hence we defer the proof for that time.

Theorem 26.2.1. Let G be a finitely generated abelian group. Then there exists a unique non-

negative integer r and integers 1 < n1|n2| . . . |nt (t ≥ 0) such that
G ∼= Zr × Z/n1Z× · · · × Z/ntZ.

Remark 26.2.2. The integer r is called the rank of G. The subgroup in G that corresponds to

Z/n1Z× · · · ×Z/ntZ under such an isomorphism is canonical (independent of the isomorphism). It
is the subgroup of G of elements of finite order, also called the torsion subgroup of G and sometime

denoted Gtor. On the other hand, the subgroup corresponding to Zr is not canonical and depends
very much on the isomorphism.

A group is called free abelian group if it is isomorphic to Zr for some r (the case t = 0 in the
theorem above). In this case, elements x1, . . . , xr of G that correspond to a basis of Zr are called
a basis of G; every element of G has the form a1x1 + · · ·+ arxr for unique integers a1, . . . , ar .
Remark 26.2.3. The Chinese remainder theorem gives that if n = pa11 · · · pass , pi distinct primes,
then

Z/nZ ∼= Z/pa11 Z× · · · × Z/pass Z.
Thus, one could also write an isomorphism G ∼= Zr ×

∏

i Z/p
bi
i Z.

We shall also prove the following corollary in greater generality next semester.

Corollary 26.2.4. Let G,H be two free abelian groups of rank r . Let f : G → H be a homomorphism

such that G/f (H) is a finite group. There are bases x1, . . . , xr of G and y1, . . . , yr of H and integers

1 ≤ n1| . . . |nr such that f (yi) = nixi .
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Example 26.2.5. Let G be a finite abelian p group, |G| = pn. Then G ∼= Z/pa11 Z × · · · × Z/pass Z
for unique ai satisfying 1 ≤ a1 ≤ · · · ≤ as and a1 + · · · + as = n. It follows that the number of

isomorphism groups of finite abelian groups of order pn is p(n) (the partition function of n).

27. Semi-direct products

Given two groups B,N we have formed their direct product G = N ×B. Identifying B,N with their
images {1} × B,N × {1} in G, we find that: (i) G = NB, (ii) N⊳G,B⊳G, (iii) N ∩ B = {1}.
Conversely, one can easily prove that if G is a group with subgroups B,N such that: (i) G = NB,

(ii) N⊳G,B⊳G, (iii) N ∩B = {1}, then G ∼= N×B. The definition of a semi-direct product relaxes
the conditions a little.

Definition 27.0.6. Let G be a group and let B,N be subgroups of G such that: (i) G = NB; (ii)

N ∩ B = {1}; (iii) N⊳G. Then we say that G is a semi-direct product of N and B.
Let N be any group. Let Aut(N) be the set of automorphisms of the group N. It is a group in

its own right under composition of functions.

Let B be another group and φ : B → Aut(N), b 7→ φb be a homomorphism (so φb1b2 = φb1 ◦φb2).
Define a group

G = N ⋊φ B

as follows: as a set G = N × B, but the group law is defined as
(n1, b1)(n2, b2) = (n1 · φb1(n2), b1b2).

We check associativity:

[(n1, b1)(n2, b2)](n3, b3) = (n1 · φb1(n2), b1b2)(n3, b3)
= (n1 · φb1(n2) · φb1b2(n3), b1b2b3)
= (n1 · φb1(n2 · φb2(n3)), b1b2b3)
= (n1, b1)(n2 · φb2(n3), b2b3)
= (n1, b1)[(n2, b2)(n3, b3)].

The identity is clearly (1N , 1B). The inverse of (n2, b2) is (φb−12
(n−12 ), b

−1
2 ). Thus G is a group.

The two bijections

N → G, n 7→ (n, 1); B → G, b 7→ (1, b),
are group homomorphisms. We identify N and B with their images in G. We claim that G is a

semi-direct product of N and B.

Indeed, clearly the first two properties of the definition hold. It remains to check that N is normal

and it’s enough to verify that B ⊂ NG(N). According to the calculation above:
(1, b)(n, 1)(1, b−1) = (φb(n), 1).

We now claim that every semi-direct product is obtained this way: Let G be a semi-direct product

of N and B. Let φb : N → N be the map n 7→ bnb−1. This is an automorphism of N and the map

φ : B → Aut(N)
is a group homomorphism. We claim that N ⋊φ B ∼= G. Indeed, define a map

(n, b) 7→ nb.
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It follows from the definition that the map is surjective. It is also bijective since nb = 1 implies

that n = b−1 ∈ N ∩ B hence n = 1. It remains to check that this is a group homomorphism, but
(n1 · φb1(n2), b1b2) 7→ n1φb1(n2)b1b2 = n1b1n2b

−1
1 b1b2 = (n1b1)(n2b2).

Proposition 27.0.7. A semi-direct product N ⋊φ B is the direct product N × B if and only if
φ : B → Aut(N) is the trivial homomorphism.

Proof. Indeed, that happens iff for all (n1, b1), (n2, b2) we have (n1φb1(n2), b1b2) = (n1n2, b1b2).

That is, iff for all b1, n2 we have φb1(n2) = n2, which implies φb1 = id for all b1. That is, φ is the

trivial homomorphism. �

Example 27.0.8. The Dihedral group D2n is a semi-direct product. Take N =< x >∼= Z/nZ and
B =< y >∼= Z/2Z. Then D2n ∼= Z/nZ ⋊φ Z/2Z with φ1 = −1.

27.1. Application to groups of order pq. We have seen in § 23.1.5 that if p < q and p 6 |(q − 1)
then every group of order pq is abelian. Assume therefore that p|(q − 1).

Proposition 27.1.1. If p|(q−1) there is a unique non-abelian group, up to isomorphism, of order pq.

Proof. Let G be a non-abelian group of order pq. We have seen that in every such group G the

q-Sylow subgroup Q is normal. Let P be any p-Sylow subgroup. Then P ∩Q = {1} and G = QP .
Thus, G is a semi-direct product of Q and P .

It is thus enough to show that there is a non-abelian semi-direct product and that any two such

products are isomorphic. We may consider the case Q = Z/qZ, P = Z/pZ.

Lemma 27.1.2. Aut(Q) = (Z/qZ)∗.

Proof. Since Q is cyclic any group homomorphism f : Q→ H is determined by its value on a

generator, say 1. Conversely, if h ∈ H is of order dividing q then there is such a group homomorphism
with f (1) = h. Take H = Q. The image of f is the cyclic subgroup < h > and thus f is surjective

(equivalently, isomorphic) iff h is a generator. Thus, any element h ∈ (Z/qZ)∗ determines an
automorphism fh of Q by a 7→ ah. Note that fh(fg)(a) = fh(ag) = agh = fhg(a) and so the

association h ↔ fh is a group isomorphism (Z/qZ)∗ ∼= Aut(Q). �

Since (Z/qZ)∗ is a cyclic group of order q − 1 (Corollary 4.2.3), and since p|(q − 1), there is an
element h of exact order p in (Z/qZ)∗. Let φ be the homomorphism determined by φ1 = fh and let
G = Q⋊φ P . We claim that G is not abelian.

(n, 0)(0, b) = (n, b), (0, b)(n, 0) = (φb(n), b).

The two are always equal only if φb(n) = n for all b and n, i.e., φb = 1 for all b, but choosing b = 1

we get φ1 = h and thus a contradiction.

We now show that G is unique up to isomorphism. If H is another such semi-direct product then

H = Z/qZ ⋊ψ Z/pZ, where ψ1 is an element of order p (if it is the identity H is abelian) and thus
ψ1 = φ

r
1 = φr for some r prime to p.

Define a map

Z/qZ ⋊ψ Z/pZ→ Z/qZ ⋊φ Z/pZ, (n, b) 7→ (n, rb).
This function is easily checked to be injective, hence bijective. We check it is a group homomorphism:

In G we have (n1, rb1)(n2, rb2) = (n1+φrb1(n2), r(b1 + b2)) = (n1+ψb1(n2), r(b1+ b2)) which

is the image of (n1 + ψb1(n2), b1 + b2), the product (n1, b1)(n2, b2) in H. �
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Example 27.1.3. Is there a non-abelian group of order 165 containing Z/55Z?
In such a group G, the subgroup Z/55Z must be normal (its index is the minimal one dividing

the order of G). Since there is always a 3-Sylow, we conclude that G is a semi-direct product

Z/55Z ⋊ Z/3Z. This is determined by a homomorphism Z/3Z → Aut(Z/55Z) ∼= (Z/55Z)×. The
right hand side has order ϕ(55) = 4 · 10. Thus, the homomorphism is trivial and G is a direct
product. It follows that G must be commutative.

Cases where two semi-direct products are isomorphic.

It is useful to generalize the last argument. Consider a map φ : B → Aut(N) be a
homomorphism and consider the group

G = N ⋊φ B.

Consider two automorphisms f : N → N, g : B → B. Let S be G considered as a set

and consider the self map

S → S, (n, b) 7→ (f (n), g(b)).
We may define a new group law on S by

(n1, b1) ⋆ (n2, b2) = f ◦ g
[
(f −1(n1), g

−1(b1))(f
−1(n2), g

−1(b2))
]

= f ◦ g
[
(f −1(n1) · [φ(g−1(b1))](f −1(n2)), g−1(b1)g−1(b2))

]

= (n1 · f ([φ(g−1(b1))](f −1(n2))), b1b2)
Clearly, S with the new group law is isomorphic as groups to G.

This suggests the following, define an action of Aut(B)× Aut(N) on Hom(B,Aut(N))
via the embedding Aut(B) × Aut(N)→ Aut(B) × Aut(Aut(N)). That is, g ∈ Aut(B)
acts by φ 7→ φ◦g and f ∈ Aut(N) acts by φ 7→ cf ◦φ, where cf is conjugation by f . That
is, (cf ◦φ)(b) = f φ(b)f −1. Then, we see that every orbit for this action gives isomorphic
groups N ⋊φ B. Note that the action of Aut(B)×Aut(N) on Hom(B,Aut(N)) factors
through Aut(B)× Aut(N)/Z(Aut(N)).

28. Groups of low, or simple, order

28.1. Groups of prime order. We have seen that all such groups are cyclic. By Example 7.1.2 the

unique cyclic group up to isomorphism of order p is Z/pZ.

28.2. Groups of order p2. Every such group is abelian. By the structure theorem it is either

isomorphic to Z/p2Z or to Z/pZ× Z/pZ.

28.3. Groups of order pq, p < q. This case was discussed in § 27.1 above. We summarize the
results: there is a unique abelian group of order pq. If p ∤ (q − 1) then every group of order pq is
abelian. If p|(q − 1) there is a unique non-abelian group up to isomorphism; it can be taken as any
non trivial semi-direct product Z/pZ ⋉ Z/qZ.

28.3.1. Groups of order 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15. The results about groups of prime

order and of order pq, p ≤ q allow us to determine the following possibilities:
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order abelian groups non-abelian groups

1 {1}
2 Z/2Z

3 Z/3Z

4 Z/2Z× Z/2Z, Z/4Z
5 Z/5Z

6 Z/6Z S3

7 Z/7Z

9 Z/3Z× Z/3Z, Z/9Z
10 Z/10Z D10

11 Z/11Z

13 Z/13Z

14 Z/14Z D14

15 Z/15Z

28.4. Groups of order 8. We know already the structure of abelian groups of order 8: Z/2Z ×
Z/2Z × Z/2Z, Z/2Z × Z/4Z, Z/8Z. We also know two non-isomorphic non-abelian groups of
order 8: D8, Q (in Q there are six elements of order 4, while in D8 there are two).

We prove that every non-abelian group G of order 8 is isomorphic to either D8 or Q. Suppose

that G has a non-normal subgroup of order 2, then the kernel of the coset representation G → S4
is trivial. Thus, G is a 2-Sylow subgroup of S4, but so is D4. Since all 2-Sylow subgroups are

conjugate, hence isomorphic, we conclude that G ∼= D4.
Thus, assume that G doesn’t have a non-normal subgroup of order 2. Consider the center Z(G)

of G. We claim that the center has order 2. Indeed, otherwise G/Z(G) is of order 2 hence cyclic.

But G/Z(G) is never cyclic.

We now claim that Z(G) = {1, z} is the unique subgroup of G of order 2. Indeed, if {1, h} = H <

G of order 2 it must be normal by hypothesis. Then, for every g ∈ G, ghg−1 = h, i.e. h ∈ Z(G).
It follows that every element x in G apart from 1 or z has order 4, and so every such x satisfies

x2 = z . Rename z to −1 and the rest of the elements (which are of order 4 so come in pairs) are
then i , i−1, j, j−1, k, k−1. Since i2 = j2 = k2 = −1 we can write i−1 = −i , etc.
Note that the subgroup < i, j > must be equal to G and so i and j do not commute. Thus,

i j 6= 1,−1, i ,−i , j,−j (for example, i j = −i implies that j = (−i)2 = −1 and so commutes with
i). Without loss of generality i j = k and then j i = −k (because the only other possibility is j i = k
which gives i j = j i). We therefore get the relations (the new ones are easy consequences):

G = {±1,±i ,±j,±k}, i2 = j2 = k2 = −1, i j = −j i = k.

This determines completely the multiplication table of G which is identical to that of Q. Thus,

G ∼= Q.



58 EYAL Z. GOREN, MCGILL UNIVERSITY

28.5. Groups of order 12. We know that the abelian groups are Z/12Z and Z/2Z × Z/6Z. We
are also familiar with the groups A4 and D12. One checks that in A4 there are no elements of order

6 so these two groups are not isomorphic.

Note that in A4 the 4-Sylow subgroup is normal (it is {1, (12)(34), (13)(24), (14)(23)}), and the
3-Sylow is not. Note that in D12 the 3-Sylow is normal (it is {1, x2, x4}, the rest are 6 reflections
and the rotations x, x3, x5).

In a non-abelian group of order 12 = 223, either the 3-Sylow is normal or the 2-Sylow is normal,

but not both (if both are, prove the group is abelian).

