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• Lattices
A lattice L in Rn is

L = {a1v1 + · · ·+ anvn : a1, . . . , an ∈ Z},

where the vi are linearly independent, or, equivalently L is discrete: there is an ε > 0 such

that any two distinct elements of L are at least ε apart.

Example. Zn ⊂ Rn. For n = 2, viewing R2 as C, we can view Z2 as {a + bi : a, b ∈ Z}.

Example. n = 2. The hexagonal lattice {a + bω : a, b ∈ Z}, where ω = (1 +
√
−3)/2.

• Sphere packing
The problem of sphere packing:

What is the best way to pack solid spheres of radius 1 in Rn?

� n = 1. Place each sphere on an even integer. (TRIVIAL)

� n = 2. Place each sphere (rescaled) on a point of the hexagonal lattice. (GAUSS

1831, THUE 1890)

� n = 3. Stack as market vendors stack oranges. (FCC lattice). (KEPLER’s conjecture,

HALES 1998)
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� n ≥ 4. Totally out of reach.

One asks instead about Lattice packing. Much more is known (n ≤ 8). There is a bound

(the Rogers’ bound) on how good a lattice packing can be; in general there is a huge gap

between the bound and construction of lattices coming close to the bound, but in dimension

24 something singular happens: The Leech lattice.

The usual density of the packing ∆ is defined to be the proportion of space that is occupied

by the spheres (which is a volume of one sphere divided by the volume of the fundamental

parallelotope). The center density is defined as

δ = ∆/Vn,

where Vn is the volume of the unit ball in Rn.

Key Problem: How to construct interesting lattices??
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• Codes
Let F2 = {0, 1} be the field of 2 elements. A (linear) code C of length n is a subset of

Fn2 = {a = (a1, . . . , an) : ai = 0, 1},

which is non-empty and closed under addition; one adds vectors by adding their respective

components modulo 2,

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1 (mod 2), . . . , an + bn (mod 2)).

Given a code C in Fn2 we can extend it to Ce in Fn+12 by adding a check-sum digit

Ce = {(a, a1 + · · ·+ an (mod 2)) : a ∈ C}.

For example, taking C = F22 we get a code Ce, called the parity check code, in F32,

{(0, 0, 0), (1, 0, 1), (0, 1, 0), (1, 1, 0)}.

(This code is still used in everyday applications.)

A code is used to detect and repair mistakes in data sent over noisy channel. Here is a

schematics:

data as 0-1’s ///o/o/o/o/o/o/o blocks of 8 (say) ///o/o/o/o/o/o/o/o

blocks of 12 (say)

but each in a code C

= code words

transmission

�� �O
�O
�O

reconstruct data reconstruct original blockoo o/ o/ o/
block received;

search for closest code word
oo o/ o/ o/

For example, in the case of the parity check code, we chop to blocks of size two, add a

check sum digit and get block of size 3. If we get after the transmission (a, b, c) such that

c 6= a + b then we know an error had occurred.

• The Hamming code H

This is the code generated by

(1, 1, 0, 1, 0, 0, 0), (0, 1, 1, 0, 1, 0, 0), (0, 0, 1, 1, 0, 1, 0), (0, 0, 0, 1, 1, 0, 1).

It has 24 elements and the minimal distance between two distinct code words is 3. It can

therefore detect up to 2 errors and correct a single error. Consider H e ⊂ F82. Consider
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all the vectors in Z8 that reduce to elements of H e modulo 2 (one says that we apply

“construction A” to the code H e). This is a lattice L , which we rescale it to obtain a

lattice

E8 =
1√
2

L .

The E8 lattice is “famous”. It appears for example in the theory of Lie groups and in many

other places. It gives the best lattice packing in R8.

• The Golay code G

Let a = (a1, . . . , a23), where ai = 1 if i is a non-zero square modulo 23 and else is zero.

Take all cyclic shifts of a, such as (a23, a1, a2, . . . , a22) and so on, and take the minimal code

containing them. This is the Golay code G . There are 212 elements in this code and the

minimal distance between code words is 7. Thus, if we put a sphere of radius 3 around each

code word, the spheres are disjoint, each has 211 elements and since 223 = 212× 211 = the

number of distinct points in the spheres, we find that this discrete lattice packing covers the

space completely. As a result, every received transmission, if it has less than 3 errors, can

be corrected. This remarkable code was used in the Voyager I (1979) and Voyager II (1980)

missions to Jupiter and Saturn; it is used today in DVD readers. The rovers on Mars are

actually using a complicated system involving two codes, one of them is a Reed-Solomon

code.

Consider now G e ⊂ F242 . We perform “construction A” of Sloane and get a lattice L in

R24 by considering all the vectors in Z24 that reduce modulo 2 to the extended Golay code

G e. The Leech lattice is a lattice L in R24 such that

L
2

CC
CC

CC
CC

L
2

}}
}}

}}
}}

L ′

,

where the 2 refers to index 2 (namely, L = L ′ ∪ (v + L ′) for some v ∈ L and so on.)

