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Day One





CHAPTER 1

Towards Geometric Langlands
Speaker: Jared Weinstein

1. Review of Langlands program

The Langlands program connects two sorts of objects, automorphic forms and
Galois represensentations, in many different contexts.

1.1. Class field theory. The subjects begins with class field theory, so let’s
review that (in the special case of Q).

Theorem 1.1 (Kronecker-Weber). Every finite abelian extensionK/Q lies within
Q(µm) for some m.

Dirichlet characters are identified with 1-dimensional Galois representations via
the canonical isomorphism Gal(Q(µm)/Q) ∼= (Z/m)×. In turn, primitive Dirichlet
characters are related to characters of A×Q/Q

×R>0.
Stringing these together, we get a correspondence χ↔ σχ between{

characters of A×Q/Q
×R>0

}
↔
{
1-dimensional Galois representations

}
determined by

χ(1, . . . , p, . . . , 1) = σχ(Frobp).

It felt slightly unsatisfying that we had to mod out by R>0. We’re going to
enhance the picture. Pick a prime ` and an identification C ' Q`. We now consider
Hecke characters, i.e. characters on the idele class group A×Q/Q

×, which are algebraic
in the sense that a 7→ χ(a)|a|k where χ is a Dirichlet character and k ∈ Z. This
algebraicity condition must be imposed to get a Galois representation.

On the other side, we consider characters Gal(Q/Q) → Q×` which are de Rham
at `, i.e. of the form

s 7→ σχ(s)χ`(s)
k.

Note that this has infinite order.

1.2. Elliptic modular forms. The next case corresponds to G = GL2. The
“automorphic” objects we consider are normalized cuspidal newforms of weight k ≥ 2.
This means the q-expansion is f(q) =

∑∞
n=1 anq

n with a1 = 1. Implicit in “newform”
is the requirement that f is a Hecke eigenform, i.e. Tpf = apf for “good” p.

Work of Eichler-Shimura and Deligne attaches to such an f an irreducible odd
representation σf : Gal(Q/Q)→ GL2(Q`), which is de Rham at ` with Hodge-Tate

9
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weights 0, k − 1, and determined by the compatibility

char(σf (Frobp)) = T 2 − apT + pk−1εf (p).

To get a better sense of this formula, we want to see how it generalizes. The
datum of such an f generalizes to the datum of a cuspidal automorphic representation
π ' ⊗′vπv of GL2(AQ), such that π∞ is discrete series.

This latter is contained in the set of cuspidal algebraic automorphic representa-
tions of GL2(AQ). On the other side one finds Galois representations Gal(Q/Q) →
GL2(Q`) which are de Rham at ` (dropping conditions on HT weights and oddness).{

cuspidal automorphic
representations π ' ⊗′vπv

| π∞ discrete series
} {

Galois representations
Gal(Q/Q)→ GL2(Q`)

| de Rham at `
HT weights 0, k − 1

}

{
algebraic cuspidal

automorphic representations

} {
Galois representations
Gal(Q/Q)→ GL2(Q`)

| de Rham at `
}

In the smaller case (top row), one has some converse statements. In the bigger case,
very little is known in either direction.

1.3. Global Langlands for general G. Let G be a split reductive group over
Q, e.g. G = GLn,GSp2n, On. Then there is a Langlands dual group Ĝ (obtained by
dualizing the root datum).

The “automorphic side” is{
algebraic cuspidal automorphic

rep’ns of G(AQ)

}
Here the adjective “automorphic” means (roughly) “appears in L2(G(AQ)/G(Q),C)”.
The adjective “algebraic” means that the infinitesimal character of π∞ agrees with
the character of a (finite-dimensional) algebraic representation of G(R).

The conjecture is that there is a map π 7→ σπ from the automorphic side to the
“Galois side” of Langlands parameters σ : Gal(Q/Q) → Ĝ(Q`) which are de Rham
at `. {

algebraic cuspidal automorphic
rep’ns of G(AQ)

}
→


Langlands parameters
σ : Gal(Q/Q)→ Ĝ(Q`)

de Rham at `


What is the compatibility in this case? It is some relation between πp and σ(Frobp).

For almost all p, πp is an unramified smooth representation of G(Qp). On the
other side, σ(Frobp) should be a semisimple conjugacy class in Ĝ(Q`). There is a
bijection between{

unramified smooth
representation of G(Qp)

}
↔
{
semisimple conjugacy

class in Ĝ(Q`)

}
,
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which is given by the Satake equivalence. The compatibility is that πp matches up
with σ(Frobp) under this bijection. (However, the conjugacy class σ(Frobp) is not
even known to be semi-simple in general.)

1.4. Satake equivalence. Let F be a local nonarchimedean field, e.g. Qp. Let
OF be its ring of integers. Let G/OF be a split connected reductive group.

Then G(F ) is a locally profinite group. Choose a Haar measure µ.
Let G(OF ) ⊂ G(F ) be a maximal compact open subgroup, e.g. GLn(Zp) ⊂

GLn(Qp).

Definition 1.2. Let (π, V ) be a representation of G(F ) on a C-vector space.
(We view C as having the discrete topology.) We say π is smooth if for all ∈ V ,
Stab(v) ⊂ G(F ) is open. (Equivalently, G(F )× V → V is continuous, where V has
the discrete topology.)

We say π is admissible if dimV K <∞ for all compact open K ⊂ G(F ).

The Hecke algebra is H := C∞c (G(F ),C) (functions with locally constant, com-
pact supports). A smooth representation π induces an H-module structure on V ,
via

π(f)v =

∫
g∈G(F )

f(g)π(g)v dµ(g).

Since H =
⋃
K C

∞
c (K\G(F )/K,C), we have f ∈ C∞c (K\G(F )/K,C) for some K,

and then π(f) acts on V K .

Definition 1.3. An irreducible smooth admissible representation (π, V ) is un-
ramified (aka “spherical”) if V G(OF ) 6= 0.

We have a bijection{
unramified rep’ns of G(F )

}
↔
{

irreducible rep’ns of
Hunr := C∞c (G(O)\G(F )/G(O),C)

}
.

Now, Hunr turns out to be commutative (and unital), and therefore its finite-
dimensional irreducible representations are 1-dimensional.

Example 1.4. We will give an explicit presentation of Hunr for G = GL2 /Qp.
First, note that

GL2 =
∐

a1,a2∈Z;a1≥a2

GL2(Zp)
(
pa1 0
0 pa2

)
GL2(Zp).

Let Ta1,a2 be the characteristic function of GL2(Zp)
(
pa1 0
0 pa2

)
GL2(Zp). So Hunr

is generated by Ta1,a2 . What are the relations?
Note T1,1 is invertible, with T−1

1,1 = T−1,−1. Also T1,1Ta1,a2 = Ta1+1,a2+1. There-
fore Hunr is generated by operators of the form T±1,1 and Ta,0. (In terms of classical
modular forms, Tp ↔ T1,0 and 〈p〉 ↔ T1,1, Tpn ↔ Tn,0.) There are also relations.
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So unramified representations of GL2(Qp) are in bijection with characters of
Hunr, which is C× × C. This can be identified with (C× × C×)/S2, via

(αβ, α+ β)↔ (α, β)

which in turn is the same as (GL2(C))ss/GL2(C), where the quotient is for the
conjugation action.

This (in particular the last few steps) may have seemed random.

Theorem 1.5 (Satake). Hunr ' R(Ĝ), the representation ring of Ĝ.

Remark 1.6. Taking the character of a representation induces an isomorphism
between R(Ĝ)s and C[Ĝ]Ĝ. One doesn’t need C here – it suffices to work with any
algebra over Z[q±1/2].

2. Geometric Langlands

We carry everything over to function fields, i.e. F = Fq(X) for a geometrically
connected smooth projective curve X/Fq.

2.1. Class field theory. We’ll explain how to find the Hilbert class field of
F , under the assumption that there is a rational point ∞ ∈ X(Fq). Unramified
extensions of F correspond to unramified covers of X. One source of such comes
from Fq/F. The ones orthogonal to this could be described as being totally split over
∞, and we denote the maximal such by Y → X. So the maximal unramified cover
of X is the compositum of Y and XFq

.
Consider the embedding X → Jac(X) = Pic0(X) given by P 7→ P − (∞).

There is a Lang isogeny L : Jac(X) → Jac(X) given by L(x) = Frobq(x) − x. So
ker(L) = Jac(Fq) = Pic0(X). It turns out that we have a Cartesian square

Y Jac(X)

X Jac(X)

L

We can present

Pic(X) ' A×F /(F
×
∏
v∈|X|

O×Fv
)

2.2. The case of GLn.

Theorem 2.1 (Drinfeld, Lafforgue). There is a bijection between cuspidal automorphic
representations of GLn(AF )

with finite order central character

↔


irreducible representations
Gal(F/F )→ GLn(Q`)

with finite order determinant

 .
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Important fact: Pic(X) is the Fq-points of a groups cheme PicX. What is the
higher rank version of this? We want to realize the double coset space

GLn(F )\GLn(AF )/
∏
v∈|X|

GLn(OFv)

as rational points of something. The observation is that this is identified with the
set of vector bundles of rank n on X. (For us, a vector bundle is a locally free
OX -module.) Why?