We conclude that each non-abelian group is the semi direct product of a group of order 4 and a

group of order 3. Indeed, one checks that A4 = (Z/2Z× Z/2Z)⋊Z/3Z, D12 = (Z/2Z× Z/2Z)⋉
Z/3Z. Let us then consider a semi-direct product Z/4Z⋉Z/3Z (show that every semi-direct product
Z/4Z⋊Z/3Z is actually a direct product and so is commutative). Here 1 ∈ Z/4Z acts on Z/3Z as
multiplication by −1. This gives a non-abelian group with a cyclic group of order 4 that is therefore
not isomorphic to the previous groups. Call it T .

The proof that these are all the non-abelian groups of order 12 is easy given the results of § 27.1.
We already know that every such group is a non-trivial semi-direct product (Z/2Z × Z/2Z) ⋊
Z/3Z, (Z/2Z× Z/2Z)⋉ Z/3Z or Z/4Z ⋉ Z/3Z.
A non-trivial homomorphism Z/3Z→ Aut(Z/2Z × Z/2Z) = GL2(F2) ∼= S3 corresponds to an

element of order 3 in S3. All those elements are conjugate and by § 27.1 all these semi-direct
products are isomorphic.

A non-trivial homomorphism Z/2Z × Z/2Z→ Aut(Z/3Z) ∼= Z/2Z is determined by its kernel
which is a subgroup of order 2 = line in the 2-dimensional vector space Z/2Z× Z/2Z over Z/2Z.
The automorphism group of Z/2Z×Z/2Z acts transitively on lines and by § 27.1 all these semi-direct
products are isomorphic.

A non-trivial homomorphism Z/4Z→ Aut(Z/3Z) ∼= Z/2Z is uniquely determined.

29. Free groups

Let X be a set. It will be called the alphabet. A word ω in the alphabet X is a finite string

ω = ω1ω2 . . . ωn, where each ωi is equal to either x ∈ X or x−1 for x ∈ X. Here x−1 is a formal
symbol. So, for example, if X = {x} then words in X are x, xxx−1x, ∅, etc. If X = {x, y} we have
as examples x, y , x−1yyxy , x−1y−1y , and so on. We say that two words ω, σ are equivalent if one
can get from one word to the other performing the following basic operations:

Replace ω1 . . . ωixx
−1ωi+1 . . . ωn and ω1 . . . ωix−1xωi+1 . . . ωn by ω1 . . . ωiωi+1 . . . ωn, and the

opposite of those operations (i.e., inserting xx−1 or x−1x at some point in the word).

We denote this equivalence relation by ω ∼ σ. For example, for X = {x, y} we have

x ∼ xyy−1 ∼ xyxx−1y−1 ∼ xyy−1yxx−1y−1.
A word is called reduced if it doesn’t contain a string of the form xx−1 or x−1x for some x ∈ X.
We now construct a group F (X) called the free group on X as follows. The elements of the

group F (X) are equivalence classes

[ω] = {σ|σ ∼ ω}
of words in the alphabet X. Multiplication is defined using representatives:

[σ][τ ] = στ
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(the two words are simply written one after the other). It is easy to see that this is well-defined

on equivalence classes: the operations performed on σ to arrive at an equivalent word σ′ can be
performed on the initial part of στ to arrive at σ′τ , etc. The identity element is the empty word; we
also denote it 1, for convenience. The inverse of [ω] where ω = ω1 . . . ωn is the equivalence class of

ω−1n . . . ω−11 (where we define (x
−1)−1 = x for x ∈ X). Finally, the associative law is clear. We have

constructed a group. Clearly this group depends up to isomorphism only on the cardinality of the

set X. Name, if we have a bijections of sets X ∼= Y then it induces an isomorphism F (X) ∼= F (Y );

for that reason we may denote F (X) simply by F (d), where d is the cardinality of X.

29.1. Properties of free groups. The group F (d) has the following properties:

(1) Given a group G, and d elements s1, . . . sd in G, there is a unique group homomorphism

f : F (d)→ G such that f (xi) = si . Indeed, one first define for a word y1 . . . yt , yi =

xei
n(i)
, ei ∈ {±1}, f (y1 · · · yt) = se1

n(1)
· · · set

n(t)
. One checks that equivalent words have the

same image and so gets a well defined function F (d) → G. It is easy to verify it is a

homomorphism.

(2) If G is a group generated by d elements there is a surjective group homomorphismF (d)→ G.

This follows immediately from the previous point. If s1, . . . , sd are generators take the ho-

momorphism taking xi to si .

(3) If w1, . . . wr are words in F (d), let N be the minimal normal subgroup containing all the

wi (such exists!). The group F (d)/N is also denoted by < x1, . . . , xd |w1, . . . , wr > and
is said to be given by the generators x1, . . . xd and relations w1, . . . , wr . For example, one

can prove that Z ∼= F (1), Z/nZ ∼=< x1|xn1 >, Z2 ∼=< x1, x2|x1x2x−11 x−12 >, S3 ∼=<
x1, x2|x21 , x32 , (x1x2)2 >, and more generally D2n =< x, y |xn, y2, yxyxy >. This is discussed
at greater length below.

(4) If d = 1 then F (d) ∼= Z but if d > 1 then F (d) is a non-commutative infinite group. In

fact, for every k, Sk is a homomorphic image of F (d) if d ≥ 2.

29.2. Reduced words.

Theorem 29.2.1. Any word is equivalent to a unique reduced word.

Proof. We need to show that two reduced words that are equivalent are in fact equal. Let ω and τ

be equivalent reduced words. Then, there is a sequence

ω = σ0 ∼ σ1 ∼ · · · ∼ σn = τ,
where at each step we either insert, or delete, one couple of the form xx−1 or x−1x , x ∈ X. Let us
look at the lengths of the words. The length function, evaluated along the chain, receives a relative

minimum at ω and τ . Suppose it receives another relative minimum first at σr (so the length of

σr−1 is bigger than that of σr and the length of σr is smaller than that of σr+1. We can take σr
and reduce it be erasing repeatedly pairs of the form xx−1, or x−1x , until we cannot do that any
more. We get a chain of equivalences σr = α0 ∼ α1 ∼ αs , where αs is a reduced word. We now
modify our original chain to the following chain

ω = σ0 ∼ σ1 ∼ · · · ∼ σr = α0 ∼ · · · ∼ αs−1 ∼ αs ∼ αs−1 ∼ · · · ∼ α0 = σr ∼ σr+1 . . . σn = τ.
A moment reflection shows that by this device, we can reduce the original claim to the following.

Let σ and τ be two reduced words that are equivalent as follows

ω = σ0 ∼ σ1 ∼ · · · ∼ σn = τ
where the length increases at every step from σ0 to σa and decreases from σa to σn = τ . Then

σ = τ .
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We view σ and τ as two reduced words obtained by cancellation only from the word σa. We

argue by induction on the length of σa.

If σa is reduced, there’s nothing to prove because then necessarily 0 = a = n and we are

considering a tautology. Else, there is a pair of the form dd−1 or d−1d in σa. We allow ourselves
here (d−1)−1 = d and then we may that there is a pair dd−1 where d or d−1 are in X. Let us
highlight that pair using a yellow marker and keep track of it. If in the two cancellations processes

(one leading to σ, the other to τ) the first step is to delete the highlighted pair, then using induction

for the word σa with the highlighted pair deleted, we may conclude that σ = τ . If in the cancellation

process leading to σ at some point the highlighted pair is deleted, then we may change the order of

the cancellations so that the highlighted pair is deleted first. Similarly concerning the reduction to

τ . And so, in those cases we return to the previous case. Thus, we may assume that in either the

reduction to σ, or the reduction to τ , the highlighted pair is not deleted. Say, in the reduction to σ.

How then can σ be reduced? The only possibility is that at some point in the reduction process (not

necessarily the first point at which it occurs) we arrive at a word of the form · · · d−1 dd−1 · · · or
· · · dd−1 d · · · and then it is reduced to · · · d−1 dd−1 · · · or · · · dd−1 d · · · . But note that the end
result is the same as if we strike out the highlighted pair. So we reduce to the previous case. �

Note that as a consequence, if ω ∈ [ω] is a word whose length is the minimum of the lengths of
all words in [ω] then ω is the unique reduced word in the equivalence class [ω].

29.3. Generators and relations. Let X be a set. Denote by F (X) the free group on X. Let

R = {rα} a collection of words in the alphabet X. We define the group G generated by X, subject
to the relations R as follows. Let N be the minimal normal subgroup of F (X) containing [r ] for

all r ∈ R. Define G as F (X)/N. Note that in G any word r becomes trivial. Note also that

G is a universal object for this property. Namely, given a function f : X → H, H a group, f a

function such that f (r) = 1H for all r ∈ R, where if r = ω1 . . . ωn, ωi = x±1 for x ∈ X, then
f (r) := f (ω1) · · · f (ωn) (with f (x−1) := f (x)−1), there is a unique homomorphism F : G → H such

that F ([r ] (mod N)) = f ([r ]). We denote G also by

〈X|R〉.
A presentation of a group H is an isomorphism

H ∼= 〈X|R〉
for some X and R. A group can have many presentations. There is always the tautological presen-

tation. Take X = {g : g ∈ G} - we write g so that we can distinguish between g as an element of
the group G and g an element of X, and take

R = {r = ω1 . . . ωn : in the group G we have that the product ω1 · · ·ωn = 1G}.
But usually there are more interesting, and certainly more economical presentations.

(1) Let F (X)′ be the commutator subgroup of F (X) then 〈X : F (X)′〉 is a presentation of the
free abelian group on X. But, for example, for X = {x, y}, we have the more economical
presentation

〈{x, y} : xyx−1y−1〉.
Lets prove it. First, from the universal property, since in Z2 all commutators are trivial,
there is a unique homomorpism

〈{x, y} : xyx−1y−1〉 → Z2, x 7→ (1, 0), y 7→ (0, 1).
Clearly this is a surjective homomorphism. Define now a homomorphism

Z2 → 〈{x, y} : xyx−1y−1〉, f (m, n) = xmyn.



COURSE NOTES - MATH 370 61

We need to show that f is a homomorphism. Namely, that in the group 〈{x, y} : xyx−1y−1〉
we have

xaybxcyd = xa+cyb+d .

It’s enough to show that xy = yx because then we may pass the powers of x through those

of y one at the time. But we have the equality yx = (xyx−1y−1)(yx) = xy . It is easy to
check that f is an inverse to the previous homomorphism.

(2) Sn is generated by the permutations (12) and (12 · · · n) and so it follows that it has a
presentation 〈{x, y} : R〉 for some set of relations R; for example, R could be the kernel of
the surjective homomorphism F ({x, y})→ Sn that takes x to (12) and y to (12 · · · n). As
such, R is an infinite set. But, can we replace R be a finite list of relations. The answer is

yes. It follows from the following two theorems, that we will not prove in the course, one

reason being that the best proofs use the theory of covering spaces and fundamental groups

that we do not assume as prerequisites.

Theorem 29.3.1. (Nielsen-Schreier) A subgroup of a free group is free.

Theorem 29.3.2. Let F be a free group of rank r and let H be a subgroup of F of finite

index h. The H is free of rank h(r − 1) + 1.

It follows that we can determine all the relations in Sn as a consequence of certain n!+1

relations. However, this is far from optimal. For example, S3 has the presentation

〈{x, y} : x2, y3, xyxy〉

The explanation for this particular saving is that we take the minimal normal subgroup

generated by the relations and not the minimal subgroup generated by the relations. In this

example, the minimal normal subgroup has rank 7 = 3!+1, while the minimal subgroup has

rank at most 3. We leave it as an exercise to prove that this is indeed a presentation for S3
and to find a similar presentation for S4.

(3) After experimenting a little with examples, one easily concludes that it is in general difficult

to decide whether a finitely presented group is isomorphic to a given one. In fact, a theorem

(which is essentially “the word problem” for groups) says that there is no algorithm that given

a finite presentation 〈X|R〉, X and R finite, will decide in finite time (that is independent
of the presentation) whether this is a presentation of the finite group or not.

29.4. Some famous problems in group theory. Fix positive integers d, n. The Burnside problem

asks if a group generated by d elements in which every element x satisfies xn = 1 is finite. Every

such group is a quotient of the following group B(d, n): it is the free group F (d) generated by

x1, . . . , xd moded out by the minimal normal subgroup containing the expressions f
n where f is

an element of F (d). It turns out that in general the answer is negative; B(d, n) is infinite for

d ≥ 2, n ≥ 4381, n odd. There are some instances where it is finite: d ≥ 2, n = 2, 3, 4, 6.
One can then ask, is there a finite group B0(d, n) such that every finite group G, generated by

d elements and in which f n = 1 for every element f ∈ G, is a quotient of B0(d, n)? E. Zelmanov,
building on the work of many others, proved that the answer is yes. He received the 1994 Fields

medal for this.

The word problem asks whether there is an algorithm (guaranteed to stop in finite time) that

determines whether a finitely presented group, that is a group gives by generators and relations as

< x1, . . . , xd |w1, . . . , wr > for some integers d, r , is the trivial group or not. It is known that the
answer to this question (and almost any variation on it!) is NO. This has applications to topology.
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It is known that every finitely presented group is the fundamental group of a manifold13 of dimension

4. It then follows that there is no good classification of 4-manifolds. If one can decide if a manifold

X is isomorphic to the 4-dimensional sphere or not, one can decide the question of whether the

fundamental group of X is isomorphic to that of the sphere, which is the trivial group, and so solve

the word problem.

13Amanifold of dimension 4 is a space that locally looks like R4. The fundamental group is a topological construction

that associate a group to any topological space. The group has as its elements equivalent classes of closed loops in

the space, starting and ending at some arbitrarily chosen point, where if we can deform, within the space, one loop to

another we consider them as the same element of the fundamental group.
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Part 8. Rings

30. Basic definitions

Definition 30.0.1. A ring R is an abelian group together with a multiplication map,

R × R→ R, (x, y) 7→ xy ,

and an element 1 ∈ R, such that the following holds:
(1) (Associativity) (xy)z = x(yz) for all x, y , z ∈ R.
(2) (Distributivity) x(y + z) = xy + xz and (x + y)z = xz + yz for all x, y , z ∈ R.
(3) (Identity) 1x = x1 = x for all x ∈ R.

Note that we insist on R having a (specified) identity element 1. In that our conventions differ

from Dummit and Foote’s.

Some formal easy consequences of the definition are:

(1) The identity element 1 is unique. That is, if there’s an element e in R such that ex = xe = x

for all x ∈ R then x = 1.
(2) 0x = x0 = 0.