The precise description is a bit technical: L ′ consists of the vectors v = (v1, . . . , v24)

such that
∑

i vi ≡ 0 (mod 4). The Leech lattice is generated by L ′ and the vector

(−3/2, 1/2, 1/2, . . . , 1/2). One rescales L by dividing all its vectors by 1/
√

2.

• Automorphism of lattices



5

Let L be a lattice in Rn. An automorphism of L is defined to be a distance preserving

linear map taking L to itself. It is therefore an element of

Mn(Z)︸ ︷︷ ︸
discrete

∩ On(R)︸ ︷︷ ︸
bounded

,

hence Aut(L ) is a finite group.

A finite group is a non-empty finite set with an associative operation (g, h) 7→ gh such

that there is a neutral element and there are inverses. A subgroup is a subset H of G such

that if g, h ∈ H also gh ∈ H. For example, the permutations σ of a set with n elements

are a group, called the symmetric group Sn. It has n! elements.

Every finite group is, up to some natural identification, a subgroup of Sn. As an example,

An is the subgroup of permutations σ in Sn such that∏
i<j

(xi − xj) =
∏
i<j

(xσ(i) − xσ(j)).

If H is a subgroup of G, a coset of H is a subset of G of the form aH = {ah : h ∈ H}.
A subgroup is called normal if the cosets aH, bH, cH, . . . form a group in their own right

under the definition

aH ∗ bH = abH.

This group is denoted G/H. We can then say that G is simplified by (H,G/H) (the number

of elements of G/H is ] G/] H and so, if H is a proper subgroup, both groups H,G/H have

less elements than G does).

What are the building blocks? the groups that cannot be simplified? That is, what are the

groups that don’t have proper normal subgroups? (such groups are called “simple”). The

classification theorem, completed in 1980’s and consisting of hundreds of papers totalling

more than 10000 pages answers that (with certain gaps still being closed). There are some

families of simple groups:

� Z/pZ, where p is prime.

� An, n ≥ 5.

� SLn(F)/ ± In (n × n matrices of determinant 1 with entries in a finite field F, under

the identification A↔ −A), except for n = 2 and F = F2,F3.
� Similar families arising from other matrix groups.

� 26 sporadic groups. The really difficult part was to prove that there are finitely many

groups not following into the previous systematic lists and to find them all, not knowing a

priori their number.
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At least 3 sporadic groups come from the Leech lattice; they are denoted Co1, Co2, Co3

and are called the Conway groups. Inside the automorphism group of the Leech lattice -

which is a group with 8,315,553,613,086,720,000 elements - one consider the subgroup

Co1 that fixes a vector of length 2, Co2 that fixes a vector of length 4 and Co3 that

fixes a vector of length 6. They have orders 4157776806543360000, 42305421312000 and

495766656000, respectively. In fact, Aut(L) has 12 sporadic subgroups as subquotients!

• Lattices and number theory
Let L ⊂ Rn be an integral lattice - a lattice such that ‖x‖2 is an integer for every x ∈ L .

We can then create a theta function

ΘL(q) =

∞∑
m=0

r(m)qm,

where q is a free variable and

r(m) = ]{x ∈ L : ‖x‖ = m}.

It turns out that ΘL is a very special type of generating series. It is a modular form - one of

the main objects of number theory. Modular forms are such generating series that have a

huge amount of inner symmetries. One implication of that is that the knowledge of the first

few coefficients of ΘL allows determining the rest of the coefficients of ΘL without actually

calculating the numbers r(n) and often in a closed form formula. How many coefficients

are needed is a function of the volume of the fundamental parallelotop of L and of n, but

in particular one finds that if two integral lattices (possibly of different dimension) have

the same number of vectors of length m for m = 1, . . . ,M (where M can be effectively

calculated) then they have the name number of vectors of length m for any m.

• Lattices in higher dimensions
Are there more wonderful lattices, in higher dimensions?

The sum of it is that we know very little about lattices in higher dimensions. If one restricts

attention to even unimodular lattices, i.e. to lattices of volume 1 in which every vector has

even integral norm, and if one weighs the lattices with weights 1
]Aut(L ) then we have:



7

Theorem (Siegel-Minkowski) The weighted sum of isomorphism classes of even unimodular

lattices in R2k is

∑
L /∼=

1

Aut(L )
=
|Bk |
2k

k−1∏
j=1

|B2j |
4j

= 2 ∗ ζ(1− k) ∗
k−1∏
j=1

ζ(1− 2j),

where ζ is the Riemann zeta function.

One knows that there is a unique even unimodular lattice of dimension 8 up to isomor-

phism, the E8 lattice, and one finds:

]Aut(E8) = 696729600,

Note that the l.h.s. in the theorem is less or equal to the number of lattices. Here is the

growth of the l.h.s. - the Siegel-Minkowski constant.