Here is a sketch of the direction ←. Given a vector bundle E , choose trivializa-
tions α : E|U

∼−→ OnU for some dense open U ⊂ X. Also E|Spec Ov is free, and we can
choose a trivialization β : E|Spec Ov

∼−→ Onv . Then αv ◦ β−1
v =: γv ∈ GLn(Fv). The

(γv) determine an element of GLn(AF ).

Definition 2.2. Let Bunn be the stack taking an Fq-scheme S to the groupoid
of rank n vector bundles on X ×Fq S.

Theorem 2.3. Bunn is a smooth Artin stack (of dimension (g − 1)n2?).

Example 2.4. Bun1(S) classifies lie bundles on X × S. Any line bundle has
automorphisms Gm.

An Artin stack X is a stack that has a smooth uniformization U → X . The
“smooth” adjective means that we can take U to be smooth as well.

We always have Bunn =
∐
d∈Z Bundn. In particular, there are infinitely many

connected components ifG is not semisimple. Even individual connected components
may fail to be quasi-compact.

Example 2.5. For n = 2, X = P1, let Bun0
2 be the degree 0 component. Any E

on X × S looks like O(n)⊕O(−n) pointwise on S.
Define Bun0,≤h

2 to classify bundles which are pointwise on S of the form E '
O(k) ⊕ O(−k) for 0 ≤ k ≤ h. So we get an open substack Bun0,≤h

2 ⊂ Bun0
2. We

could rephrase this condition as “E(h) is generated by global sections, and dimH0 =
2h+ 2.”

We can make a scheme U that (roughly speaking) parametrizes {O2h+2
X � F}.

This is a quote scheme, and we can use a (smooth open subset of) it to uniformize
Bun0,≤h

2 .

The geometrization shifts focus from the space of automorphic functions,
C(GLn(F )\GLn(AF )/

∏
v GLn(OFv)), to the category of `-adic sheaves on Bunn.

Theorem 2.6 (Frenkel-Gaitsgory-Vilonen). There is a bijection between{
cuspidal eigensheaves

on Bunn

}
↔

 geometrically irreducible
n-dimensional

`-adic local systems on X

 .





CHAPTER 2

Lightning introduction to p-adic geometry
Speaker: David Hansen

1. Adic spaces

1.1. Huber rings.

Definition 1.1. A Huber ring is a (Hausdorff) topological ring A containing an
open subring A0 such that the topology on A0 coincides with the I-adic topology
for some finitely generated ideal I ⊂ A0. (There could be more than one choice for
A0.)

We say A0 is a “ring of definition” and (A, I) is “a couple of definition”.

Definition 1.2. We let A◦ ⊂ A be the subring of power-bounded elements.

Example 1.3. For A = Qp with the p-adic topology, A◦ = Zp. We can take
A0 = Zp and I = (p).

Definition 1.4. Given A, a ring of integral elements is an open and integrally
closed subring A+ ⊂ A with A+ ⊆ A0.

Definition 1.5. A Huber pair is a pair (A,A+).

Definition 1.6. We say that a Huber ring A is a Tate ring if it contains a
topologically nilpotent unit.

1.2. Valuations.

Definition 1.7. Given a topological ring A, a continuous valuation on A is a
function | · | : A→ Γ ∪ {0} where Γ is a totally ordered abelian group, satisfying:

(1) |ab| = |a| · |b| and |a+ b| ≤ max(|a|, |b|),
(2) |0| = 0 and |1| = 1,
(3) for all γ in the image of | · |, the subset {a ∈ A : |a| < γ} is open in A.

We say | · | and | · |′ are equivalent if |a| ≤ |b| ⇐⇒ |a|′ ≤ |b|′ for all a, b ∈ A.

1.3. Adic spectrum.

Definition 1.8. Given (A,A+) define the adic spectrum Spa(A,A+) to be the
set of equivalence classes of continuous valuations | · | on A such that |a| ≤ 1 for all
a ∈ A+. For x ∈ Spa(A,A+) write | · |x : A → Γx ∪ {0} for a choice of valuation
representing the equivalence class. Give this the topology whose open subsets are
generated by

{x ∈ Spa(A,A+) : |f |x ≤ |g|x 6= 0}, f, g ∈ A.
15
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Theorem 1.9. Spa(A,A+) is a spectral space. (There are several equivalent
definitions, e.g. it coincides with Spec R equipped with the Zariski topology, for
some R.)

Remark 1.10. In particular, Spa(A,A+) is always quasicompact with a basis of
quasicompact opens.

1.4. Rational subsets.

Definition 1.11. Let X = Spa(A,A+) and s ∈ A be arbitrary. Let T ⊂ A be
any finite subset generating an open ideal in A. A rational subset of X is one of the
form

U

(
T

s

)
= {x ∈ X : |t|x ≤ |s|x 6= 0 for all t ∈ T}.

Rational subsets are open, quasi-compact, and stable under finite intersection,
and they generate the topology on X.

Proposition 1.12. If U ⊂ X = Spa(A,A+) is a rational subset, then there
exists a complete Huber pair (AU , A

+
U ) with a map ϕ : (A,A+)→ (AU , A

+
U ) such that

Spa(AU , A
+
U ) → X is a homeomorphism onto U , and such that ϕ is universal for

maps from (A,A+) to complete Huber pairs which factor over U on adic spectra.

Example 1.13. Spa(Zp,Zp) has two points: a “generic point” η corresponding
to the p-adic valuation, and a “special point” s which factors through the trivial
valuation on Fp.

Example 1.14. Let (A,A+) := (Qp〈T 〉,Zp〈T 〉). The adic spectrum is “the closed
unit disk over Qp”. Then

U

(
{T, p}
p

)
= {|T |x ≤ |p|x 6= 0}

is “the subdisk of radius 1/p”.

The universal property implies that (AU , A
+
U ) is unique up to unique isomor-

phism. It also implies that whenever U ⊂ V is an inclusion of rational subsets, one
gets (AV , A

+
V )→ (AU , A

+
U ).

Definition 1.15. Given X = Spa(A,A+) we defines the structure presheaf OX
by

OX(U) = lim←−
W rational ⊂U

AW .

We also the integral structure presheaf O+
X similarly:

O+
X(U) = lim←−

W rational ⊂U
A+
W .

These are presheaves of complete topological rings. For all x ∈ X, the stalk OX,x
is a local ring, and the valuation | · |x extends to a valuation OX,x → Γx∪{0} (whose
kernel is the maximal ideal).
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Warning 1.16. OX is not always a sheaf. (When it is a sheaf, then O+
X is also

a sheaf.)

Proposition 1.17. In each of the following situations, the structure presheaf on
Spa(A,A+) is a sheaf. (In (3)-(5), assume that A is Tate.)

(1) A is discrete. [This encompasses schemes]
(2) A admits a Noetherian ring of definition. [This encompasses formal schemes]
(3) A is strongly Noetherian, i.e. A〈X1, . . . , Xn〉 is Noetherian for any n. [This

encompasses rigid analytic varieties]
(4) A is stably uniform, i.e. for all rational subset U ⊂ Spa(A,A+) the subring

A◦U ⊂ AU is bounded.
(5) A is perfectoid: i.e. A is complete, A◦ is a bounded subring of A, there ex-

ists a topologically nilpotent unit $ ∈ A such that $p | p, and the Frobenius
map

Φ: A◦/$ → A◦/$p

is surjective. (This last continuous is equivalent to the Frobenius on A◦/p
being surjective.)

Remark 1.18. The fact that OX is a sheaf in (5) was initially proved directly
by Scholze. Later condition (4) was discovered Buzzard-Verberkmoes and (5) is a
special case of it.

Example 1.19. The following are examples of perfectoid rings: Cp, Q̂p(ζp∞),Cp〈T 1/p∞〉.

An adic space is a space glued locally from the adic spectrra of sheafy Huber
pairs.

2. Perfectoid spaces

Definition 2.1. A perfectoid space is a space glued locally from the adic spectra
of perfectoid Huber pairs.

2.1. Tilting.

Definition 2.2. Let A be a complete topological ring in which p is topologically
nilpotent. The tilt of A is

A[ := lim←−
x 7→xp

A = {x = (x0, x1, x2, . . .) ∈ AN | xpi+1 = xi for all i ≥ 0}

with the inverse limit topology. Make this into a topological ring via coordinate-wise
multiplication, and addition law

(x+ y)i := lim
n→∞

(xi+n + yi+n)p
n
.

Example 2.3. For rings which are not “big enough”, i.e. don’t have many pth
power roots, A[ is too small to be interesting, e.g. Q[

p = Fp.
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2.2. Tilting equivalence. Note: there is a canonical map #: A[ → A sending
x 7→ x0.

Proposition 2.4. If (A,A+) is a perfectoid Huber pair, then (A[, A+[) is a per-
fectoid Huber pair in characteristic p. Moreover, there is a canonical homeomorphism
Spa(A,A+) ' Spa(A[, A+[) taking | · |x 7→ | · |x ◦#, which

(1) identifies rational subsets U ↔ U [,
(2) induces OX(U)[ ∼= OX[(U [).

In particular, this operation glues to a functor X 7→ X[ from perfectoid spaces to
perfectoid spaces in characteristic p.