(3) (−1)x = −x = x(−1).

The zero ring is the simplest example. This is a ring with one element (the element 0), and in

particular 1 = 0 in this ring. Conversely, a ring R in which 1 = 0 must be the zero ring as for every

r ∈ R, r = 1r = 0r = 0.
A ring is called commutative if xy = yx for all x, y ∈ R. A non-zero element x ∈ R is called a

zero divisor if for some non-zero element y we have xy = 0 or yx = 0. A non-zero commutative

ring with no zero divisors is called an integral domain.

An element x ∈ R is called a unit if ∃y ∈ R such that xy = yx = 1. The units form a group

under multiplication that is denoted R×.

Example 30.0.2. Let k be a field and V a vector space over k. One easily verifies that the

collection of linear maps from V to itself, Endk(V ), is a ring, where multiplication is composition

of linear maps. If V has finite dimension then if x, y ∈ Endk(V ) and xy = 1 then also yx = 1
and so x is a unit. However, suppose that V = {(a1, a2, . . . ) : ai ∈ k} and x is the linear map
(a1, a2, a3, . . . ) 7→ (a2, a3, . . . ). Then x is not injective and so there is no function y : V → V

such that yx = 1. On the other hand, if y is the linear map (a1, a2, a3, . . . ) 7→ (0, a1, a2, . . . ) then
xy = 1. This example explains why we insist on xy = yx = 1 in the definition of a unit.

A non zero ring R is called a division ring (or a skew field) if R× = R−{0}, i.e., every non-zero
element is a unit. If R is also commutative then, as we know well, R is called a field.

A subset I ⊆ R is called a two-sided ideal of R (or simply, an ideal of R) , denoted I⊳R, if I is
a subgroup and for all r ∈ R we have both inclusions

Ir ⊆ I, r I ⊆ I.
A left (resp. right) ideal is defined the same only that one requires just r I ⊆ I (resp. Ir ⊆ I).

Proposition 30.0.3. Let R be a ring and I⊳R a two sided ideal. The quotient group R/I has a

canonical ring structure given by

(r + I)(s + I) = rs + I,

with identity element 1 + I.
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Proof. We first check that multiplication is well defined. Any other representatives for the cosets

are of the form r + i1, s + i2 for i1, i2 ∈ I. Then (r + i1 + I)(s + i2 + I) is equal by definition to
(r + i1)(s + i2) + I = rs + i1s + r i2 + i1i2 + I = rs + I, using that I is an ideal.

The rest of the axioms follows mechanically from the fact that they hold in R. For example,

letting r = r + I, we have r(x + y) = r · x + y = r(x + y) = rx + ry = rx + ry = r · x + r · y . �

31. Key Examples of Rings

31.1. The zero ring. This is the ring R = {0}. Note that in this ring 1 = 0. This is the case
excluded when defining integral domains, fields or division rings. As we have already noted above,

to say that R is a non-zero ring (i.e., R is not the zero ring) is equivalent to saying that 1 6= 0 in R.

31.2. The integers and the integers modulo n. The primal example is the integers

Z = {. . . ,−2,−1, 0, 1, 2, 3, . . .}

with the usual addition and multiplication. This is an integral domain and Z× = {±1}.

Definition 31.2.1. If R is any commutative ring and r ∈ R we define (r) = Rr = rR = {ra : a ∈ R}.

Lemma 31.2.2. The set (r) is an ideal, called a principal ideal.

Proof. We first check it is a subgroup. Indeed, 0 = 0r ∈ Rr . If ar, br ∈ Rr then ar + br = (a+ b)r
is in Rr , and −(ar) = −1(ar) = (−1 · a)r = (−a)r ∈ Rr . Thus, Rr is a subgroup.
Next, let ar ∈ Rr and b ∈ R then b(ar) = (ba)r ∈ Rr and (ar)b = abr ∈ Rr (here we use the

commutativity of R in an essential way). Thus, Rr is an ideal. �

As an application, we find the ideals (n) = Zn = {. . . ,−2n,−n, 0, n, 2n, 3n, . . .} of Z. One can
prove that every ideal of Z has such a form. This is an example of PID, as we shall see later.

Using Proposition 30.0.3 we find the rings

Z/(n) = Z/nZ = {0, 1, . . . , n − 1}

(already familiar to us as abelian groups), where we let i = i + nZ. Note that this is a commutative
ring with n elements. If n is not prime, say n = ab, then ab = n = 0 and we find that Z/nZ has zero
divisors. If, on the other hand, n = p is a prime, Z/pZ doesn’t have zero divisors because ab = 0
implies that p|ab and so, w.l.o.g., p|a, giving a = 0. It follows from the next proposition that Z/pZ
is a field.

Proposition 31.2.3. Let R be an integral domain with finitely many elements then R is a field.

Proof. Let a ∈ R be a non zero element. The map R → R, x 7→ ax is injective: ax = ay ⇒
a(x − y) = 0⇒ x = y . Since R is a finite set, the map is also surjective and so there is an x such

that ax = 1. �

The units of Z/nZ are Z/nZ× = {a : 1 ≤ a ≤ n, (a, n) = 1}. This is a set familiar to us; recall
that its cardinality is denoted ϕ(n).
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31.3. Matrices over R. Let R be a commutative ring. Then Mn(R) denote the n × n matrices
with entries in R under matrix addition and multiplication. This is a ring whose units are denoted

GLn(R); a matrix is invertible in R if and only if its determinant belongs to R
×. Indeed, the usual

determinant properties show that for any commutative ring if AB = I then det(A) · det(B) = 1 and
hence det(B) ∈ R×. Conversely, we have A · adj(A) = det(A) · I and so, if det(A) ∈ R× we have an
inverse: A−1 = det(A)−1adj(A).
If n > 1 and R is not the zero ring, it is in a non-commutative ring and has zero divisors. Indeed

(
0 1
0 0

)2
=
(
0 0
0 0

)
,

and
(
0 0
1 0

) (
0 1
0 0

)
=
(
0 0
0 1

)
,

(
0 1
0 0

) (
0 0
1 0

)
=
(
1 0
0 0

)
.

31.4. Polynomial and power series rings. Let R be a commutative ring and x a formal symbol.

The ring of polynomials over R, R[x ], is the expressions of the form a0+ a1x + · · ·+ anxn, ai ∈ R
(where n may be different for each expression). We allow zero coefficients; we may therefore define

addition by

n∑

i=0

aix
i +

n∑

i=0

bix
i =

n∑

i=0

(ai + bi)x
i .

Multiplication is defined by

(

n∑

i=0

aix
i)(

m∑

i=0

bix
i) =

m+n∑

i=0

(

i∑

j=0

ajbi−j)x
i .

In general, due to zero divisors, there is no elegant description of the units of this ring. However,

Proposition 31.4.1. Let R be an integral domain. The units of R[x ] are R×.

Proof. Suppose that
∑n
i=0 aix

i is a unit, an 6= 0, and
∑m
i=0 bix

i is the inverse and bm 6= 0. The
coefficient of xn+m is anbm, which is not zero because R is an integral domain. Thus, we must have

n + m = 0 and so n = m = 0. That is,
∑n
i=0 aix

i = a0,
∑m
i=0 bix

i = b0, and a0b0 = 1; that is

a0 ∈ R×. �

We may define two related rings: the ring R[[x ]] of Taylor series or power series, whose general

element is
∑∞
i=0 aix

i , ai ∈ R, and the ring R((x)) of Laurent series, whose general element is
∑∞
i=N aix

i , ai ∈ R, where N is an integer that depends on the element and may be negative. We
have

R[x ] ⊂ R[[x ]] ⊂ R((x)).

Addition and multiplication are defined by the same formulas. We have

Proposition 31.4.2. Let R be an integral domain, the so are R[x ], R[[x ]] and R((x)). The units

of R[[x ]] are {∑∞i=0 aix i : a0 ∈ R×}. If R is a field, the ring R((x)) is also a field; every non-zero
element is a unit.
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31.5. Hamilton’s quaternions. Recall the quaternion group of 8 elements:
{
±
(
1 0
0 1

)
, ±

(
i 0
0 −i

)
, ±

(
0 1
−1 0

)
, ±

(
0 i
i 0

)}
⊆ M2(C).

We denoted these elements, respectively, ±1,±i ,±j,±k. Let F ⊆ R be a field, e.g., F = Q,R. The
quaternion algebra over F is the set

{a + bi + cj + dk : a, b, c, d ∈ F},
with matrix multiplication and addition. Namely, the matrices

{(
a+bi c+di
−c+di a−bi

)
: a, b, c, d ∈ F

}
=
{(

a+bi c+di

−(c+di) a+bi

)

: a, b, c, d ∈ F
}

=
{(

A B
−B A

)

: A = a + bi, B = c + di, a, b, c, d ∈ F
}

(

=
if F=R

{(
A B
−B A

)

: A,B ∈ C
})

Definition 31.5.1. Let R be a ring. A subset R1 ⊆ R is called a subring if it is a subgroup of R,
closed under multiplication and 1 ∈ R1.

It follows immediately that a subring is a ring in its own right.

Proposition 31.5.2. The quaternions over F, denoted HF, are a subring of M2(C). Moreover, they
form a non-commutative division ring.

Proof. We note that if z1 = a1+b1i , z2 = a2+b2i , where a1, a2, b1, b2 ∈ F – we say that zn ∈ F[i ],
n = 1, 2 – then z1+z2, z1z2, z1 are also in F[i ]. Using the usual properties of conjugation of complex
numbers we find that (

A B
−B A

)

+
(

A′ B′

−B′ A′
)

=
(

A+A′ B+B′

−(B+B′) A+A′
)

,

which shows closure under addition. Also 0 =
(
0 0
0 0

)
=
(
0 0
−0 0

)

is in HF and −
(
A B
−B A

)

=
(
−A −B
B −A

)

=
(
−A −B
−−B −A

)

, which shows closure under additive inverse. Thus, HF is a subgroup

of M2(C).

Note that 1 =
(
1 0
0 1

)
=
(
1 0
−0 1

)

is in HF and
(
A B
−B A

)(
C D
−D C

)

=
(

AC−BD AD+BC

−(AD+BC) AC−BD

)

.

Hence, HF is closed under multiplication too.
Non-commutativity is familiar to us: i j = −j i et cetera. To show HF is a division ring, note

that if M =
(

A B
−B A

)

then det(M) = |A|2 + |B|2 and so if M 6= 0 then det(M) 6= 0. Now,
M−1 = 1

|A|2+|B|2
(
A −B
B A

)

, which is again an element of HF. �

31.6. The ring of quotients. The ring of quotients is a general construction that allows embedding

a commutative integral domain in a field; moreover, that field is the smallest possible. A case to

keep in mind is the ring Z and the field Q. If Z ⊂ F and F is a field, then for every non-zero n ∈ Z
and m ∈ Z we have the element m × n−1 in F. In this sense, we find that Q ⊆ F. This discussion
also provides a clue as to how to construct the field of quotients.

Let R be a commutative integral domain. Define a relation on R × (R − {0}) by
(4) (a, b) ∼ (c, d) if ad − bc = 0.
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Theorem 31.6.1. The relation (4) is an equivalence relation. One denotes the equivalence classes

by Q(R). The operations

(a, b) + (c, d) = (ad + bc, bd), (a, b)(c, d) = (ac, bd),

are well defined. Under these operations Q(R) is a field. The map R→ Q(R), r 7→ (r, 1) is injective
and R may be viewed as a subring of Q(R).

Proof. Straight from the definition we get that (a, b) ∼ (a, b) and that if (a, b) ∼ (c, d) then
(c, d) ∼ (a, b). Suppose that (a, b) ∼ (c, d) and (c, d) ∼ (e, f ). Then d(af − be) = (ad − bc)f +
(cf − de)b = 0. Since d 6= 0, and R is an integral domain, we have that af − be = 0 and so
(a, b) ∼ (e, f ).
We denote from now on a pair (a, b) by ab . Then (a, b) ∼ (c, d), that is ab ∼ c

d , if ad − bc = 0.
The addition and multiplication rules are familiar:

a

b
+
c

d
=
ad + bc

bd
,

a

b
· c
d
=
ac

bd
.

We verify that they are well defined. We need to show that if ab ∼ a1
b1
, cd ∼ c1

d1
, then ad+bcbd ∼ a1d1+b1c1

b1d1
and ac

bd ∼ a1c1
b1d1
. This amounts to the identities (ad+bc)(b1d1) = (ab1)dd1+bb1(cd1) = a1bdd1+

bb1c1d = (a1d1 + b1c1)(bd) and (ac)(b1d1) = (ab1)(cd1) = a1bc1d = (a1c1)(bd).

One now checks that the operations are commutative, associative and distributive. The ver-

ification is formal and straightforward. For example:
(
a
b +

c
d

)
e
f =

ad+bc
bd · ef = ade+bce

bdf and
a
b · ef + c

d · ef = ae
bf +

ec
df =

aedf+cebf
bdf f ∼ ade+bce

bdf .

The zero element is the equivalence class of 01 (it consists of the elements
0
a , a ∈ R), and the

identity element is the equivalence class of 11 (it consists of the elements
a
a , a ∈ R, a 6= 0) . The

additive inverse of ab is
−a
b . Indeed

a
b+

−a
b =

ab−ab
b2
= 0

b2
∼ 0
1 . It follows that Q(R) is a commutative

ring.

Finally, if ab 6= 0 then a 6= 0 and so b
a is defined. We have

a
b · ba = ab

ab ∼ 1
1 = 1. Thus, Q(R) is a

field. �

Example 31.6.2. We have Q(Z) = Q and for any field F we have Q(F [x ]) = F (x), the field of

rational fractions over F (recall that an element of F (x) is a fraction of polynomials f (x)/g(x)

where g(x) 6= 0). Also, for any commutative integral domain R we have Q(R[x ]) = Q(R)(x). In
section 32 we shall see that, in a precise sense, if R is a field then R = Q(R).

32. Ring homomorphisms and the isomorphism theorems

Definition 32.0.3. A ring homomorphism f : R → S is a function satisfying: (i) f (r1 + r2) =

f (r1) + f (r2); (ii) f (r1r2) = f (r1)f (r2) and (iii) f (1R) = 1S.