Proposition 2.5. Given a perfectoid space X, tilting induces an equivalence of
categories

{perfectoid spaces Y/X} ↔ {perfectoid spaces Y [/X[}.

Example 2.6. If A = Cp, then A[ ' F̂p((t)). If A = K〈T 1/p∞〉 forK a perfectoid
field, then A[ ' K[〈T 1/p∞〉.

3. Diamonds

3.1. Étale morphisms.

Definition 3.1. A map Spa(B,B+) → Spa(A,A+) is finite étale if A → B is
finite étale and B+ is the integral closure of A+ in B.

In general, a map of adic spaces f : X → Y is finite étale if there exists an open
covering Y =

⋃
Yi such that f−1(Yi) is affinoid and f−1(Yi) → Yi is finite étale for

all i.

Definition 3.2. A map of adic spaces f : X → Y is étale if locally on some
open covering X =

⋃
Xi, f can be factored as

Xi Vi

Wi Y

ji

gi

hi

where ji and hi are open embeddings, and gi is finite étale. (Note that the analogous
statement is false for schemes.)

Fact 3.3. If X → Y is étale and Y is perfectoid then X is perfectoid too. (This
is related to the almost purity theorem.)

Remark 3.4. It is not known that a perfectoid affinoid space, i.e. an affinoid
space which is perfectoid, is necessary the adic spectrum of a perfectoid ring.
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3.2. Pro-étale site.

Definition 3.5. A map Spa(B,B+)→ Spa(A,A+) of affinoid perfectoid spaces
is affinoid pro-étale if

(B,B+) = ̂lim−→
i

(Ai, A
+
i )

where (Ai, A
+
i ) is perfectoid and Spa(Ai, A

+
i )→ Spa(A,A+) is étale.

A map of perfectoid spaces f : X → Y is pro-étale if locally on affinoid covers of
X and Y , it is affinoid pro-étale.

Definition 3.6. A pro-étale map of perfectoid spaces f : X → Y is a pro-étale
cover if for all quasicompact opens U ⊂ Y there exists a quasicompact open V ⊂ X
such that f(V ) = U .

Remark 3.7. Perfectoid spaces with the Grothendieck topology of pro-étale
covers form a site.

Definition 3.8. The big pro-étale site is the site Perf with objects characteristic
p perfectoid spaces, and covers being pro-étale covers.

Proposition 3.9. This site is sub-canonical, i.e. representable presheaves hX =
Hom(−, X) are sheaves.

3.3. Diamonds.

Definition 3.10. A diamond is a sheaf D on Perf such that

D ∼= Coeq(R⇒ X),

where R⇒ X is an equivalence relation in characteristic p perfectoid spaces, where
the maps are pro-étale.

We let Dia be the category of such objects.
3.3.1. Underlying topological space. Any diamond D has a canoncially associated

topological space |D|. If D ' Coeq(R ⇒ X), then |R| ⇒ |X| is an equivalence
relation and |D| = |X|/|R| with the quotient topology. (One could say that | ·
| : Dia→ Top is the left Kan extension of | · | : Perf → Top along Perf ↪→ Dia.)

Proposition 3.11. There is a canonical bijection between

{open subsets of |D|} ↔ {open subdiamonds of D}

3.3.2. Analytic adic spaces. There is a natural functor from (most) adic spaces
over Zp to Dia.

Definition 3.12. Let X be an adic space. We say X is analytic if for all x ∈ X,
the topology induced by | · |x on OX,x/mx to be non-discrete.

Proposition 3.13. There is a canonical functor{
analytic adic spaces
over Spa(Zp,Zp)

}
→ Dia

denoted X 7→ X�.
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(1) This extends the functor X 7→ hX[ on perfectoid spaces.
(2) There is a functorial homeomorphism |X| ∼= |X�|.
(3) Moreover, (−)� induces an equivalence Xét ∼= X�ét for appropriate definition

of these sites.

To define X� : Perf → Sets, set

T 7→

(T#, ι, f) :

T# = a perfectoid space
ι : T#[ ∼−→ T
f : T# → X

 .

Informally, X� takes T to the “set of untilts of T ”.
What is not obvious is that this is a diamond.

Lemma 3.14 (Faltings, Colmez). Let (A,A+) be a complete Huber pair over Zp.
Then there exists a filtered directed system (Ai, A

+
i ) of finite étale (A,A+)-algebras,

Galois with Galois group Gi, such that the completed direct limit lim−→(Ai, A
+
i ) =:

(A∞, A
+
∞) is perfectoid, and the map Spa(A∞, A

+
∞) → Spa(A,A+) is a G-torsor

where G := lim←−Gi.

Morally, Spa(A∞, A
+
∞) is a perfectoid G∞-cover of Spa(A,A+). What you ac-

tually have to prove is that Spa(A,A+)� ∼= Spa(A[∞, A
+[
∞ )/G, and the latter is a

diamond.

Example 3.15. A presentation of SpaQ�p is

SpaQ�p = Spa(Q̂p(ζp∞))[/Z×p .
3.4. Slogans.

Claim: Any reasonable “topological” property of schemes has an
analogue for diamonds.

In particular, one can make sense of diamonds as being quasicompact, quasisepa-
rated, separated, etc. and maps of diamonds as being quasicompact, quasiseparated,
separated, open, immersions, proper, etc.

The only twist: a diamond can be simultaneously separated and non-quasi-
separated, because the notion of separatedness refers to a point, which is not a
diamond. The main difference between schemes and diamonds is that non-quasi-
separated stuff appears naturally.

3.5. Spatial diamonds.

Definition 3.16. A diamond D is spatial if it is qcqs and the subsets |U | ⊂ |D|,
where U ⊂ D varies over quasicompact open subdiamonds, gives a neighborhood
basis.

We say D is locally spatial if it has an open cover by spatial subdiamonds.

Proposition 3.17.
(1) If D is a (locally) spatial diamond then |D| is a (locally) spectral space.

If D → E is a map of locally spatial diamonds, then |D| → |E| is nice
(i.e. spectral and generalizing).
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(2) If X → Y ← Z is a diagram of (locally) spatial diamonds, then X ×Y Z is
(locally) spatial.

(3) Any X� is locally spatial, and is spatial if and only if X is qcqs.
(4) If X is locally spatial, then Xét is well-behaved.

3.6. Principles of creation. If you have some diamonds, how do you make
more diamonds?

(1) Fiber products and direct products of diamonds are diamonds. (These are
different since diamonds don’t have a final object.)

(2) Anything pro-étale over or under a diamond is a diamond. In particular,
(coarse) quotients of diamonds by actions of locally profinite groups are
diamonds.

(3) Any reasonable subsets of |D|, for D a diamond, give rise to reasonable
subdiamonds of D.
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CHAPTER 3

The Fargues-Fontaine Curve
Speaker: Jared Weinstein

1. Analytic adic spaces

Recall that a Huber ring A is Tate if it contains a topologically nilpotent unit
$ (which will be referred to as a “pseudo-uniformizer”).

Definition 1.1. A point x in an adic space is analytic if there exists a rational
neighborhood U = Spa(A,A+) of x where A is Tate.

Let A be a complete Tate ring, $ a pseudo-uniformizer of A, A0 a ring of
definition. Then we can define a norm

| · | : A→ R>0

by
|a| = inf

n∈Z : $na∈A0

2n.

This induces the topology on A. Therefore, Tate rings are Banach.

1.1. The rank one generization. If x ∈ Spa(A,A+) corresponds to |·|x : A→
Γ, then γ = |$|x = |$(x)| ∈ Γ must satisfy γn → 0 as n→∞. There exists a map
Γ→ R>0 sending γ 7→ 1

2 . Then we define a new valuation

| · |x̃ : A
|·|x−−→ Γ→ R>0.

The corresponding x̃ ∈ Spa(A,A+) is an R>0-valued (rank 1) point which specializes
to x, i.e. x̃ x. Then | · |x̃ ≤ | · |; the set of rank 1 points of Spa(A,A+) coincides
with the set of rank 1 valuations ≤ | · |.

The point x̃ doesn’t depend on the choice of $. If $′ is another pseudo-
uniformizer, then

log |$(x̃)|
log |$′(x̃)|

∈ R>0.

Notation: if A is a Huber ring, we may abbreviate SpaA = Spa(A,A◦).

Example 1.2. Let k ⊂ Fp. Then Spa k = {s}, which is not analytic.

Example 1.3. Spa k[[t]] = {s, η} then the analytic locus is η. (Any adic space
has a maximal analytic locus, which is an open subspace.)

25
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Example 1.4. Consider Spa(k[[t]]) ×Spa k Spa(k[[u]]) = Spa k[[t, u]]. This con-
tains a special point s such that |t(s)| = |u(s)| = 0. Outside s, at least one of u or t
is non-vanishing, hence a unit, and both are topologically nilpotent. So s is the only
non-analytic point. The complement Y is covered by two rational subsets

U(|t| ≤ |u| 6= 0) = Spa(k((u))〈 t
u
〉, k[[u]]〈 t

u
〉),

U(|u| ≤ |t| 6= 0) = Spa(k((t))〈u
t
〉, k[[t]]〈u

t
〉),

Given x ∈ Y, let κ(x) = log |u(x̃)|
log |t(x̃)| ∈ [0,∞]. This defines a continuous, surjective

map κ : Y → [0,∞].

What is Spa k((t)) ×Spa k Spa((u))? It is the open subset where tu 6= 0, i.e.
κ−1(0,∞). This is not quasi-compact. In particular this shows Spa k is not quasi-
separated.

Example 1.5. The space Spa(Zp[[t]],Zp[[t]]) is similar. Morally, Zp[[t]] = “Fp[[p, t]]”.

2. The Fargues-Fontaine curve

2.1. The adic Fargues-Fontaine curve. Let C/Fp be an algebraically closed
perfectoid field, e.g. C = C[p.

Definition 2.1. Let Ainf = W (OC), with its (p, [$])-adic topology, 0 < |$| < 1.
Morally, “Ainf = OC [[p]]”.

Let Y = Spa(Ainf , Ainf) \ {s}, where s is the point such that |$(s)| = |p(s)| = 0.
Then Y is an analytic, and there exists κ : Y → [0,∞] as before. The Frobenius φC
acts on Y, and κ(φ(y)) = pκ(y). In particular, φ acts discontinuously on Y(0,∞) =

κ−1(0,∞).
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Let I ⊂ (0,∞) be a closed interval, BI = H0(κ−1(I)◦,OY), where κ−1(I)◦ is the
interior of κ−1(I). A Theorem of Kedlaya says that BI is strongly noetherian, then
Y(0,∞) is an adic space.

It turns out that BI is in fact a PID. Let B = B(0,∞) = lim←−BI . This is a Frechet
algebra.

Definition 2.2. The adic Fargues-Fontaine curve is X(C) := Y(0,∞)/φC .

2.2. Connection to untilts.

Definition 2.3. An untilt of C to Qp is a pair (C#, ι) where C#/Qp is a
perfectoid field, and ι : C ∼−→ C#[, with the obvious notion of equivalence.

Also note that φC acts on the set of untilts of C to Qp.

Theorem 2.4. There is a bijection between untilts of C to Qp, modulo equiva-
lence, to closed maximal ideals of B.

Given a maximal ideal m, one makes the untilt B/m. Conversely, if (C#, ι) is an
untilt, then we have a map of multiplicative monoids (but not a ring homomorphism)

OC ' lim←−
x 7→xp

OC# → OC# .

denoted x 7→ x#. This lifts to a ring homomorphism

W (OC) = Ainf → OC#

sending [f ] 7→ f#. This extends to

W (OC)[1/p]→ C#.

Recall that there was a map W (OC)[1/p] → BI . For sufficiently large I, this will
extend through BI , and composing with B → BI gives a homomorphism B → C#.

3. Untilts

If (C#, ι) is an untilt, then there exists

Qp(µp∞)∧ ↪→ C#.

Any two such embeddings are related by an automorphism of Qp(µp∞)∧, and the
group of such is Z×p .

Tilting such an inclusion gives

Qp(µp∞)∧[ → C

which is the same as ε = (1, ζp, ζp2 , . . .) ∈ C, well defined up to ε 7→ εa for a ∈ Z×p .
We have |ε− 1| < 1, so

t := log[ε] =

∞∑
n=1

(−1)n−1 ([ε]− 1)n

n
∈ B.

Now, φ([ε]) = [εp] = [ε]p, so t ∈ Bφ=p, and is well-defined up to multiplication by
Z×p .
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Theorem 3.1. The map ε 7→ log([ε]) induces an isomorphism of Zp-modules:

1 + mOC

∼−→ Bφ=p.

Remark 3.2. This can even be viewed as an isomorphism of Qp-vector spaces.

Theorem 3.3. The map

{untilts} → (Bφ=p \ {0})/Z×p
is a bijection, thus

{untilts}/φC
∼−→ (Bφ=p \ {0})/Q×p .

4. The scheme-theoretic curve

Recall that we defined the adic Fargues-Fontaine curve

X = Y(0,∞)/φ
Z
c

and B = H0(Y(0,∞),OY(0,∞)
) which has an action of φ. We make a line bundle O(1)

on X by descending OY(0,∞)
e where φCe = p−1e. Then H0(X ,O(1)) = Bφ=p.

Let P :=
⊕∞

n=0B
φ=pn . (We could interpret Bφ=pn = H0(X ,O(n)).)

Definition 4.1. The schematic Fargues-Fontaine curve is X := ProjP .

Warning 4.2. We have X → Spec Qp, but this morphism is far from being of
finite type.

Theorem 4.3.
(1) X is the union of spectra of Dedekind rings. In fact, for all x ∈ |X| the

ring H0(X − {x},OX) is a PID.
(2) (X is “complete”) Given f ∈ Qp(X), we get Div(f) ∈ Div |X|. Then

deg(Div f) = 0.
(3) (Points classify untilts) There is a bijection

{untilts of C over Qp}/φZC ' |X|
by taking x ∈ |X| to its residue field.

Remark 4.4. Kedlaya and Temkin have showed that for C = C[p, there exist
untilts over Qp which are not isomorphic.

5. Vector bundles on X

We have a map Y(0,∞) → X given by quotienting out by φ. We can construct
vector bundles on X by descent.

We will describe a functor

{isocrystals/k} → {vector bundles/X}.
We have an embedding k = Fp ↪→ C. This induces W (k) ⊂W (OC) = Ainf .

Definition 5.1. An isocrystal over k is a vector space V over W (k)[1/p] =: K,
together with a map φV : V

∼−→ V which is φK-semilinear, i.e. induces an isomor-
phism φ∗KV

∼−→ V .
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TheDieudonné-Manin classification says that the category of isocrystals is semisim-
ple, and the simple ones are of the form Kn with

φ =


0 1

0 1
. . . . . .

pd 0 . . . 0

φK

where n ≥ 1 and d ∈ Z, with gcd(d, n) = 1.

Fact 5.2. The set of p-divisible groups over k, up to isogeny, is in bijection with
the set of isocrystals over k with slopes in [0, 1].

Given V , we can construct a vector bundle EV on X by descending V ⊗OY(0,∞)

along (φV ⊗ φC).

Example 5.3. The isocrystal of slope −1 is sent to EV = O(1), whose global
sections are Bφ=p.

5.1. Schematic version. The vector bundle attached to V on the scheme-
theoretic incarnation of the Fargues-Fontaine curve corresponds to the graded mod-
ule

∞⊕
n=0

(V ⊗K B)φ=pn .

6. Link with p-divisible groups

We can define O(d/n) = EV where V is simple of slope −d/n.

Theorem 6.1. Every vector bundle on X is isomorphic to some EV .

Suppose that G/k is the p-divisible group of slope d/n. (For example, if d/n = 1
then G = µp∞ , while if d/n = 0 then G = Qp/Zp.)

We can define

G(OC) = lim←−
n

G(OC/$n).

Example 6.2. If G = Qp/Zp then G(OC) = Qp/Zp, while if G = µp∞ then
G(OC) = 1 + mOC

(the formal multiplicative group).

Theorem 6.3. Assume d > 0. Then there is an isomorphism

G(OC)
∼−→ H0(X,O(d/n)).

Remark 6.4. To get this formula to hold in general (i.e. for all d), you take the
universal cover G̃ = lim←−pG, e.g. Q̃p/Zp = Qp = H0(X,O).
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7. The diamond formula

Recall that for S ∈ Perf, then

(SpaQp)
�(S) =

{
(S#, ι) | S

# = perfectoid space/Qp

ι : S
∼−→ S#[

}
We had also defined a functor Z 7→ Z� from analytic adic spaces over Zp to Dia.

Theorem 7.1. We have

X �C ' (SpaC ×SpaFp (SpaQp)
�)/(φC × 1).

That is, if S ∈ Perf then the LHS classifies

{S#, S# → XC}.
The RHS is the sheafification of the functor

S 7→ {S → C, S#, ι}/φC × 1.

8. Relative Fargues-Fontaine curve

Let (R,R+) be a perfectoid Huber pair in characteristic p. Define

Y(0,∞),(R,R+) := SpaW (R+) \ V (p[$]),

where $ is a pseudo-uniformizer in R. The associated diamond satisfies

Y�(0,∞),(R,R+)
∼= Spa(R,R+)× (SpaQp)

�.

Definition 8.1. The relative Fargues-Fontaine curve over Spa(R,R+) is

X(R,R+) := Y(0,∞),(R,R+)/ϕ
Z.

The “diamond formula” is the same as before. In fact, if S ∈ Perf is arbitrary,
you can define XS by gluing X(Ri,R

+
i ) as Spa(Ri, R

+
i ) runs over an affinoid perfectoid

covering of S.

Warning 8.2. There is no map XS → S. (For instance S is of characteristic
p while XS is of characteristic 0.) However, there are shadows of such a map, e.g.
there is a canonical map |XS | → |S|. (In fact, there is even a map XS,ét → Sét.)
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Fun with vector bundles on the Fargues-Fontaine curve
Speaker: David Hansen

1. Vector bundles on the relative Fargues-Fontaine curve

Observe: the formulas that Jared wrote down to define the vector bundlesO(d/n)
make sense over any base, i.e. on any XS .

1.1. The scheme-theoretic curve.

Definition 1.1. If (R,R+) is some perfectoid Huber pair in characteristic p,
define

XR = Proj

⊕
n≥0

H0(XSpa(R,R+),O(n))


Warning 1.2. In general (if R is not a perfectoid field), this is not a noetherian

scheme.