Example 32.0.4. Let I⊳R be a two sided ideal. The canonical map

πR : R→ R/I, πI(a) = a + I,

is a ring homomorphism. Indeed, this is just (a + I) + (b+ I) = a+ b+ I, (a+ I)(b + I) = ab+ I,

and 1 + I being the identity of R/I. We see that if we want πI to be a ring homomorphism this

forces the definition of addition and multiplication on the cosets R/I.

Theorem 32.0.5. Let f : R → S be a ring homomorphism. Then J := Ker(f ) is a two sided ideal

of R called the kernel of f . If I is a two sided ideal of R such that I ⊆ J there is a unique ring
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homomorphism f ′ : R/I → S such that the following diagram is commutative:

R
f //

πI   B
BB

BB
BB

B S

R/I
f ′

>>||||||||

.

The kernel of f ′ is J/I.

Context: Two sided ideals are in analogy to normal subgroups. We can take quotients by such

ideals. If f : R → S is a ring homomorphism, K⊳S then f −1(K)⊳R. If f is surjective and K⊳R
then f (K)⊳S. In particular, it follows that J/I = πI(J) is an ideal of R/I (though this also follows

from the first part of the Theorem applied to f ′).

Proof. We already know that Ker(f ) is a subgroup of R. If r ∈ R and a ∈ Ker(f ) then f (ra) =
f (r)f (a) = f (r) · 0 = 0 and likewise f (ar) = 0. Thus, Ker(f ) is an ideal of R.
Define f ′ : R/I → S by f ′(r + I) = f (r). This is well defined: if i ∈ I then, because I ⊆ Ker(f ),

f ′(r + i+ I) = f (r + i) = f (r)+ f (i) = f (r). It follows immediately that f ′ is a ring homomorphism.
For example, f ′((a + I)(b + I)) = f ′(ab + I) = f (ab) = f (a)f (b) = f ′(a + I) f ′(b + I).
Note that f ′(πI(a)) = f ′(a + I) = f (a) so f ′ ◦ πI = f . Moreover, f ′(a + I) = 0 iff f (a) = 0.

Thus, f ′(a + I) = 0 iff a ∈ J, and it follows that Ker(f ′) = J/I.
Finally, f ′ is unique. Suppose that f ′′ : R/I → S also satisfies f ′′ ◦ πI = f then f ′′(a + I) =

f ′′(πI(a)) = f (a) = f ′(a + I) and so f ′ = f ′′. �

Corollary 32.0.6. If f is surjective and I = J we conclude that f ′ : R/Ker(f )→ S is an isomorphism,

R/Ker(f ) ∼= S.

Corollary 32.0.7. If I ⊂ J are two sided ideals of R then

(R/I)/(J/I) ∼= R/J.

Proof. Apply the Theorem to the homomorphism πJ : R → R/J. We get

R
πJ //

πI   A
AA

AA
AA

A
R/J

R/I

f ′

<<zzzzzzzz

.

We have Ker(f ′) = J/I. By the previous Corollary, (R/I)/Ker(f ′) = (R/I)/(J/I) ∼= R/J. �

Remark 32.0.8. The only ideals of a division ring R (e.g., a field) are 0 and R. Thus, if R is a

division ring, S is not the zero ring, and f : R → S is a ring homomorphism then f is injective. In

particular, any ring homomorphism between fields is injective.

Proposition 32.0.9. Let f : R → S be a surjective ring homomorphism. There is a bijection between

ideals of R containing the kernel of f and ideals of S, given by I 7→ f (I) (with inverse J 7→ f −1(J)).

I leave writing a detailed proof to you. Note that we already know such a bijection exists on the

level of subgroups. Thus, the only point to check is that it takes ideals to ideals, which is quite

straight forward.
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32.1. The universal property of the ring of quotients.

Theorem 32.1.1. Let R be a commutative integral domain. There is a natural injective ring

homomorphism

R → Q(R), r 7→ (r, 1) = r

1
.

Every element of R is invertible in Q(R). If F is a field and j : R → F is an injective ring
homomorphism then there is a unique ring homomorphism J : Q(R) → F rendering the following
diagram commutative:

R //

j ""D
DD

DD
DD

DD
Q(R)

J

��
F

Proof. It follows straight from the definitions that r 7→ r
1 is a ring homomorphism. It is injective

since r
1 = 0 iff r = 0. We may thus view R as a subring of Q(R) as we shall usually do. If r ∈ R

is not zero then r · 1r (more precisely, r1 · 1r ) is just 1 = r
r . Thus, every non-zero element of R is

invertible in Q(R).

Given j , define J by J( rs ) = j(r)j(s)−1. This is well defined: First, if j(s) 6= 0 then j(s)−1
exists and, second, if rs =

r ′
s ′ (thus rs

′ = r ′s) then J( rs ) = j(r)j(s)−1 = j(r)j(s ′)j(s)−1j(s ′)−1 =

j(rs ′)j(s)−1j(s ′)−1 = j(r ′s)j(s)−1j(s ′)−1 = j(r ′)j(s)j(s)−1j(s ′)−1 = j(r ′)j(s ′)−1 = J( r
′
s ′ ).

It is easy to verify that J is a homomorphism and of course j(r) = J( r1). �

32.2. A useful lemma.

Lemma 32.2.1. Let R,S be commutative rings. Let f : R → S be a ring homomorphism. Let

s ∈ S be any element. There exists a unique ring homomorphism,
F : R[x ]→ S,

such that F (r) = f (r) for r ∈ R and F (x) = s .
Proof. Define

F (
∑

aix
i) =

∑

f (ai)s
i .

By definition, F (r) = f (r) for r ∈ R and F (x) = s . It is easy to check that F is a ring homomor-
phism. �
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From now on, all rings are assumed to be commutative

33. More on ideals

Here are some easy properties of ideals:

• If {Iα : α ∈ A} are ideals then so is ∩α∈AIα.
• If I, J are ideals then I + J = {i + j : i ∈ I, j ∈ J} is an ideal.
• If I, J are ideals then IJ, defined as ∩ K⊳R

K⊇{i j:i∈I,j∈J}
K, is an ideal. It is the minimal ideal of R

containing the set {i j : i ∈ I, j ∈ J}.
• Let A be any subset of R. The ideal generated by A is defined to be ∩ K⊳R

K⊇A
K and is denoted

(A) or 〈A〉. For example, if A = {i j : i ∈ I, j ∈ J} then 〈A〉 is the ideal IJ. A very important
case is when A contains one element, A = {a}, then (a) is Ra = aR. A principal ideal is
such an ideal, namely, of the form (a) for some a ∈ R.

The following Lemma is not hard to prove.

Lemma 33.0.2. We have 〈A〉 = {∑N
i=1 riai : ri ∈ R, ai ∈ A,N ≥ 0} (by definition, the empty sum

is equal to the zero element of R).

Example 33.0.3. In Z every ideal is principal, equal to (n) for some n ∈ Z. The same holds in the
ring Z[i ] of Gaussian integers and in the ring of polynomials F[x ] over a field F. This will follow
from the fact that the rings Z,Z[i ],F[x ] are all Euclidean.
In the ring Z[

√
−6] the ideal (2,

√
−6) is not principal. In the ring Q[x, y ] (polynomials in two

variables with rational coefficients) the ideal (x, y) is not principal.

Definition 33.0.4. An ideal I⊳R is called prime if I 6= R and
ab ∈ I ⇒ a ∈ I or b ∈ I.

An ideal I⊳R is called maximal if I 6= R and if J is an ideal containing I then J = I or J = R.
Proposition 33.0.5. The following holds:

(1) I is prime ⇔ R/I is an integral domain.

(2) I is maximal ⇔ R/I is a field.

(3) I is maximal ⇒ I is prime.

(4) Every ideal of R is contained in a maximal ideal.

Proof. (1) I is prime iff I 6= R and {ab ∈ I ⇒ a ∈ I or b ∈ I}, i.e., iff R/I is not the zero ring
and ab = 0 ⇒ a = 0 or b = 0 (where a = a + I, etc.). That is, I is prime iff R/I is an

integral domain.

(2) Suppose that I is maximal. Let a 6∈ I then (I, a) = I + (a) = R so 1 = r i + sa for some

r, s ∈ R, i ∈ I, which gives 1 = s · a. Since any non zero element of R/I is of the form a

for some a 6∈ I we conclude that every non-zero element of R/I is invertible and thus R/I
is a field.

Suppose that R/I is a field. Let J ⊇ I be an ideal. Then J/I is an ideal of R/I and so is
either the zero ideal or equal to R/I. It follows that J = I or J = R. Thus, I is a maximal

ideal.

(3) If I is maximal R/I is a field, hence an integral domain and therefore I is prime.

(4) Let S be a poset – a partially ordered set. Namely, there is a relation 2 defined on S, which

is transitive, reflexive and if x 2 y , y 2 x then x = y . A chain in S is a subset S0 such that

if x, y ∈ S0 then either x 2 y or y 2 x . A subset S0 has a supremum if there is an element
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s ∈ S such that for all s0 ∈ S0 we have s0 2 s and if t ∈ S and for all s0 ∈ S0 we have
s0 2 t then s 2 t.

Zorn’s Lemma. Let S be a poset in which any chain has a supremum. Then S has a

maximal element, namely, an element z ∈ S such that if s ∈ S and z 2 s then z = s .
The proof of this lemma is beyond the scope of this course. It is known to be equivalent to

the Axiom of Choice of set theory. We apply the lemma as follows. Let S be the set of all

ideals of R except the ideal R itself. This is a poset: I 2 J if I ⊆ J. Any chain of ideals
{Iα : α ∈ A} has a supremum ∪α∈AIα (this is indeed an ideal!). Hence ,by Zorn’s lemma
S, has a maximal element M . The construction gives that M is a maximal ideal of R.

�

Example 33.0.6. When is a principal ideal (r) prime? The first condition is that (r) 6= R. That is,
r is not a unit. Secondly, if ab ∈ (r), that is ab = rc1 for some c1 ∈ R then a ∈ (r) or b ∈ (r),
meaning a = rc2 or b = rc3 for some ci ∈ R.
Let us say, for a general commutative ring R, that f |g in R if g = f c for some c ∈ R. We

see that in this terminology, (r) is a prime ideal if r is not a unit and r |ab ⇒ r |a or r |b. This is a
property of prime numbers and motivates the terminology “prime” (but we also require r 6= 0).
In particular, the prime ideals of Z are precisely the ideals of the form (p), where p is a prime

number. The ideal (1+ i) of Z[i ] is maximal: Z[i ]/(1+ i) ∼= (Z[x ]/(x2+1))/((1+ x, x2+1)/(x2+
1)) ∼= Z[x ]/(x2 + 1, 1 + x) = Z[x ]/(1 + x, 2) ∼= Z/2Z[x ]/(1 + x) ∼= Z/2Z.
The ideal (x2−y2) of Q[x, y ] is not prime. We have (x+y)(x−y) = x2−y2 and x+y 6∈ (x2−y2).

34. The Chinese Remainder Theorem

Let R be a commutative ring. Two ideals I, J of R are called co-prime if I + J = R; equivalently,

we have 1 = i + j for some i ∈ I, j ∈ J.
Theorem 34.0.7. (The Chinese Remainder Theorem) LetR be a commutative ring and A1, . . . , Ak
ideals of R, co-prime in pairs (Ai + Aj = R for i 6= j). Then,

R/(A1 · · ·Ak) ∼= R/A1 × · · · × R/Ak .
Proof. We define a map

f : R→ R/A1 × R/A2 × · · · × R/Ak , r 7→ (r + A1, . . . , r + Ak).
This is a ring homomorphism whose kernel is A1 ∩ A2 ∩ · · · ∩ Ak ⊇ A1A2 · · ·Ak . We need to prove
that this is actually an equality and that f is surjective. The key is the following Lemma:

Lemma 34.0.8. For every i there is an element ei ∈ R such that
ei ≡ 1 (mod Ai), ei ≡ 0 (mod Aj), ∀j 6= i .

Proof. (Lemma) Without loss of generality, i = 1. For each j = 2, 3, . . . , k write

1 = xj + yj , xj ∈ A1, yj ∈ Aj .
Then

1 = (x1 + y1)(x2 + y2) · · · (xk + y + k)
= α+ y2y3 . . . yk .

(5)

Here α is a sum of products, each involving at least on xj , so α ∈ A1. Let
e1 = 1− α.
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Then e1 ≡ 1 (mod A1) and e1 = y2y3 . . . yk ≡ 0 (mod Aj) for 2 ≤ j ≤ k. �

We now show that f is surjective. Given (r1, r2, · · · , rk) ∈ R/A1×R/A2×· · ·×R/Ak choose si ∈ R
such that si = si+Ai = ri . Then f (s1e1+s2e2+· · ·+skek) =

∑

i si f (ei) =
∑

i(0, . . . , 0, si
i
, 0, . . . , 0)) =

(s1, s2, . . . , sk).

It remains to prove that A1A2 · · ·Ak ⊇ A1 ∩ A2 ∩ · · · ∩ Ak . We prove that by induction on
k. For k = 1 this is clear. Consider the case k = 2. We have 1 = x2 + y2 as in Equation

(5). Let c ∈ A1 ∩ A2. Then c = cx2 + cy2. Note that c ∈ A2, x2 ∈ A1 ⇒ cx2 ∈ A1A2 and
c ∈ A1, y2 ∈ A2 ⇒ cy2 ∈ A1A2. Thus, c ∈ A1A2.
Assume now that k > 2. Let B = A2 ∩ · · · ∩ Ak . We know by induction that B = A2 · · ·Ak .

Note that A1 and B are relatively prime, because by Equation (5)

1 = α+ y2 · · · yk , α ∈ A1, y2 · · · yk ∈ B.
Using the case k = 2 we have that A1B ⊇ A1 ∩ B, i.e., A1A2 · · ·Ak ⊇ A1 ∩ A2 ∩ · · · ∩ Ak . �

Remark 34.0.9. One may ask why is it important to prove that the kernel is A1A2 · · ·Ak and not just
A1∩A2∩· · ·∩Ak . The reason is that in general it is easier to calculate the product of ideals than their
intersection. For example, if each Ai is principal, Ai = (ai), then A1A2 · · ·Ak = (a1a2 · · · ak). This
formula can be generalized. For example, if A1 = ({ai}i), A2 = ({bj}j) then A1A2 = ({aibj}i ,j).
Corollary 34.0.10. Let a1, · · · , ak be relatively prime integers – that is, (ai , aj) = 1 for i 6= j . Then

Z/(a1a2 · · · ak) ∼= Z/(a1)× · · · × Z/(ak).
In particular, given residues classes bi mod ai , there is an integer b, unique up to adding multiples

of a1a2 · · · ak such that b ≡ ai (mod ai) for all i .
Example 34.0.11. Find an integer congruent to 5 mod 7 and congruent to 10 mod 13. In the

notation of the proof, we are looking for 5e1 + 10e2. Write 1 = 2 · 7 − 13 (this can be done
using the Euclidean algorithm in general). Then e1 = 1 − 2 · 7 = −13, e2 = 1 + 13 = 14. Then
b = 5 · (−13) + 10 · 14 = 75 is congruent to 5 mod 7 and to 10 mod 13. Note that by modifying
by a multiple of 7× 13 we can get a small solution, namely −16. This is typical too.
Example 34.0.12. Suppose that d is a non-square integer. Then the ring Q[x ]/〈x2−d〉 is isomorphic
to the subring of C given by R = {a+b

√
d : a, b ∈ Q}, which is an integral domain. In fact, a field.

Indeed, define a map Q[x ]→ R by f (x) 7→ f (
√
d). This is a ring homomorphism and the kernel

contains 〈x2 − d〉. As x2 − d is irreducible, this is precisely the kernel.
On the other hand, suppose that d is a square. Say d = e2. Then 〈x2 − d〉 = 〈x − e〉〈x + e〉

(equality of ideals!). The ideals 〈x−e〉, 〈x+e〉 in Q[x ] are relatively prime, because 12e (x+e)− 12e (x−
e) = 1 and is an element of 〈x−e〉+〈x+e〉. BY CRT, Q[x ]/〈x2−d〉 ∼= Q[x ]/〈x−e〉×Q[x ]/〈x+e〉 ∼=
Q×Q, which is not an integral domain.
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Part 9. Euclidean, Principal Ideal and Unique Factorization Domains

35. Euclidean domain

Definition 35.0.13. Let R be an integral domain. We say that R is Euclidean if there is a function

(called norm)

N : R − {0} → N = {0, 1, 2, . . .}
such that for any a, b ∈ R, b 6= 0, there are q, r ∈ R such that

a = qb + r,

with r = 0 or N(r) < N(b).

Example 35.0.14. R = Z, N(a) = |a|.
Example 35.0.15. Let F be a field. Define a norm on R = F[x ],

N(f (x)) = deg(f (x)),

then F[x ] is Euclidean. Indeed, write

a = aNx
N + aN−1x

N−1 + · · ·+ a0, aN 6= 0
and

b = bMx
M + bM−1x

M−1 + · · ·+ b0, bM 6= 0.
If N < M take q = 0 and r = a. If N ≥ M, let q = qN−MxN−M + · · · + q0, where the coefficients
qi are determined recursively by attempting to solve a = qb, i.e.,

aNx
N + aN−1x

N−1 + · · ·+ a0 = (qN−MxN−M + · · ·+ q0)(bMxM + bM−1xM−1 + · · ·+ b0).
That is, we solve recursively for the qi :

qN−MbM = aN

qN−M−1bM + qN−MbM−1 = aN−1
...

q0bM + q1bM−1 + · · ·+ qMb0 = aM
(This will be discussed in more detail in class. It is possible that M > N −M, in this case we have
written above 0 = qN−M+1 = qN−M+2 = · · · = qM for notational convenience.) Then, the residue,
if any, will be polynomial of degree less than M.

Example 35.0.16. Let R = Z[i ] = {a + bi : a, b ∈ Z}. This is a subring of the complex numbers.
Let

N(a + bi) = a2 + b2 = |a + bi |2.
Given two elements a + bi, c + di of R, let us write

a + bi =
a + bi

c + di
(c + di) =

(
ac + bd

c2 + d2
+
−ad + bc
c2 + d2

i

)

(c + di).

Let α = ac+bd
c2+d2

and β = −ad+bc
c2+d2

. Find integers A,B such that

|α− A| ≤ 1/2, |β − B| ≤ 1/2.
Then

a + bi = (A+ Bi)(c + di) + ((α− A) + (β − B)i)(c + di).
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Then q = A+ Bi and r = ((α− A) + (β − B)i)(c + di). Note that q, r ∈ R. Finally,

N(r) = [(α− A)2 + (β − B)2]N(c + di) ≤ 1
2
N(c + di) < N(c + di).

36. Principal ideal domains

Definition 36.0.17. An integral domain R in which every ideal is principal, i.e. of the form (r) =

Rr = rR for some r ∈ R, is called a principal ideal domain (PID).

Proposition 36.0.18. Every Euclidean domain is a PID.

Proof. Let I⊳R be an ideal. If I = {0} = (0) there is nothing to prove. Else, choose b ∈ I, b 6= 0
such that N(b) is minimal among the norms of the non-zero elements of I. Let a ∈ I then we may
write a = qb + r with r = 0 or N(r) < N(b). However, r = a − qb ∈ I so r = 0 else we get a
contradiction to the definition of b. That is, a ∈ (b) and it follows that I = (b). �

Corollary 36.0.19. Z,F[x ], for F a field, and Z[i ] are PID.

36.1. Division and gcd’s. Let R be an integral domain and a, b ∈ R. We say that b divides a,
b|a, if there exists x ∈ R such that a = bx . We say that a and b are associates, a ∼ b, if a = bx
and x ∈ R×.
Here are some easy consequences of the definitions:

• c|b and b|a ⇒ c|a.
• 1|a. a|1⇔ a ∈ R×.
• b|a and a|b ⇔ b ∼ a. Being associates is an equivalence relation.
• b|a1, b|a2 ⇒ b|(a1 + a2).
• b|a⇒ b|ac, ∀c ∈ R.

Lemma 36.1.1. b|a⇔ (a) ⊆ (b) (“to divide is to contain”). In particular, a ∼ b⇔ (a) = (b).

Proof. We have b|a⇔ a = bx ⇔ a ∈ (b)⇔ (a) ⊆ (b). �

A greatest common divisor (g.c.d.) of two elements a, b ∈ R is an element d ∈ R having the
following properties:

(1) d |a and d |b;
(2) If d ′|a and d ′|b then d ′|d .

Note the emphasis on “a” in “a greatest common divisor”. It is not unique (if it exists at all), but

it “almost” is.

Lemma 36.1.2. A g.c.d., if it exists, is unique up to a unit. In that case, it will be denoted gcd(a, b)

or, simply, (a, b).

Proof. Let d be a gcd of a and b and u a unit. Then, if a = d · e we have a = ud · u−1e, and
similarly for b. So ud also divides a and b. Let f be an element dividing both a and b. Then f

divides d , because d is a gcd. But then f |ud . So ud has the two defining properties of a gcd and
hence is a gcd as well.

Now let d1 be another gcd of a and b. Since it divides a and b it must divide d , because d is a

gcd. So d1|d , but, reversing the roles of d and d1, also d1|d . It follows that d ∼ d1. �
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In general a g.c.d. need not exist. The following lemma provides a criterion for its existence.

Note that this criterion is not necessary but only sufficient. For example, in the ring Q[x, y ] we have
g.c.d.(x, y) = 1 but 〈x, y〉 is not principal.
Lemma 36.1.3. If the ideal 〈a, b〉 is principal, 〈a, b〉 = (d), then d is a g.c.d. of a, b.
Proof. If 〈a, b〉 = (d) then a ∈ (d), b ∈ (d) so d |a, d |b. If d ′|a, d ′|b then a, b ∈ (d ′) and so
〈a, b〉 ⊆ (d ′). Hence, (d) ⊆ (d ′) and so d ′|d . �

Corollary 36.1.4. If R is a PID then any two elements of R have a g.c.d..

36.2. Calculation of g.c.d.’s – the Euclidean algorithm. Let R be a Euclidean ring. Then R is a

PID and hence any two elements a, b ∈ R have a g.c.d.. The Euclidean algorithm provides means
to calculate that g.c.d..

Theorem 36.2.1. Let a, b be elements of the Euclidean ring R. Write, with quotients qi and residues

ri as in the definition of Euclidean ring,

a = q0b + r0

b = q1r0 + r1

r0 = q2r1 + r2

...

rn−1 = qn+1rn

Indeed, the process always stops. Moreover rn is gcd(a, b).

Proof. The proof is easy, can be left as an exercise; we will give it in class. �

Example 36.2.2. Let us calculate the g.c.d. of 1079 and 1131. We have

1131 = 1 ∗ 1079 + 52
1079 = 20 ∗ 52 + 39
52 = 1 ∗ 39 + 13
39 = 3 ∗ 13

Therefore, 13 = (1079, 1131).

Example 36.2.3. Let us calculate the g.c.d. of x3 − x and x3 + 3x2 + x in Q[x ]. We have
x3 + 3x2 + x = 1 ∗ (x3 − x) + 3x2 + 2x

x3 − x = (x/3− 2/9)(3x2 + 2x)− 5x/9
3x2 + 2x = −9/5(3x + 2)(−5x/9)

It follows that gcd(x3 − x, x3 + 3x2 + x) = x .
Remark 36.2.4. Let R be a PID. Then for every a, b we have 〈a, b〉 = 〈d〉 for some d ∈ R. In the
case R is Euclidean we have a method to find d . In the general case, we do not have a method.

Note that in the case of PID we have 〈a, b〉 = 〈d〉 and so there are x, y ∈ R such that gcd(a, b) =
xa+yb. In the Euclidean case the Euclidean algorithm also gives x, y by “solving back”. An example

will suffice to clarify how to do that. Refer back to Example 36.2.2. We have 13 = (1079, 1131).

Moreover, 52 = 1 ∗ 39 + 13 and so 13 = 52 − 39. Now, 1079 = 20 ∗ 52 + 39 and so 13 =
52 − (1079 − 20 ∗ 52) = 21 ∗ 52 − 1079. Use now that 1131 = 1 ∗ 1079 + 52 to get that
13 = 21 ∗ (1131− 1079)− 1079 = 21 ∗ 1131− 22 ∗ 1079.
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36.3. Irreducible and prime elements.

Definition 36.3.1. Let R be an integral domain. Let r be an element of R, r 6= 0 and r not a unit.
(1) The element r is called irreducible if

r = ab =⇒ r ∼ a or r ∼ b.
(2) The element r is called prime if

r |ab =⇒ r |a or r |b.

Remark 36.3.2. Note that if r, s are associates then r is irreducible (prime) if and only if s is.

Note also that r is prime if and only if (r) is a non-zero prime ideal.

Lemma 36.3.3. If r is prime then r is irreducible.

Proof. Suppose that r = ab. Then r |ab and so, without loss of generality, r |a. But a|r and so
r ∼ a. �

Example 36.3.4. In general an irreducible element need not be prime. Consider the ring Z[
√
−5].

We have the factorization

(1 +
√
−5) · (1−

√
−5) = 2 · 3.

I claim that all these elements are irreducible. First, the units of this ring are just ±1. Now, for
example, if 2 = (a+ b

√
−5)(c + d

√
−5) then |2|2 = (a2 + 5b2)(c2 + 5d2). From that we see that

a = ±2, b = 0 and so 2 ∼ a. Similar arguments work for the rest.
On the other hand, none of these elements can be prime. For example, 2|(1+

√
−5) · (1−

√
−5)

but clearly 2 ∤ 1 +
√
−5. Or, if you prefer, Z[

√
−5]/(2) ∼= Z/2Z[x ]/(x2 + 5). We have (x + 1)2 =

x2 +1 = x2+ 5 = 0 in this ring, which shows that we have zero divisors. Hence, (2) is not a prime

ideal.

In contrast, in certain rings, such as Z, the concepts of prime and irreducible are one. The
following Proposition generalizes this.

Proposition 36.3.5. If R is a PID (e.g., if R is Euclidean) then r is prime if and only if r is irreducible.

Proof. A prime element is always irreducible by Lemma 36.3.3. We show the converse. Let r be an

irreducible element. Suppose that (r) ⊆ B⊳R. Since R is a PID, we have B = (b) for some b ∈ R.
Thus, r = ab for some a ∈ R. But r is irreducible so r ∼ a (and so b ∈ R×)) of r ∼ b. We see
that, correspondingly, either B = R or B = (r). We conclude that (r) is a maximal ideal.

Since a maximal ideal is a prime ideal, it follows that (r) is a prime ideal and so r is a prime

element. �

Corollary 36.3.6. In a PID, every non-zero prime ideal is maximal.

Proof. Every prime ideal if of the form (r), for r prime/irreducible. We saw that this implies (r) is

maximal. �

Corollary 36.3.7. Let F be a field. In the polynomial ring F[x ] a polynomial is prime if and only if
it is irreducible. The quotient ring F[x ]/(f (x)) is a field if and only if f (x) is irreducible.
The field F[x ]/(f (x)) contains a copy of F and in it the polynomial f has a root. If the degree

of f is d then the dimension of F[x ]/(f (x)) as an F-vector space is d ; in fact, {1, x , x2, . . . , xd−1}
is a basis. Thus, if F is a finite field with q elements, F[x ]/(f (x)) has qn elements.

Proof. Straightforward; we’ll elaborate in class. �
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Example 36.3.8. Let R be an integral domain which is not a field (e.g., R = Z or R = F[x ], F a
field). Then R[y ] is an integral domain that is not a PID.

Indeed, the ideal (y) is prime since R[y ]/(y) ∼= R which is an integral domain. It is not a maximal
ideal since R is not a field.

37. Unique factorization domain (UFD)

Definition 37.0.9. Let R be an integral domain. R is called a unique factorization domain (UFD)

if for every r ∈ R, not zero and not a unit, the following holds:
(1) r can be written as a product of irreducible elements pi ,

r = p1p2 . . . pn.

(2) If r = q1q2 . . . qm is another expression of r as a product of irreducible elements then m = n

and after re-indexing we have pi ∼ qi for all i .
Proposition 37.0.10. Let R be a UFD and r an element of R. Then r is prime if and only if r is

irreducible.

Remark 37.0.11. Recall that a PID also has this property (Prop. 36.3.5). We shall prove below

that a PID is UFD, so it all adds up!