Theorem 1.3 (GAGA). There exists a functorial map of locally ringed spaces

X(R,R+) → XR

and pullback along this map induces an equivalence of categories of vector bundles.

Remark 1.4. If R is not a perfectoid field, then it won’t be Noetherian, and
there isn’t a good theory of coherent sheaves on X(R,R+).

1.2. Harder-Narasimhan filtration. If (R,R+) ↔ K is a perfectoid field,
thenXK is Dedekind and complete, and every vector bundles has a Harder-Narasimhan
filtration. In particular, after pulling back along X

K̂
→ XK , any bundle E decom-

poses as a direct sum
⊕
O( dini

) for some uniquely determined di
ni
, counted with

multiplicity.

Remark 1.5. It is even true that the HN filtration is already split over K
(although one doesn’t have this classification result for bundles).

A book-keeping device: given E on XK , then after pulling back to X
K̂

we can
write

E ∼=
⊕
O(

di
ni

).

Define HN(E) to be the lower concave polygon joining (0, 0) and (rank E ,deg E)

having slopes d1
n1
≥ d2

n2
≥ . . . with horizontal lengths ni.
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Now suppose E is a vector bundle on some XS . For every point s ∈ S, the residue
field k(s) is perfectoid and so we get a map X(k(s),k(s)+) → XS . Using this, we can
define a function

s ∈ S 7→ HN(Es).

Theorem 1.6. The function s 7→ HN(Es) is upper semicontinuous (i.e. jumps
up upon specializations).

1.3. Moduli of vector bundles.

Definition 1.7. Bunn is the functor from Perf to groupoids sending any S to
the groupoid of rank n vector bundles on XS .

The motivation for diamonds is to put enough geometric structure on Bunn to
make sense of `-adic sheaves, etc.

2. Diamonds associated to cohomology of vector bundles on the curve

2.1. Motivating fact. Let X/k be a smooth projective connected curve, and
let E be a vector bundle on X. Then the functor Sch/k → Sets sending S 7→
H0(X ×k S, E) is representable: it is just Spec SymkH

0(X, E)∨.

2.2. Is there an analogue of this in the Fargues-Fontaine setting?

Definition 2.1. Fix S ∈ Perf and E a vector bundle on XS . DefineHi(E) : Perf /S →
Sets to be the sheafification of the presheaf sending T → S to H i(XT , ET ).

Remark 2.2. The presheaf T 7→ H0(XT , ET ) is already a sheaf.

2.2.1. Basic facts:
(1) For all i ≥ 2, Hi(E) = 0. (In the affinoid case, one can produce a cover of

the relative FF curve by two affinoid subsets, so Cech cohomology vanishes.)
(2) If HN(Es) has all slopes ≥ 0 for all s ∈ S, then H1(E) = 0.
(3) If HN(Es) has all slopes < 0, for all s ∈ S, then H0(E) = 0.
(4) If E = O(n), then H0(E)(R,R+) = B(R,R+)ϕ=pn . When n = 1, this is the

topological nilpotent elements, so it corresponds to an open ball.

Theorem 2.3.
(1) For all E/XS, H0(E) is a locally spatial diamond, and H0(E) → S is very

well-behaved, e.g. it’s smooth if all the slopes are > 0.
(2) If HN(Es) has only negative slopes for all s, then H1(E) is a locally spatial

diamond.

Proof Sketch. Step 1: For E = O, the diamond H0(E) is simply Qp. For
E = O(1), the diamond H0(E) is representable: it is just an open ball in one variable.

Step 2: The case of E = O(n) for n ≥ 1. We need:

Fact 2.4. O(n) can be realized as the cokernel of an injection On−1 ↪→ O(1)n.
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(The idea is that O(1) has a lot of sections so the quotient is a vector bundle,
and the classification theorem tells you which vector bundle.)

Now apply Hi to the SES

0→ On−1 → O(1)n → O(n)→ 0.

We get a SES in the category of abelian group sheaves on Perf /S

0→ H0(On)→ H0(O(1)n)→ H0(O(n))→ 0

because the slopes are such that H1 vanishes. The first map induces a free action (by
translation) of H0(On−1) ' Qp

⊕(n−1) on H0(O(1)n), a perfectoid ball in n variables.
A free quotient of a locally spatial diamond by a locally profinite group is a locally
spatial diamond.

Step 3 (Fargues): Write E as the kernel of some map O(n1)d1 → O(n2)d2 . (To
build this, find a quotient O(?)? � E∨ using that O(1) is “ample”. Similarly find a
surjection onto the kernel, and then dualize everything.) Then

H0(E) ∼= H0(O(n1)d1)×H0(O(n2)d2 ),s S

where s : S → H0(O(n2)d2) is the zero-section.

Step 4: Next we consider the functor H1. If E/XS is a vector bundle with all
slopes ≥ 0 at all points, then (pro-étale locally on S) you can realize E as a quotient

0→ O(−1)n → Om → E → 0.

Dualizing, one deduces that if E has all slopes < 0, then there exists a SES

0→ E → Om → O(1)n → 0.

Passing to the LES, one finds

0→ H0(E)︸ ︷︷ ︸
=0

→ Qp
⊕m → H0(O(1)n)→ H1(E)→ H1(Om)︸ ︷︷ ︸

=0

Thus H1(E) ' H0(O(1)n)/Qp
m is a (locally spatial) diamond. �

2.3. More examples of diamonds.

Definition 2.5. Fix two bundles E ,F on XS . Define

Hom(E ,F) : Perf → Sets

to be the functor T/S 7→ {OXT
−module maps ET → FT }. This is a locally spatial

diamond over S, since

Hom(E ,F) ∼= H0(E∨ ⊗OXS F).

(Furthermore, recall that H0 doesn’t need to be sheafified.)

Corollary 2.6. The diagonal map ∆: Bunn → Bunn×Bunn is “reasonable”.
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Proof. Suppose given some S ∈ Perf and some map S → Bunn×Bunn, corre-
sponding to two vector bundles E1/XS and E2/XS . By defninition,

Bunn×∆,Bunn×BunnS

is the functor sending T → S to Isom(E1|XT
, E2|XT

). This is a locally spatial diamond,
e.g. because it’s open inside Hom(E1, E2). �

There are variants of this: Surj(E ,F) parametrizing surjective maps E → F ,
and Inj(E ,F) parametrizing injective E → F which remain injective after any base
change XS′ → XS .

These are both open inside Hom(E ,F), hence they are locally spatial diamonds.
The key point is that the map |XS | → |S| is both open and closed.

3. Modification of vector bundles

Fact 3.1. Given some perfectoid space S over Qp, consider XS[ . This has a
canonical closed immersion S ↪→ XS[ , which one can think of as a family of untilts
of the residue fields of S.

Definition 3.2. Given S/Qp, a modification of vector bundles supported along
S is a pair of vector bundles E and F on XS[ plus a “meromorphic” isomorphism

E|X
S[−S

∼−→ F|X
S[−S

Idea: moduli spaces of modifications of vector bundles on the Fargues-Fontaine
curve are closely related to Rapoport-Zink spaces. On the other hand, this sort of
structure appears in geometric Langlands.

3.1. The BdR-affine Grassmannian.

Definition 3.3. Let GrBdR
GLn

be the functor from Perf /(SpaQp)
� [= Perfd/Qp]

to Sets which sends S/Qp to the set of modifications

E|X
S[−S

∼−→ On|X
S[−S .

Theorem 3.4 (Scholze). This functor is an inductive ind-(locally spatial) dia-
mond.

We will give some examples of modifications. Fix S = SpaCp. Fix E = O(2/5).
Let’s consider modifications f : F ↪→ E with the property that coker(f) ' i∞∗C2

p,
where i∞ : SpaCp ↪→ XSpaC[

p
. Which F ’s can occur?

It is immediate that degF = 0 and rank F = 5. Also all slopes of F are ≤ 2/5.
A fun exercise shows that F ' O5 or F ' O(1/3)⊕O(−1/2).

By a form of Beauville-Laszlo, the space of all modifications of this type is
Gr(2, 5). Inside X there is some open subset Xa ⊂ X parametrizing modifications
with F ' O5. (The a stands for “admissible”.) In particular, Xa is an adic space
over Qp.

What about the complement of Xa?

Fact 3.5. The complement X \Xa is not an adic space. However |X| − |Xa| ⊂
|X| is nice enough that it really does correspond to some subdiamond X�na ⊂ X�.
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Remark 3.6. There is a notion of “canonical subdiamond” which is canonically
associated to a nice enough subspace of the topological space of a diamond. The
X�na is even a “canonical subdiamond”.

Proposition 3.7. X�na is isomorphic to a punctured one-variable perfectoid ball
over Cp, modulo D×1/3 where D1/3 is the division algebra of invariant 1/3 over Qp.