Proof. A prime element is always irreducible (Lemma 36.3.3). Let r ∈ R be irreducible. Sup-

pose that r |ab. Then ab = rw . Write the irreducible decomposition of each element: a =

p1p2 · · · pm, b = q1q2 · · · qm, w = t1t2 · · · tℓ. Then p1p2 · · · pmq1q2 · · · qm = rt1t2 · · · tℓ gives two
expressions for ab as product of irreducible elements. It follows that either r ∼ pi for some i , or

r ∼ qj for some j . Thus, either r |a or r |b. �

37.1. A PID is a UFD.

Theorem 37.1.1. Let R be a PID then R is a UFD.

We have thus the following situation

R Euclidean =⇒
:

R PID =⇒
:

R UFD

We remark that in all three classes of rings we have the notion of a gcd. In a Euclidean ring,

gcd(a, b) exists and can be algorithmically computed as ax + by for some x, y ∈ R. In a PID R,

gcd(a, b) exists and is equal to ax+by for some x, y , but we have no algorithm to find x, y . Finally,

in a UFD R, gcd(a, b) exists and need not be equal to ax + by for any x, y .

In particular, we conclude:

Corollary 37.1.2. Let F be a field then F[x ] is UFD; every polynomial can be written as a product of
irreducible polynomials uniquely (up to multiplication by units = F×, and permuting the polynomials).

Example 37.1.3. A UFD need not be a PID. We shall show below that R is a UFD implies that

R[x ] is a UFD. Hence, Q[x, y ] is a UFD but is not a PID (the ideal 〈x, y〉 is not principal).
A PID needs not be Euclidean. I don’t know an easy example. One can prove that Z[1+

√
−19
2 ] is

a PID, but not Euclidean with respect to any candidate norm N. (See exercise 102).
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Proof. The first step is to prove that if r ∈ R is not zero, or a unit, then r can be written as a
product of irreducible elements.

Suppose not, then r is not irreducible and so r = r1s1, where either r1 or s1 are not a product of

irreducible elements, without loss of generality, r1. Then r1 = r2s2, , where either r2 or s2 are not a

product of irreducible elements (and are not associates of r1), without loss of generality, r2. Then

r2 = r3s3, , where either r3 or s3 are not a product of irreducible elements (and are not associates

of r2), without loss of generality, r3. And so on.

We get a chain of division: . . . r3|r2|r1|r , where this is “true division”; any two elements are not
associates. We thus get a strictly increasing chain of ideals:

(r) ( (r1) ( (r2) ( (r3) ( . . . .

Consider then ∪∞i=1(ri). It is easy to check this is an ideal, and so, since R is a PID, of the form
(g) for some g ∈ R. But then g ∈ (ri) for some i and we get (ri) = (g). It then follows that
(ri) = (ri+1) = (ri+2) = . . . . This is a contradiction.

The second step is to prove this decomposition is unique. Say

r = p1 · · · pn = q1 · · · qm,
a product of irreducible elements and without loss of generality m ≥ n. We prove the uniqueness

by induction on n:

If n = 1 then we get a factorization of the irreducible element p1. Then either q1 or q2 · · · qm is
a unit. It must thus be the case that m = 1 and p1 = q1.

Assume the result for n − 1. Since pn|q1 · · · qm there is some i such that pn|qi (in a PID an
irreducible element is prime). Thus, since qi is irreducible, qi = pnx for some unit x . We get

p1 · · · pn−1 = (xq1)q2 · · · q̂i · · · qm.
By induction n − 1 = m − 1 and p1, p2, . . . , pn−1 are the same as xq1, q2, . . . , q̂i , . . . , qm up to
multiplication by units (or, what is the same, q1, q2, . . . , q̂i , . . . , qm up to multiplication by units). �

37.1.1. Arithmetic in UFD’s. The unique factorization property allows us to do arithmetic in a UFD

much like in Z. For instance, we can also define the least common multiple (lcm) of two elements
a, b as an element c such that a|c and b|c and if a|c ′ and b|c ′ then c|c ′. We easily check that if
the lcm exists it is unique up to a unit. In fact, the lcm always exists. The case where one of a, b is

zero or a unit is easily checked and in general the following proposition gives, moreover, a formula

for it.

Proposition 37.1.4. Let R be a UFD. Let x = pα11 · · · pαnn · u, y = pβ11 · · · pβnn · v , where the pi are
non-associated irreducible elements, αi , βi are non-negative integers and u, v are units. Then

gcd(x, y) = ps11 · · · psnn , si = min{αi , βi},
and

lcm(x, y) = pt11 · · · ptnn , ti = max{αi , βi}.
The proposition follows immediately from the following result.

Lemma 37.1.5. In the notation above, z |x if and only if z = pa11 · · · pann w with ai ≤ αi for all i and
w a unit.

Proof. Clearly every such z divides x : x = p1α1 − a1 · · · pnαn − anuw−1z . Conversely, if z |x , say
x = zt then write z and t as a product of irreducible elements. Say z = pa11 · · · pann qb11 · · · qbmm w and

t = p
a′1
1 · · · p

a′n
n q

b′1
1 · · · q

b′m
m w ′, where we allow non-negative (including zero) exponents. Thus,

pα11 · · · pαnn · u = p
a1+a

′
1

1 · · · pan+a
′
n

n q
b1+b

′
1

1 · · · qbm+b
′
m

m ww ′.
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Unique factorization gives that each bi = b
′
i = 0 (or, if you prefer, m = 0) and ai + a

′
i = αi . �

37.2. Gauss’ Lemma.

Lemma 37.2.1. Let I be an ideal of R, a commutative ring, let IR[x ] be the notation for the ideal

generated by I in the polynomial ring R[x ]. Then

IR[x ] = {
N∑

n=0

anx
n : an ∈ I}

and

R[x ]/IR[x ] ∼= (R/I)[x ].

Proof. By definition, IR[x ] = {∑N
n=0 infn(x) : in ∈ I, fn(x) ∈ R[x ]}. Clearly it contains {

∑N
n=0 anx

n :

an ∈ I}. On the other hand, by expanding a sum
∑N
n=0 infn(x), in ∈ I, fn(x) ∈ R[x ], according to

powers of x we get the other inclusion.

Now, define a homomorphism

R[x ]→ (R/I)[x ], f (x) 7→ f (x),

where if f (x) =
∑
aix

i then f (x) =
∑
aix

i (we use ai to denote the coset ai + I). The kernel

is {∑N
n=0 anx

n : an = 0} = {
∑N
n=0 anx

n : an ∈ I} = IR[x ] and the map is clearly surjective. We

conclude by the first isomorphism theorem. �

Lemma 37.2.2. (Gauss’ lemma) Let R be a UFD with field of fractions F , Let f (x) ∈ R[x ]. If
f (x) is reducible in F [x ] then f (x) is reducible in R[x ]. More precisely, if f (x) = A(x)B(x) in F [x ],

a product of non-constant polynomials, then f (x) = a(x)b(x) in R[x ] where a(x) (resp., b(x)), is

a constant multiple of A(X) (resp., B(X)).

Remark 37.2.3. Note that the contrapositive has to be taken with care. It is not “f (x) irreducible

in R[x ] implies that f (x) is irreducible in F [x ]”. The issue is that the units of the rings are different.

For example, 2 ∈ Z is irreducible in Z ⊂ Z[x ] but is not irreducible in Q ⊂ Q[x ] simply because it
is a unit in Q and a unit is not an irreducible element. See Corollary 37.2.4 below for the correct
converse.

Proof. (Of Gauss’ lemma) Suppose that f (x) = A(x)B(x) in F [x ] is a non-trivial factorization.

That is, A(x), B(x) are non-constant polynomials. Since the coefficients of A,B are fractions s/t,

where s, t ∈ R, we can find a common denominator and so an equation
df (x) = A1(X)B1(X),

with 0 6= d ∈ R,A1(X), B1(X) ∈ R[x ]. Note that A1, B1 are constant multiples of A,B.
If d is a unit, take a(x) = d−1A1(x), b(x) = B(x). Else,

d = p1 · · · pn,
a product of irreducible elements. Now, since p1 is irreducible it is prime and so (p1) is a prime ideal.

In the ring R/(p1)[x ], which is an integral domain, we have 0 = A1(x) ·B1(x) (where A1(x), B1(x)
denote the image of the polynomials A1(x), B1(x) in the ring R/(p1)[x ]) and thus, without loss of

generality, A1(x) = 0. Lemma 37.2.1 gives that each coefficient of A1(x) is divisible by p1. Hence,

there is a polynomial A2(x) ∈ R[x ] such that
p2 · · · pnf (x) = A2(x)B1(x).
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Continuing in such fashion, we find polynomials a(x), b(x) ∈ R[x ] such that f (x) = a(x)b(x) and
a, b are constant multiples of A,B. In particular, a, b are non-constant polynomials and so we got

a non-trivial factorization. �

Corollary 37.2.4. Let f (x) ∈ R[x ] be a polynomial such that the g.c.d. of its coefficients is 1, e.g.,
f (x) is monic. Then f (x) is irreducible in R[x ] if and only if f (x) is irreducible in F [x ].

Proof. One direction is Gauss’ Lemma. Suppose then that f (x) is reducible in R[x ], say f (x) =

a(x)b(x), where neither is a unit in R[x ]. Note that a(x) cannot be a constant, because this would

imply that a(x) divides the g.c.d. of the coefficients of f (x) and hence that g.c.d. is not 1. Thus,

a(x) is also not a unit of F [x ]. The same holds for b(x) and thus f is reducible in F [x ]. �

Example 37.2.5. It is good to keep the following example in mind. The polynomial 2x is reducible

in Z[x ] but is irreducible in Q[x ].

37.3. R UFD ⇒ R[x ] UFD.

Theorem 37.3.1. Let R be a UFD then R[x ] is a UFD.

Proof. Let f (x) ∈ R[x ] and write
f = df1,

where the g.c.d. of the coefficients of f1 is 1. Note that this decomposition is unique up to a unit,

namely, up to d 7→ du, f1 7→ f1u
−1. Indeed, if f = ef2 where e ∈ R and f2 ∈ R[x ] and the gcd of

the coefficients of f2 is equal to 1, then we see that e divides the coefficients of f and so e|d . Thus,
(de−1)f1 = f2 but then (de−1) divides the coefficients of f2, which implies that de−1 is a unit.
Suppose we have shown that we may f is a product of irreducible elements of R[x ], say

f = p1p2 · · · paq1(x)q2(x) · · · qb(x),
where the pi are irreducible elements of R (and those stay irreducible in R[x ]!) and qi(x) are

irreducible elements of R[x ] of positive degree. Note that if the gcd, say g of qi(x) is not a unit the

qi(x) = g · (g−1qi(x)) is a non-trivial factorization and that leads to contradiction. Thus, all the
qi(x) have gcd 1. It follows that up to units, the factorization is

d = p1p2 · · · pa, f1 = q1(x)q2(x) · · · qb(x).
Thus, since d can be written as product of irreducible elements, unique up to being associate,

and since irreducible elements of R are irreducible elements of R[x ], we may assume that the g.c.d.

of the coefficients of f is 1 to begin with.

Let F be the quotient field of R. We use the fact that F [x ] is Euclidean, hence PID, hence UFD,

to write

f (x) = P1(x) · · ·Pn(x), Pi(x) ∈ F [x ] irreducible.
By Gauss’ Lemma

f (x) = p1(x) · · · pn(x), pi(x) ∈ R[x ],
where each pi is a multiple of Pi , in particular irreducible in F [x ]. Note that the g.c.d. of the

coefficients of pi must be 1 (because of our assumption of f ). Corollary 37.2.4 gives that each pi
is irreducible in R[x ].

The decomposition of f is unique. If

f = q1(x) · · · qm(x)
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is another factorization into irreducible polynomials in R(x) then each qi has g.c.d. of its coefficients

equal to 1, hence by Corollary 37.2.4 is irreducible in F [x ]. Since F [x ] is a UFD, we must have,

after re-indexing, that m = n and qi ∼ pi for all i in F [x ], say pi = ri
si
qi . We get an equality in R[x ]:

sipi = riqi . The g.c.d. of the r.h.s. is ri and is equal to that of the l.h.s. which is si . It follows that

ri ∼ si and so pi ∼ qi in R[x ]. �

Corollary 37.3.2. Let F be a field and x1, . . . , xn be variables. The ring of polynomials F[x1, . . . , xn]
is a UFD. Similarly, Z[x1, . . . , xn] is a UFD.



82 EYAL Z. GOREN, MCGILL UNIVERSITY

Part 10. Exercises

(1) Prove directly from the definitions that every group of order 3 is cyclic (and in particular

commutative).

(2) Prove directly from the definitions that a group G in which every element a satisfies a2 = e

is commutative. Prove further that if G is finite than G has 2n elements for some n.

(3) Write down all the elements of GL2(F2). Consider the action of this group on the set of
non-zero vectors in F22 (the two dimensional vector space over F2). Show that this allows
one to identify the group GL2(F2) with the symmetric group S3.

(4) Let D2n, n ≥ 3, be the dihedral group with 2n elements. It is generated by x, y , satisfying
xn = y2 = xyxy = 1. Prove (algebraically) that every element not in the subgroup 〈x〉 is a
reflection and find (geometrically) the line through which it is a reflection.

(5) Let n ≥ 2. Prove that Sn is generated by the set of all transpositions {(i j) : 1 ≤ i < j ≤ n}.
Prove that in fact the transpositions (12), (23), . . . , (n − 1 n) alone generate Sn.

(6) Let α ∈ Rn, n ≥ 2, be a non-zero vector. We define a reflection in the hyperplane
perpendicular to α by the formula

σα(v) = v −
2(v , α)

(α,α)
· α.

Here (x, y) is the standard inner product on Rn. Prove that σα is indeed a linear map that
fixes the hyperplane orthogonal to α and sends α to −α. Given α, β non-zero vectors,
determine when the subgroup 〈σα, σβ〉 is infinite. Further, in case it is finite, determine it’s
order. (Suggestion: reduce to the case of n = 2.)

(7) Let T be a non-empty set (possibly infinite) and define ΣT as the set of all functions

f : T → T that are bijective. Show that ΣT is a group under composition of functions (if

T = {1, 2, . . . , n} we can identify ΣT with Sn). Show that for T = Z there are elements
σ, τ ∈ ΣT , each of order 2, that generate a subgroup of infinite order.

(8) Find the lattice of subgroups of the groups Z/4Z,Z/2Z×Z/2Z,Z/6Z, S3, and A4. Namely,
write all the subgroups and determine which is contained in which. The following simple

observation may help: Any subgroup of a finite group is generated by some finitely many

elements (for instance, all its elements). Thus, we can start by writing all the subgroups

generated by one element - the cyclic subgroups, then all the subgroups generated by two

elements, and so on. It is useful to note that if we find two subgroups H1 ⊂ H2 such that
|H2|/|H1| is prime, there is no subgroup strictly between H1 and H2 (why?).

(9) The Euler φ-function,

φ : Z>0 → Z,
defined by

φ(n) = ♯{0 < a ≤ n : gcd(a, n) = 1}
has the following properties:

• If n and m are relatively prime then φ(nm) = φ(n)φ(m).
(This can be proved as follows. Using the Chinese Remainder Theorem Z/nmZ ∼=
Z/nZ× Z/mZ as rings. Now calculate the unit groups of both sides.)
• If p is a prime φ(pa) = pa − pa−1.
• φ(n) = n∏p|n(1− 1/p) (the product taken over the prime divisors p of n).

(10) Let σ ∈ Sn be a permutation. Find a formula (in terms of the factorization of σ into

disjoint cycles) for the cardinality of CSn(σ). Fix n; for which permutations σ the minimum

is obtained?

(11) Give an example of a group G and a subgroup H of G for which H ∩ CG(H) = {1} and
CG(H) 6= {1}.
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(12) Prove that if N < G and [G : N] = 2 then N⊳G.

(13) In this exercise you are required to calculate the commutator subgroup and center of some

groups.

(a) Find the center of the following groups: Dn, GLn(F), where F is any field.
(b) Find the commutator subgroup of Dn.

(c) Prove that the commutator subgroup of GLn(F) is contained in SLn(F), F a field. (In
fact equality holds. Optional: prove that for n = 2.)

(14) Let m < n be positive integers. Calculate NSn(Sm). In particular, find when NSn(Sm) = Sm.

(15) Let G be a group and C ⊂ G be a left coset of some subgroup of G. Prove that C is also
a right coset of some (usually different) subgroup of G.

(16) Consider the group S4 and its (commutative) subgroup V = {1, (12)(34), (13)(24), (14)(23)}.
(a) Prove that conjugation in the group S4 permutes the elements in V − {1}.
(b) Prove that V is a normal subgroup of S4.

(c) Use the first part to prove that there is a homomorphism f of S4 into S3 whose kernel

contains V .

(d) Prove that f is surjective.

(e) Prove that in fact f induces an isomorphism S4/V ∼= S3.
(17) Characteristic subgroups. A subgroup H of a group G is called characteristic if for every

automorphism f : G → G we have f (H) = H.

(a) Prove that a characteristic subgroup is a normal subgroup. (Hint: consider x 7→ gxg−1

for g fixed.)

(b) Prove that the centre of G, Z(G) is a characteristic subgroup, as well as the commu-

tator subgroup G′.
(c) Give an example of a normal subgroup that is not characteristic.

(18) If G,H are finite groups such that (|G|, |H|) = 1 then every group homomorphism f : G → H

is trivial (f (G) = {1}).
(19) Find all possible homomorphisms Q→ S3. Is there an injective homomorphism Q→ S4?

(As usual, Q is the quaternion group of order 8).

(20) Prove that a group a non-abelian of order 6 is isomorphic to S3. Prove that every abelian

group of order 6 is isomorphic to Z/6Z.
Here are some hints: start by showing that every group G of order 6 must have an element

x of order 2 and an element y of order 3. This in fact follows from some general theorems

but I want you to argue directly using only what we covered in class. (A typical problem

here is why can’t all the elements different from 1 have order 3. If this is the case, show

that there are two cyclic groups K1, K2 of G of order 3 such that K1∩K2 = {1}. Calculate
|K1K2|.)
Having shown that, if G is abelian show it implies the existence of an element of order

6. In the non-abelian case show that we must have xyx−1 = y2 and that every element in
G is of the form xayb, a = 0, 1, b = 0, 1, 2. Show that the map x 7→ (1 2), y 7→ (1 2 3)
extends to an isomorphism.

(21) Let G be a group. Let Aut(G) be the collection of automorphisms of G (isomorphisms from

the group onto itself). Show that Aut(G) is a group under composition. For every g ∈ G
let τg : G → G be the map τg(x) = gxg−1. Prove that τg ∈ Aut(G) and that the map
G → Aut(G), g 7→ τg, is a homomorphism of groups whose kernel is the centre Z(G) of

G. The image is called the inner automorphisms of G and is denoted Inn(G). Prove that

Inn(G) is a normal subgroup of Aut(G). The quotient group Aut(G)/Inn(G) is called the

outer automorphism group of G and is denoted Out(G).
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(Hard.) A group G is called complete if Z(G) = {1} and Out(G) = {1}. Otherwise said,
if G ∼= Aut(G) via the natural homomorphism G → Aut(G). Prove that if G is a simple
non-abelian group then Aut(G) is complete.

(22) In this exercise we shall prove that Aut(Sn) = Sn for n > 6. (The results holds true for

n = 4, 5 too and fails for n = 6.) Thus, Sn is complete for n > 6.

(a) Prove that an automorphism of Sn takes an element of order 2 to an element of order

2.

(b) For n > 6 use an argument involving centralizers to show that an automorphism of Sn
takes a transposition to a transposition.

(c) Prove that every automorphism has the effect (12) 7→ (a b2), (13) 7→ (a b3), ..., (1n) 7→
(a bn),for some distinct a, b2, ..., bn ∈ {1, 2, ..., n}. Conclude that ♯Aut(Sn) ≤ n!.

(d) Show that for n > 6 there is an isomorphism Sn ∼= Aut(Sn).
(23) Double cosets. Let G be a group and A,B be subgroups of G. A double coset is a set of

G of the form AgB for some g ∈ G.
(a) Prove that double cosets are either equal or disjoint. Prove that G is a disjoint union

of double cosets.

(b) Provide a necessary and sufficient condition for AgB = AhB.

(c) Give a formula for |AgB|. Is it true that all double cosets have the same cardinality?
(d) Interpret double cosets as orbits for a certain group action. (Make sure that your initial

guess really defines a group action!)

(24) Let G be a finite group consisting of linear transformations of a finite dimensional vector

space V over the field Fp of p elements (p prime). Suppose that the order of G is a power
of p. Show that there is a vector v ∈ V, v 6= 0 that is an eigenvector with eigenvalue 1 for
the elements of the group G.

Arguing inductively, show that there is a basis in which G consists of upper-triangular

unipotent matrices. (Suggestion: let W be the span of v and consider V/W .)

(25) Find the number of necklaces with 16 beads, 8 of them blue, 4 red and 4 white, up to

symmetries by D16.

(26) Find the number of necklaces with 12 beads, 2 red, 4 green, 3 blue and 3 yellow.

(27) Let G be a finite group. Let p be the minimal prime dividing the order of G and suppose

that G has a subgroup K of index p. Prove that K is normal. (Hint: use the coset

representation.)

(28) Let A be a proper subgroup of a finite group G. Prove that G 6= ∪g∈GgAg−1. Prove that
this statement may fail for infinite groups (suggestion: Try G = GL2(C) for the second
part).

(29) Let S3 act on F3, where F is a finite field, by permuting the coordinates. Find the number
of orbits for this action. A size of an orbit is a divisor of 6 (why?). For each such divisor

determine if there is an orbit of that size or not. (Either provide an example, or prove that

none exists). Consider the action of S3 on the subspace given by x1 + x2 + x3 = 0. How

many orbits are there?

(30) Let G be a group and H a subgroup of G and let [G : H] = n. We consider here the question

of whether there is an element in g ∈ G such that {H, gH, . . . , gn−1H} are all the cosets
of H in G.

(a) Show that if n is not prime this may fail.

(b) Show that if n is prime such g always exists. (Suggestion: Show first that a transitive

subgroup of Sn has order divisible by n. Show then that a transitive subgroup of Sp
has an element of order p. Use the coset representation to finish the proof. You may
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use Cauchy’s theorem: a finite subgroup whose order is divisible by a prime p has an

element of order p.)

(31) Let G be a group acting transitively on a set S and let s ∈ S be some element. Let K be
a normal subgroup of G. Prove that the number of orbits for K in its action on S is the

cardinality of G/(K StabG(s)).

(32) Show that if G acts transitively on a set of size n then G has a subgroup of index n and,

conversely, if G has a subgroup of index n then G acts transitively on some set with n

elements.

For example, suppose we didn’t know that the group Γ of rigid transformation of the

cube was isomorphic to S4. We can deduce that Γ has a subgroup of index 8 by its action

on the vertices, a subgroup of index 12 by its action on the set of edges, a subgroup of index

6 by its action on the faces and a subgroup of index 4 by its action on the long diagonals; a

subgroup of index 3 by its action on the 3 pairs of opposite faces and a subgroup of index

2 by doing a similar construction with the long diagonals.

(33) If there are a colours available, prove that there are 1n
∑

d|n ϕ(n/d)a
d coloured roulette

wheels with n sectors.

(34) Prove that the free group on 2 elements, F2 has a subgroup of index n for every positive

integer n. (Try this question later, after we had studied free groups!)

(35) Prove that for n ≥ 5, An is the unique normal subgroup of Sn.
(36) Let the symmetric group Sn act transitively on a set of m elements. Assume that n ≥ 5

and that m > 2. Show that m ≥ n.
(37) For which n, if any, is there an injective homomorphism Sn → An+1?

(38) Prove that for n ≥ 5 the commutator subgroup of Sn is An.
(39) Let n ≥ 5. Prove that An is generated by the 3-cycles (namely, permutations of the form

(i j k), where i , j, k, are distinct). Prove that An is generated by 5-cycles too.

(40) Write the conjugacy classes of S4. For each conjugacy class choose a representative x

and calculate its centralizer CS4(x). Verify the class equation. Do the same for A4. Use

the results to find the normal subgroups of A4 and, in particular, deduce that A4 does not

contain a subgroup of order 6.

(41) There is an obvious embedding of S3 in S6, the one in which S3 acts on {1, 2, 3} ⊂
{1, 2, 3, 4, 5, 6}. This embedding is not transitive, that is, given 1 ≤ i < j ≤ 6 we cannot
always find an element of S3 that takes i to j . Prove that there is a transitive embed-

ding S3 →֒ S6 (i.e., such that the image acts transitively on the 6 elements). Given such

embedding, write the image of (12) and (123).

(42) Write the conjugacy classes of A6. Devise a direct proof that A6 is simple.

(43) Let G act transitively on a set S. Then, G acts primitively if and only if the point stabilizer

of a point of S is a proper maximal subgroup of G. (One direction was done in class.)

(44) Give an example of a group G acting on a set primitively, but not 2-transitively.

(45) (a) Given a positive integer N prove that there are finitely many groups of order N up to

isomorphism.

(b) Prove the following fac: Given n > 0 and a rational number q there are only finitely

many n-tuples (c1, . . . , cn) of natural numbers such that

q =
1

c1
+
1

c2
+ · · ·+ 1

cn
.

(c) Given a positive integer N prove that there are finitely many finite groups with N

conjugacy classes.

(d) Find the groups in the preceding question for N = 1, 2, 3. (Prove your answer; you

may use the classification of groups of small order we gave in the past.)
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(e) The number of conjugacy classes of a group G is called its class number. Prove that if

G is a finite group with an even class number then G is of even order. Give an example

that the converse fails.

(46) A subgroup H of a group G is called a characteristic subgroup if for every automorphism

f : G → G, f (H) ⊆ H.
(a) Prove that a characteristic subgroup is normal.

(b) Prove that the commutator subgroup of G and the centre of G are characteristic

subgroups.

(c) Prove that if H is normal in G and K is a characteristic subgroup of H, then K is

normal in G.

(47) Let G be a finite non-trivial p-group. Prove that G′ (the commutator subgroup of G) is a
proper subgroup of G.

(48) Let G be a finite p group and H⊳G a non-trivial normal subgroup. Prove that H ∩Z(G) 6=
{1}.

(49) Let G be a finite p group and H a normal subgroup of G with pa elements, a > 0. Prove

that H contains a subgroup of order pa−1 that is normal in G. (Hint: use the previous
exercise to prove the result by induction.)

(50) Let G = GLn(Fq), where Fq is a finite field, q = pr where p is prime.

(a) Prove that the upper unipotent matrices N :=














1 ∗ ∗ . . . ∗
0 1 ∗ . . . ∗
...

...

0 . . . 1














are a p-

Sylow subgroup P of G by calculating the order of P and G.

(b) Find conditions so that every element of P has order dividing p. (Hint: use the binomial

theorem for (I + N)p, where I is the identity matrix.)

(c) In particular, deduce that for any p 6= 2 there are non-abelian p-groups such that every
element different from the identity has order p.

(d) Prove that a group G in which a2 = 1 for all a ∈ G is an abelian group.
(51) There are up to isomorphism precisely two non-abelian groups of order 8, the dihedral group

D4 and Q the quaternion group. Q is the group whose elements are {±1,±i ,±j,±k},
where −1 is a central element and the relations i j = k, jk = i , ki = j , i2 = j2 = k2 = −1
hold (in addition to the implicit relations such as −12 = 1, −1 · j = −j , . . . ). Prove the
following

(a) D4 is not isomorphic to Q.

(b) D4 and Q are non-abelian. (Calculate, for instance what is j i .)

(c) Let P be the 2-Sylow subgroup of GL3(F2). Find whether P is isomorphic to D4 or to
Q.

(52) In exercise 50 we have found a p-Sylow subgroup N of GLn(F) where F is a finite field
with q = pr elements. Prove that given a p-subgroup H of G, viewed as a group of linear

transformations, there is a basis to the vector space in which the elements of H are upper-

unipotent. Suggestion: argue that by induction on the dimension, making use of exercise

24. Conclude that every maximal p-subgroup of GLn(F) has qn(n−1)/2 elements and that
they are all conjugate.

Improve your argument to show that to give a p-Sylow subgroup of GLn(F) is equivalent
to giving a chain of subspaces {0} $ V1 $ V2 $ · · · $ Vn = Fn. Find how many p-Sylow
subgroups there are.