Why is this true? The X�na parametrizes modifications F ↪→ O(2/5) such
that F ' O(1/3) ⊕ O(−1/2) at all geometric points. By results of Kedlaya-Liu,
there exists a canonical F+ such that F+ ' O(1/3) at all geometric points (the
technical statement is that the Harder-Narasimhan filtration exists in families when
it is constant pointwise). Then over X�na, one can define an Aut(O(1/3))-torsor
by specifying a rigidification r : O(1/3) ' F+. Composing f and r, we get a map
X̃�na → Inj(O(1/3),O(2/5)) ⊂ Hom(O(1/3),O(2/5)) ' H0(O(1/15)). Then use
that Aut(O(1/3)) is D×1/3.
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CHAPTER 5

BunG for the Fargues-Fontaine curve
Speaker: Jared Weinstein

1. Some sheaves on Perf

Recall that Perf is the category of perfectoid spaces over Fp, with the pro-étale
topology.

We give some examples of sheaves of Perf that are of interest to us.

1.1. Perfectoid spaces. Let S be any perfectoid space. Then it represents a
sheaf hS .

1.2. The point. The final object ∗, sometimes written (SpaFp)�, although this
is not a diamond. It is an absolute perfectoid space, where we say X is an “absolute
blah" if for all S ∈ Perf, X × S is a “blah”.

1.3. (SpaQp)
� is a diamond, with functor of points S 7→ {S#/Qp}. To present

it as a quotient of a perfectoid space by a pro-étale equivalence relation, we could
write

(SpaQp)
� = (SpaQp(µp∞)∧,[)/Z×p .

1.4. Analytic adic spaces. If X/Zp is an analytic adic space, then X� is an
absolute diamond.

1.5. (SpaZp)�, with functor of points S 7→ {S#}. This is an absolute diamond.
For example, consider (SpaZp)� × SpaC for an algebraically closed perfectoid field
C/Fp. This is (SpaW (OC) \ {[$] = 0})�, where $ is a pseudo-uniformizer of C,
and SpaW (OC) \ {[$] = 0} is an analytic adic space.

1.6. Constant spaces.
1.6.1. Finite sets. Let T be a finite set. Then T (S) = Homtop(|S|, T ), so T =

T × ∗. This is an absolute perfectoid space.
1.6.2. Profinite sets. More generally, let T = lim←−Ti be a profinite set, T (S) =

Homtop(|S|, T ) is an absolute perfectoid space, e.g. SpaC × T = SpaR, where R =
Homtop(T,C). We claim that this is a perfectoid algebra, with R◦ = Homtop(T,OC).
Note that | SpaR| = T . (The topology on R is the topology of uniform convergence;
we can even make R a Banach algebra by giving it the sup norm.)

1.6.3. Locally profinite spaces. More generally, one could even allow T to be
locally profinite.

39
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1.7. Cohomology of bundles over the Fargues-Fontaine curve. Let M
be an isocrystal over Fp. We described how to construct from this a vector bundle
EM on “the” Fargues-Fontaine curve over any S for S ∈ PerfFp

. There is a diamond

Hi(EM ) : S 7→ H i(XS , EM ).

This is an absolute diamond, and even an absolute perfectoid space if the slopes of
EM lie in [0, 1].

Example 1.1. H0(OX ) = Qp.

Example 1.2. H0(O(1))(SpaR) = Bφ=p
R = 1 +R00. This is a Qp-vector space.

So we see that H0(O(1)) is represented by SpaFp[[t1/p
∞

]]�, an absolute perfectoid
space. For example,

SpaC ×Fp
SpaFp[[t1/p

∞
]] = SpaOC [[t1/p

∞
]] \ {$ = 0}.

This is a perfectoid space; informally it is the “perfectoid open ball over C”.

Example 1.3. H1(O(−1))(S) is the “sheafification of S 7→ R#/Qp if S = SpaR

and R# is some untilt,” or more precisely,

H1(O(−1))× (SpaQp)
� ' (A1

Qp
)�/Qp.

(The diamond H1(O(−1)) is sort of similar to the algebraic space A1/Z.)

2. Some stacks on Perf

2.1. BG. Let G be a locally profinite topological group. Then there is a stack
BG = [∗/G], with morphisms S → [∗/G] classifying pro-étale G-torsors on S.

For example, [∗/GLn(Qp)] classifies pro-étale Qp-local systems of rank n.

2.2. Where are we? In classical geometric Langlands, one considers for Fq-
schemes S the product X ×Fq S where X/Fq is a curve.

Now, we’re considering for S ∈ PerfFq
the relative curve XS , which doesn’t have

a map to S. Note however that X �S ' SpaQ�p × S/(1× φZS).

2.3. Bunn. Bunn(S) is the groupoid of rank n vector bundles on X ×Fq S (in
the classical case) or XS (in the Fargues-Fontaine case).

The points of Bunn are

|Bunn | '

{
GLn(F )\GLn(AF )/

∏
v GLn(Ov) classical

{isocrystals /Fp} Fargues-Fontaine

Recall that all isocrystals over Fp are of the form
⊕
O(di/ni) with

∑
ni = n. The

topology can be described by HN polygons. In specializations, the HN polygons go
up.
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Example 2.1. Over P1, rank 2 bundles specialize as O⊕O  O(1)⊕O(−1) 
O(2)⊕O(−2) . . ..

Over XC , the exact same holds. For something more interesting, let’s look at
O(1/2). Then we mentioned that O(1/2) specializes to O⊕O(1), for example. What
this means more precisely is that for the relative curve XS , one can find families of
vector bundles in which the isomorphism types along fibers specialize in this way.

In particular, Bunss
n is open (and dense) in Bunn. The words semistable, isoclinic,

and basic are synonymous: they all mean that there is only one slope.
Then Bunss

n =
∐
d∈Z Bunss,deg d

n . What is Bunss,deg 0
n ?

Theorem 2.2 (Kedlaya-Liu). The following categories are equivalent:
(1) Qp-local systems of rank n on S.
(2) Bunss,deg 0

n (S). In other words, Bunss,deg 0
n = [∗/GLn(Qp)].

The map from (2) to (1) takes E to L, where L(T → S) = H0(XT , E).

Example 2.3. Consider Bunss,deg 1
2 . The only point isO(1/2), which corresponds

to the matrix
φM =

(
0 1
p−1 0

)
.

Then EndφM (M) ⊂ M2(W (Fp)[1/p]) can be identified as the non-split quaternion
algebra D/Qp. So the conclusion is that Bunss,deg 1

2 ' [∗/D×]. There is an open
subset Bundeg 1,≤1

2 in which only these bundles appear. There is a specialization
O(1/2) O(1)⊕O in Bundeg 1,≤1

2 , and the latter has the stratification

[∗/D×] ⊂ Bundeg 1,≤1
2 ⊃ [∗/Aut(O ⊕O(1))]

where Aut(E) is the sheaf S 7→ AutXS
(O ⊕O(1)).

Note thatH1(O(−1)) ' Ext(O,O(−1)) ' Ext(O(1),O) classifies exact sequence

0→ O → E → O(1)→ 0.

Note that E ∈ Bundeg≤1
2 . This can be used to produce a uniformization of Bundeg≤1

2 .

2.4. Hecke stacks. We want to define a Hecke correspondence

Hecke

Bunn Bunn×SpaQ�p

We define

Hecke(S) =
{

(E1, E2, S
#, meromorphic E1|XS−S#

∼−→ E2|XS−S#

}
.

(Note that S# is an effective Cartier divisor of degree 1 in XS .)
There is a substack Heckeelem,d classifying

0→ E1 → E2 → iS#∗W → 0

where iS# : S# ↪→ XS where W is an OS#-module locally free of rank d.
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Theorem 2.4 (Scholze-W.). Let S = C, and choose C#/Qp. The following are
in bijection:

(1) The isogeny classes of p-divisible groups over OC#.
(2) Isomorphism classes of elementary modifications 0→ F → E → iC#∗W →

0 where F is semi-simple of degree 0.

Proof. (1) =⇒ (2). Start with G/OC# (which you may assume is formal).
Then G is associated to a power series in 2d variables X + Y = . . .. So G(OC#) =
md
O

C#
. We get an exact sequence of Zp-modules

0 G[p∞](OC#) G(OC#) LieG[1/p] 0.
logG

We’re going to convert this to an exact sequence of Qp-vector spaces by applying
lim←−p. We get

0 V G G̃(OC#) LieG[1/p] 0
logG (2.1)

This is an extension of a Cp-vector space by a Qp-vector space, i.e. a “Banach-Colmez
space”.

The map G̃(OC#) → G̃(OC#/p) is an isomorphism (perhaps surprisingly?). To
get the inverse, you send a sequence (x0, x1, . . .) ∈ G̃(OC#(p)) to (y0, y1, . . .) where
yi = limj→∞[pj ](xi+j).

We also need to use a theorem that G is isotrivial, i.e. there exists a quasi-isogeny
ρ : G⊗O#

C
OC#/p → G0 ⊗Fp

OC#/p where G0/Fp is a p-divisible group.
Let EG0/XC be the corresponding vector bundle. Then it’s a fact thatH0(XC , EG0) =

G̃0(OC). We have the chain of identifications

G̃(OC#)
∼−→ G̃(OC#/p)

∼−→ G̃0(OC#/p) ' G̃0(OC/$) ' G̃0(OC) ' H0(XC , EG0).

Putting this into (2.1), we get a SES of vector bundles

0→ V G⊗Qp OXC
→ EG0 → iC#∗ LieG[1/p]→ 0.