(53) Frattini’s argument. Let G be a finite group, H a normal subgroup of G and p a prime

dividing the order of H. Let P be a p-Sylow subgroup of H. Prove that G = HNG(P ).
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Use Frattini’s argument to show that if J is a subgroup of G such that J ⊇ NG(P ), where
now P is a p-Sylow of G then NG(J) = J. In particular, NG(NG(P )) = NG(P ).

(54) Let G be a finite group and H a normal subgroup of G. Let P be a p-Sylow subgroup of

G for some prime p. Show that P ∩H is a maximal p-subgroup of H (where here we allow
that P ∩H = {1} which is not technically a p-subgroup...). Further, show that HP/H is a
p-Sylow subgroup of G/H.

(55) Let p be an odd prime. Find the order and generators for a p-Sylow subgroup of Sp and

S2p.

(56) Find all Sylow subgroups, up to conjugation, for the groups S3, S5 and GL3(F2).
(57) Let p be an odd prime. In this exercise we show that a non-abelian group G of order p3

that has an element x of order p2 is isomorphic to the group we have constructed in class.

It is enough to show it is a semi-direct product Z/p2Z ⋊ Z/pZ.
(a) Show that Z(G) = G′ is a subgroup of order p and that G/Z(G) ∼= Z/pZ⊕ Z/pZ. In
particular, any commutator is in the centre of G and is killed by raising to a p power.

(b) Prove that xp generates the centre of G.

(c) Prove that to show that G is a semi-direct product Z/p2Z ⋊ Z/pZ, it is enough to
show that there is an element y ∈ G such that yp = 1 and y 6∈ Z(G).

(d) Let y 6∈ 〈x〉 and suppose that y is of order p2. Show that G is generated by x and y .
We want to show that we can find an element ỹ of order p such that ỹ 6∈ Z(G). We
show that by counting how many elements of order p the group G has.

(e) Prove the surprising property, that the function f : G → G, f (t) = tp, is a ho-

momorphism of groups. For that, explain why it is enough to prove the identity

xpyp = (xy)p and proceed to prove this property by making use of identities of the

form xyxy = x [y , x ]xyy = [y , x ]x2y2, etc.

(f) By estimating the image and the kernel of f show that there exists an element ỹ as

wanted.

(58) Let G be a finite p-group. An element g of G is called a non-generator if whenever S∪{g}
is a set of generators of G, so is S. Prove that Φ(G) is the set of non-generators of G.

Prove further that the minimal number of generators of G is dimFp(G/Φ(G)) and that, in

fact, any minimal set of generators has dimFp(G/Φ(G)) generators.

(59) Prove that Q, considered as an abelian group relative to addition, has no maximal subgroups.
(60) Calculate the Frattini subgroup of the upper unipotent matrices N in GL3(Fp). Conclude

that N is generated by 2 elements. Find such 2 elements.

(61) Consider the groups of order bigger than 60 and less than 100. Prove that they are all

solvable. (The choice of 100 is random. In fact, the next non-abelian simple group has 168

elements.)

(62) Exhibit A4 as a semi-direct product.

(63) Prove that there is another non-abelian group, that is not isomorphic to A4, which is a

semi-direct product.

Additional exercises about groups:

(64) Let p be an odd prime. Prove that for every n ≥ 1 the group (Z/pnZ)× is cyclic. Suggestion:
consider first the subgroup B = {a ∈ Z/pnZ : a ≡ 1 (mod p)}.

(65) Prove that the group (Z/2nZ)× is trivial for n = 1, cyclic for n = 2 and isomorphic to
Z/2Z× Z/2n−2Z for n ≥ 3. Suggestion: for n ≥ 3 consider the elements −1 and 5.

(66) (Fermat primes). Use group theory to prove the following: Let h be an integer such that

2h + 1 is prime. Prove that h = 2j for some non-negative integer j .(Prove first that the

order of 2 in (Z/pZ)× is 2h.)
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(67) Use group theory to prove Wilson’s theorem: For every prime p, (p − 1)! ≡ −1 (mod p).
(68) Let S1 = {z ∈ C : |z | = 1}, which is a group under multiplication. For a group G define

G∗ = Hom(G, S1),

the character group of G. Prove that G∗ is indeed a group under multiplication of functions.
Prove:

(a) (A⊕ B)∗ ∼= A∗ ⊕ B∗.
(b) If G is a finite abelian group then G ∼= G∗.
(c) Let G be a finite abelian group and H a subgroup of G. Show that there is a subgroup

N of G such that G/N ∼= H. Similarly, if H is isomorphic to a quotient group of G then
H is isomorphic to a subgroup of G. (Hint: use duality arguments using the character

group G∗.)
(69) Let G be a finite group. The exponent of G, exp(G), is defined as the minimal positive

integer m such that xm = 1 for all x ∈ G. Prove:
(a) If G is abelian then exp(G) = max{ord(x) : x ∈ G}.
(b) If G is not-abelian the previous statement may fail.

(70) Let G 6= {1} be a finite group. Two players I & II, that know the group G, are playing the
following game: Player I chooses a prime p1 and then the players consider the group G(p1) :=

Gp1 . Player II chooses a prime q1 and they consider the group G(p1, q1) := (G
p1)q1 . Player I

then chooses a prime p2 and they consider G(p1, q1, p2) = ((G
p1)q1)p2 and so on. The first

player to reach the trivial group wins. That is, if for some pi , G(p1, . . . , qi−1, pi) = {1} but
G(p1, . . . , qi−1) 6= {1}, player I had won. Similarly for player II.
(a) Prove that player II does not have a strategy that guarantees him a win no matter

what the group G is.

(b) Suppose now that G is abelian and let us also add the constraint that at every stage the

players have to choose a prime that divides the order of the group at that stage. For

example, player I must choose a prime dividing the order of the group G(p1, . . . , qi−1) (if
that group is trivial than the game has already been decided). Provide a necessary and

sufficient condition on G for player I to have a winning strategy (namely, a strategy that

will guarantee him a win whenever G satisfies the condition you have written down.)

(71) Prove that Aut(Z/nZ) is isomorphic to (Z/nZ)×.
(72) If the order of G is 231, show that the 11-Sylow subgroup of G is contained in the centre

of G. (After establishing it’s normal you would need to eventually to use exercise 71.)

(73) If the order of G is 385, show that the 7-Sylow subgroup of G is contained in the centre of

G and the 11-Sylow is normal.

(74) Let G be a finite group and K a normal subgroup of G. Suppose that K is a simple group

and that |K|2 ∤ |G|. Prove that G doesn’t have any subgroup that is isomorphic to K besides
K. In particular, conclude that K is a characteristic subgroup.

(75) Let G be a finite simple group. Let H be a subgroup of G whose index is a prime p. Prove

that p is the maximal prime dividing the order of G and that p2 ∤ |G|.
(76) Let H,K be subgroups of a group G. Prove that

[G : H ∩K] ≤ [G : H] · [G : K].
(77) Let G be a finite group with a unique maximal subgroup. Prove that G is cyclic of prime

power order.

(78) Find a composition series for A4 and find the composition factors. Prove that A4 doesn’t

have a composition series A4 = G0 ⊲ G1 · · · such that G0/G1 ∼= Z/2Z. Thus, although
the Jordan-Hölder theorem tells us that two composition series have the same quotients up

to isomorphism and permutation, the converse is not true. Namely, given the composition
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factors we cannot necessarily find them arising from a composition series in any way we

want.

(79) If G = H1×· · ·×Hm = K1×· · ·×Kn, where each Hi and Kj are simple groups then m = n
and there is a permutation σ ∈ Sn such that Hi ∼= Kσ(i) for all i = 1, 2, . . . , n.

(80) Let A,B be solvable subgroup of a group G. Suppose that B ⊆ NG(A) (and so AB is a

group). Prove that AB is also solvable.

(81) Prove that a group of order pqr is solvable, where p < q < r are distinct primes.

(82) Let G be a solvable group. Prove that G 6= G′.
(83) Prove that for every positive integer n, the group F (2) has a subgroup of index n. (Hint:

think of transitive group actions on n elements instead of subgroups of index n.)

(84) Let n ≥ 3. Show that 〈x, y |xn, y2, xyxy〉 is a presentation of the dihedral group Dn.
(85) Find a presentation for the group Q of quaternions of order 8.

(86) Prove that 〈x, y |x2, y2〉 is an infinite group.
(87) Prove Proposition 31.4.2.

(88) Prove Proposition 32.0.9.

(89) Let R be a ring, {Iα : α ∈ A} a set of left (resp. right, resp. two sided) ideals of R indexed
by A.

(a) Prove that ∩α∈AIα is a left (resp. right, resp. two sided) ideal of R.
(b) Suppose for simplicity that we have finitely many left (resp. right, resp. two sided)

ideals I1, I2, . . . , In, prove that I1 + I2 + · · · + In := {a1 + a2 + · · · + an : aj ∈ Ij , j =
1, 2, . . . , n} is a left (resp. right, resp. two sided) ideal.

(c) Let R be a commutative ring, T a collection of elements of R. Let 〈T 〉 be the set
{∑ ai ri : ai ∈ R, ri ∈ T}. Prove that this is an ideal of R that is the minimal ideal
containing T . It is called the ideal generated by T .

(d) Let I, J be two ideals of a commutative ring R. Let IJ be the ideal generated by the

set T comprised all products i j where i ∈ I, j ∈ J. Show that IJ ⊆ I ∩ J. Choosing
R = Z determine when IJ = I ∩ J.

(90) Let d ∈ Z be an integer that is not a square. Let
√
d ∈ C be a square root of d . Let

Z[
√
d ] = {a + b

√
d : a, b ∈ Z}.

Prove that Z[
√
d ] is a commutative integral domain. Let F be its ring of quotients. Show

that F can be identified with

Q[
√
d ] := {a + b

√
d : a, b ∈ Q}.

(91) (a) Let R be a commutative ring. Prove that R[[x ]]× = {∑∞n=0 anxn : an ∈ R, a0 ∈ R×}.
(b) Find all the ideals of the ring C[[x ]].

(92) Let k be a field. Show that any two-sided ideal of Mn(k) is a trivial ideal. That is, either

{0} or the whole ring.
(93) (a) Let R,S be two rings. Show that R × S (also denoted R ⊕ S) is a ring under the

operations (r1, s1) + (r2, s2) = (r1 + r2, s1 + s2), (r1, s1)(r2, s2) = (r1r2, s1s2).

(b) Prove that every left ideal of R×S has the form I×J, where I⊳R, J⊳S are left ideals.
(c) Make this explicit for R = S = Z. Exhibit a subgroup of Z ⊕ Z which is not of this
form (hence not an ideal).

(94) (a) Show that Z[i ]/(2 + 3i) is a finite field. How many elements does it have?
(b) Show that Z[i ]/(5) is not a field.

(95) Prove that in the ring Q[x, y ] the ideal (x, y) is not principal.
(96) Prove that Z[x ] is not a PID. Prove that every ideal of Z[x ] is of the form 〈n〉 for some

integer n, 〈f (x)〉 for some polynomial f (x) ∈ Z[x ] or 〈n, f (x)〉. In each case provide an
example where such an ideal is prime.
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(97) Prove that Z[ω] is an Euclidean ring, where ω = e2πi/3 (include a proof that Z[ω] is a ring).
(98) Use the Euclidean algorithm to find a generator for the ideal (1 + 3i , 2) in Z[i ]. Prove that

Z[i ]/(1 + 2i) is a field. Find the multiplicative inverse of 2 + 3i in it.
(99) Let p be a prime. Prove that there are finite fields of p2 and p3 elements.

(100) Write down polynomials that define fields of 4, 8 and 16 elements. Denote these fields by

F4, F8 and F16, respectively. Prove that there is an embedding F4 →֒ F16, but that there is

no embedding F4 →֒ F8.

(101) Let d be a square free integer congruent to 1 modulo 4. Let

δ =
1 +
√
d

2
.

(a) Prove that the subset Z[δ] of the complex numbers defined here as

Z[δ] := {a + bδ : a, b,∈ Z},
is a subring.

(b) Assume that d is negative. Prove that the units of Z[δ] are only {±1}, unless d = −1 or
−3 where the units are {±1,±i} and {±1,±ω±ω2}, respectively, where ω = −1+

√
−3

2

is a non-trivial third root of unity.

(102) Let d = −19, δ = 1+
√
d

2 as in exercise 101. One can prove that the ring Z[δ] is a PID. There
are elementary, somewhat involved, proofs of that. The “right” way to prove it is to use

algebraic number theory, so we shall avoid trying to chop this tree with dull axe. However,

there is a nice elementary argument (that I have learnt from R. A. Wilson’s website) to

show that for any function N : Z[δ]→ Z≥0, this ring is not Euclidean.
(a) Show first that 2 and 3 are irreducible in Z[δ].
(b) Assume, on the contrary, that Z[δ] is Euclidean with respect to a function N. Choose
an element m such that N(m) is the minimal value of N, subject to m not being 0 or

a unit. Divide 2 by m with a residue r : 2 = mq + r . Argue that r = 0, 1 or −1, but
that r = 1 is not possible after all.

(c) Show that m must be ±2, or ±3.
(d) Divide δ in m with residue: δ = mq′ + r ′. Conclude that δ, δ+1 or δ− 1 is divisible by

m.

(e) Combine with previous information to derive a contradiction.

(103) For ω = −1+
√
−3

2 show that the ring Z[ω] is Euclidean. (Hint: think of this ring as a lattice
in the complex plain. Take as N(z) the function zz̄ = |z |2.)

(104) The ring C[x, y ] is not a PID. Show that the ideal 〈x, y〉 cannot be generated by 1 element.
Show that the ideal 〈xy3, x2y2, x3y〉 cannot be generated by 2 elements.

(105) Let R be a PID, a, b ∈ R. Prove that for d = gcd(a, b), m = lcm(a, b). Prove that

(d) = (a) + (b), (m) = (a) ∩ (b).
(106) Since the ring Z[i ] is Euclidean, hence a PID, every ideal is principal. Write the following

ideals as principal ideals : 〈1+ i , 1− i〉, 〈5, 7+4i〉. (Hint: the generator has to be the gcd.)
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