(One can see that this is a modification outside C#.)
�

3. Connection to Rapoport-Zink spaces

Let G0/Fp be a fixed p-divisible group of dimension d. We define a functor MG0

from complete W (Fp)-algebras to sets, sending

R 7→
{

(G, ρ) | ρ : G⊗R R/p→ G0 ⊗Fp
R/p a quasi-isogeny

}
.

Theorem 3.1 (Rapoport-Zink). MG0 is a formal scheme (locally formally of
finite type over W (Fp)), which locally admits a finitely generated ideal of definition.

Hence we can take the “adic generic fiber” MG0 := (Mad
G0

)η. Here, we applied
the functor from formal schemes over Spf W (Fp) to adic spaces over SpaW (Fp).
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Then we take the diamond to getM�G0
→ Spa(W (Fp)[1/p])�. HereM�G0

sends
S/W (Fp)[1/p] to the set of elementary modifications of degree d:

F → EG0

over XS[ occurring over S, such that F is semi-stable of degree 0, together with a
Zp-lattice L0 ⊂ L where L is the Qp-local system corresponding to F (by Kedlaya-
Liu).

We can pass to infinite level:

M�G0,∞ { elementary modifications On → EG0,L . . .}

M�G0

The objectM�G0,∞ comes from a perfectoid space.

M�G0,∞

∗ ∗ × Spa(W (Fp)[1/p])

Heckeelem,d
e

Bunn Bunn×Spa(W (Fp)[1/p])

On EG0





CHAPTER 6

Local class field theory and the Fargues-Fontaine curve
Speaker: Arthur-César le Bras

1. Geometric class field theory (unramified)

Let X be a smooth projective geometrically connected curve over Fq, and let
K = Fq(X).

Let A =
∏′
x∈|X| K̂x, O =

∏
x∈|X| Ôx. Unramified class field theory says that(

K×\A×/O×
)∧ ∼= (Galunr

K )ab

via the map
(ax)x∈|X| 7→

∏
x∈|X|

Frobordx(ax)
x .

We want to reformulate this statement more geometrically, in terms of X. Ob-
serve first that

• Galunr
K
∼= π1(X).

• K×\A×/O× ' PicX(Fq).
The geometric reformulation is: there is a natural bijection{

continuous characters
π1(X)→ Z×`

}
↔
{
continuous characters

PicX(Fq)→ Z×`

}
sending ρ 7→ χρ for all x ∈ |X|, such that ρ(Frobx) = χρ(O(x)).

One can go further, thanks to the following:

• a continuous character π1(X) → Z`
× is equivalent to a “rank 1 Z`-local

system on X”.
• a continuous character PicX(Fq) → Z`

× is equivalent to a character sheaf,
that is to a rank 1 Z`-local system F on PicX such that m∗F ' p∗1F ⊗p∗2F ,
where m : PicX ×PicX → PicX is the multiplication and p1, p2 are the two
projections.

Indeed, given a character sheaf one takes the trace function. Conversely,
use the Lang isogeny to go the other way.

There is an Abel-Jacobi morphism AJ : X → Pic(X) sending x ∈ X to O(x).
The geometric reformulation says: the pullback functor AJ∗ induces an equivalence
of categories

{character sheaves on PicX}
∼−→ {rank 1 Z`-local systems on X}.
45
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Note in passing that, contrary to the original statement, the statement now
makes sense over any base field.

Deligne. let F be a rank 1 Z`-local system on X. Let d ≥, and X(d) = Xd/Sd,
the “moduli space of degree d effective Cartier divisors on X”.

Set F (d) = (π∗F�d)Sd where π : Xd → X(d).

Fact 1.1. The sheaf F (d) is again a local system on X(d).

Indeed, the sheaf F�d tautologically descends to the stacky quotient [Xd/Sd],
and one sees using that F has rank 1 that the action of the stabilizers act trivially
on the stalks of the sheaf obtained on [Xd/Sd] (in general, F (d) would only be a
perverse sheaf).

We have AJd : X(d) → PicdX sending D 7→ O(D). The old AJ coincides with
AJ1.

The fiber of AJd above O(D) is the linear system |D| = P(H0(X,O(D))). By
Riemann-Roch, if d > 2g − 2 then AJd is a fibration in projective spaces.

Fact 1.2. For all n ≥ 1, π1(PnFq
) = 0.

For all d > 2g − 2, π1(PicdX) = π1(X(d)). So F (d) descends to a local system on
PicdX , called AdF . Let µ : X × PicdX → Picd+1

X by (x,L ) 7→ L (x). Then µ∗Ad+1
F '

F �AdF for all d > 2g − 2. This allows to extend AdF to all d (if one fixes a rational
point of X), and to check the character sheaf property. �

Remark 1.3. We could have worked with the Picard stack instead of the Picard
scheme. As the former is a Gm-gerb over the latter and as Gm is connected, this
makes no difference when working with `-adic local systems. We will see below that
in the context of local class field theory, the difference becomes important.

Remark 1.4. One can also recover ramified class field theory in this way. Serre’s
book explains an approach of Lang-Rosenlicht via generalized Jacobians. Recent
work of Guignard gives a different argument, more along the lines of Deligne’s for
the unramified case.

2. The Fargues-Fontaine curve

In 2016, Fargues gave a geometric reformulation/proof of local (ramified !) class
field theory.

Let E be a local field, π a uniformizer of E, and Fq the residue field.
How do you attach an interesting geometric object to E, whose fundamental

group is Gal(E/E) ?
We will sketch Fargues’ proof for the case E = Fq((π)), although the positive

characteristic assumption doesn’t get used until the end. Recall that if T is a scheme
of finite type over Fq, and F ⊃ Fq is an algebraically closed field, then there is an
equivalence

{finite étale covers of T} ↔
{
finite étale covers T ′ → T ×Fq F

ϕ∗FT
′ ∼−→ T ′, ϕF = Id×FrobF

}
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Fargues-Fontaine realized that, when trying to do geometry over "T = Spec(E)",
it is better to replace F by C, an algebraically closed perfectoid field containing
Fq. Then instead of forming the fibered product T ×Fq F in schemes, consider
YC,E = SpaE ×SpaFq SpaC. Then define XC,E = YC,E/ϕZ

C . One has

O(YC,E) =

{∑
n∈Z

xnπ
n : xn ∈ C, lim

|n|→∞
|xn|ρn = 0 for all ρ ∈ (0, 1)

}
.

In general, for any E (not necessarily of positive characteristic) and C as before,
define

YC,E = Spa(WOE
(OC)) \ V (π[$]),

where WOE
(−) = W (−)⊗W (Fq) OE . Then define

XC,E = YC,E/ϕZ
C .

A clue that this is going in the right direction is given by the following result.

Fact 2.1. We have π1(XC,E) = Gal(E/E).

Proof. We want to check that pullback induces an equivalence between finite
étale E-algebras, and finite étale OXC,E

-algebras. Let E be a finite OX -algebra. The
classification theorem says that E =

⊕
OXC,E

(λi) for λi ∈ Q as a vector bundle. We
have a non-degenerate trace pairing E ⊗ E → OXC,E

which implies
∑
λi = 0. Let

λ = max(λi).
The non-degenerate map E ⊗E → E restricts to a non-zero map O(λ)⊗O(λ)→

E which forces λ ≤ 0 (since vector bundles with negative slopes have no global
sections). The symmetry of the trace pairing then shows that λi = 0 for all i. Then
E = A⊗E OXC,E

, for some étale E-algebra A. �

Nevertheless, as we will see below, the Fargues-Fontaine curve XC,E is not exactly
the object which will play the role of the curve X of geometric class field theory.
This has to do with the fact that the correct way of putting the Fargues-Fontaine
curve in families is not the obvious one (by taking fiber products over Spa(E), with
test objects being adic spaces over E). Indeed, we have seen that if S ∈ PerfFq , one
can define YS,E and XS,E (the definition of the previous lectures given for E = Qp

immediately adapts to any E).

Warning 2.2. YS,E and XS,E do not live over S, even if E = Fq((π))!

3. Diamonds

To get a geometric reformulation of local CFT, we need to work in in an even
bigger category than the category of adic spaces, namely the category of sheaves on
PerfFq ,pro-étale.

Example 3.1. If S is an adic space over Fq, then hS is a sheaf on PerfFq ,pro-étale.
Any analytic adic space Z over Zp induces a sheaf Z� on PerfFq ,pro-étale, whose

points are
S 7→ {untilts (S#, i) of S/Z}/ ∼ .
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If S is perfectoid, Z� = (Z[)�. This sheaf is even a diamond, i.e. the analogue
of an algebraic space for the pro-étale topology.

Example 3.2. Let T be a topological space. The functor

S 7→ C(|S|, T )

is a pro-étale sheaf, since a surjective pro-étale morphism is a quotient map on the
underlying topological spaces. If T is locally profinite, then this is even an absolute
diamond.

Remark 3.3. As sheaves on PerfFq ,pro-étale,

Y �S,E = Spa(E)� ×SpaFq S

and
X�S,E = Spa(E)� ×SpaFq S/(1× ϕS).

This gives in the world of diamonds a precise meaning to the heuristic used above
to motivate the introduction of the curve.

4. The Abel-Jacobi morphism for local fields

We can now define all the geometric objects involved in the geometric reformu-
lation of local CFT.

4.1. Picard stacks. Let Pic be the functor on PerfFq sending S to the groupoid
of line bundles on XS,E . Here is a special case of a more general result of Kedlaya-Liu.

Proposition 4.1. Pic =
∐
d∈Z Picd and for all d ∈ Z,

Picd ' [SpaFq/E×],

the classifying stack of E×-torsors. The identification is L 7→ Isom(O(d),L ).
Hence Pic is a stack on Perf.

This is saying that if S ∈ PerfFq , and L is the line bundle of degree d on
XS,E then there exists a pro-étale cover S′ → S such that L |XS′,E ' O(d), and
Aut(O(d)) = E× (here one really sees that the relative Fargues-Fontaine curve is far
from being a product !).

Corollary 4.2. There is an equivalence between

{Q` − local systems on PicdFq
} ↔ {continuous Q`-representations of E×}

4.2. Divisors. Let d ≥ 1, and Divd be the moduli of effective Cartier divisors1
of degree d on the curve. This has functor of points

S 7→
{

(L , u) :
L = line bundle of degree d on XS,E

u ∈ H0(XS,E ,L ) such that for all s ∈ S, u|Xk(s)
6= 0

}
Then Divd has 2 different descriptions:

1A notion which we won’t define precisely in this talk.
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(1) Divd ' [(Bϕ=πd

E \ {0})/E×] where Bϕ=πd

E is the sheaf S 7→ H0(XS,E ,O(d)).
This is easily deduced from the definition of Divd and the description of
Picd given before.

Via these identifications, the Abel-Jacobi morphism (L , u) 7→ L over
Fp is the natural morphism [(Bϕ=πd

E,Fp
\ {0})/E×] → [SpaFp/E×]. This is a

fibration with fiber Bϕ=πd

E,Fp
\ {0}.

(2) Div1 ' Spa(E)�/ϕE� . Here ϕE� is the Frobenius on any pro-étale sheaf on
Perf.

Let us explain how this identification works. Let S = Spa(R,R+) ∈
PerfFp . An S-point of Spa(E)� is equivalent to an untilt (S#, i) of S over
E. We have a bijection

{untilts of R over E} ↔


deg 1 primitive elements∑

n≥0[xn]πn ∈WOE
(R◦)

x0 ∈ R× ∩R00, x1 ∈ (R◦)×

 /WOE
(R◦)×.

The map ← is: given ξ on the RHS, form R# = WOE
(R◦)[1/π]/(ξ). The

map → is: R# 7→ ker(θR# : WOE
(R◦)→ R#◦).

We have V (ξ) = Spa(R#, R+#) ↪→ YS,E . This we have map from
Spa(E)� to Cartier divisors D on Y which takes ξ 7→ V (ξ). This then
maps to Div1 via D 7→

∑
n∈Z ϕ

n(D), and the composite factors through
Spa(E)�/ϕE� , and the claim is that the induced map is an isomorphism.

Using this second identification, we get
• Div1 is a diamond, with an étale presentation given by Spa(E)� → Spa(E)�/ϕE�

(note that the first identification only shows a priori that Div1 is an abso-
lute diamond). In particular, one deduces that Bϕ=πd

E \ {0} is a diamond,
since it is pro-étale over it (again, this is not obvious a priori, since Bϕ=πd

E

is only an absolute diamond). The diamond Div1 is a quite exotic one :
it is not quasi-separated, although the map Div1 → Spa(Fq) is separated
(even, in a precise sense, proper and smooth).
• AQ`-local system on Div1

Fq
is equivalent to aQ`-local system on (Spa(E)�×SpaFq

SpaFq)/ϕFq
(we can switch the Frobenius because ϕE� × ϕFq

is the abso-
lute Frobenius, hence induces the identity map on (pro-)étale sites). Now,
(Spa(E)�×SpaFq SpaFq)/ϕFq

= Spa(Ĕ)�/σ, where σ is the Frobenius of Ĕ,
so this is the same as σ-equivariant Q`-local systems on Spa(Ĕ), which are
the same as continuous Q`-representations of WE .
• An identification Divd = (Div1)d/Sd (the quotient is the quotient as a pro-
étale sheaf).

Remark 4.3. What is the E×-torsor on Spa(E)�/ϕE� corresponding to

Bϕ=π \ {0} → [(Bϕ=π \ {0})/E×]

under the identification Spa(E)�/ϕE� ' [(Bϕ=π \ 0)/E×]?
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It is given by Spa(E∞)� → Spa(E)�/ϕE� , where E∞ is the Lubin-Tate extension
associated to π. This can be used to verify that the identification of W ab

E with E×
which will be obtained later coincides with the one of local class field theory.

We can make the isomorphism deduced from the above identifications

SpaE�/ϕE� ' [(Bϕ=π
E \ 0)/E×]

explicit at the level of C-points, where C is a perfectoid algebraically closed field
containing Fq. Set B = BE(C). If x ∈ Bϕ=π − 0, then Div(x) defines a C-point
of Div1. Conversely, an untilt corresponds to ξ a primitive element of degree 1,
and we consider the divisor

∑
n∈Z[ϕnξ]. We will try to find x ∈ Bϕ=π such that

Div(x) =
∑

n∈Z[ϕnξ]. Assume ξ ∈ π +WOE
(mC). Then

Π+(ξ) =
∏
n≥0

ϕn(ξ)

π

converges in B and satisfies ϕ(Π+(ξ)) = π
ξΠ+(ξ). Fargues and Fontaine then prove

the existence of Π−(ξ) ∈ B − 0 such that ϕ(Π−(ξ)) = ξΠ(ξ), well-defined up to
multiplication by an element of E×, and set x = Π(ξ) := Π(ξ)Π+(ξ). The fact that
Π−(ξ), and thus x, is only well defined up to an element of E× is a shadow of the
existence of the above E×-torsor.

One can also write formulas using the universal cover of Lubin-Tate formal group
laws over E. Then the logarithm of the formal group law shows up, as we already
saw in the case E = Qp in a previous lecture.

5. Geometric proof of local CFT

Let ρ be a continuous characterWE → Q×` . As discussed above, this is equivalent
to a rank 1 Q`-local system F on Div1

Fq
.

We want to show that F descends along AJ : Div1
Fq
→ Pic1

Fq
to a rank 1 local

system AF on Pic1
Fq
, which is equivalent to a continuous character E× → Q×` . Again

it is enough to descend F (d) on DivdFp
for d� 0. (But it is subtler to explain why :

this involves Drinfeld-Scholze’s lemma for diamonds.)
Therefore, it’s enough to prove:

Theorem 5.1 (Fargues). For all d ≥ 3, Bϕ=πd

Fq ,E
− {0} is simply connected.

Remark 5.2. For d = 2, it’s true in positive characteristic, but not written down
in characteristic 0. It’s not true for d = 1 ! It’s not true if you replace Fq by C, where
C is an arbitrary algebraically closed field in characteristic p. Indeed, Bϕ=πd

C,E − {0}
is the d-dimensional open punctured disk over C, which has many Artin-Schreier
covers.

Now we comment on the proof, and we use for the first time that E = Fq((π)).
For S = Spa(R,R+),

BS,E = O(YS,E) =
{∑

xnπ
n : xn ∈ R, lim

n→∞
||xn||ρn = 0 for all 0 < ρ < 1

}
.
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Then Bϕ=πd

S,E = (R00)d. The isomorphism takes
d−1∑
i=0

∑
k∈Z

[xq
−k

i ]πi+kd ← (x0, . . . , xd−1)

So
Bϕ=πd

Fq
= SpaFq[[x

1/p∞

0 , . . . , x
1/p∞

d−1 ]].

This is not analytic, but if we remove the non-analytic point V (x0, . . . , xd−1) then
it is analytic. The category of étale coverings of Bϕ=πd

Fq
− {0} is the category of

étale coverings of SpaFq[[x
1/p∞

0 , . . . , x
1/p∞

d−1 ]]\V (x0, . . . , xd−1), which by decompletion
(i.e., Elkik’s theorem) and a GAGA type result is the same as the category of étale
coverings of Spec Fq[[x0, . . . , xd−1]] \ V (x0, . . . , xd−1) (here, we really need to work
over Fq and not over a perfectoid algebraically closed field C). Since d ≥ 2, Zariski-
Nagata purity allows you to extend over the puncture, and then you use that the
formal power series ring is simply connected, by Hensel’s lemma.

(Amusingly one can also prove simple connectedness of projective space using
Zariski-Nagata purity theorem : see e.g. Serre’s letter from October 25, 1959, in the
Grothendieck-Serre correspondence.)

Remark 5.3. The proof in mixed characteristic is more involved, since the dia-
mond Bϕ=πd

Fq ,E
− {0} is not representable when d > 1...





Part 4

Day Four





CHAPTER 7

Local Langlands and Fargues’ Conjecture
Speaker: Jared Weinstein

1. Local Langlands

1.1. The correspondence for GLn(Qp). Recall theWeil groupWQp ⊂ Gal(Qp/Qp)
which is defined by the diagram

0 IQp WQp Z 0

0 IQp Gal(Qp/Qp) Ẑ 0

(This is topologized with the discrete topology on Z and the usual Krull topology
on IQp .)

The local Langlands correspondence relates{
irreducible smooth admissible
representations of GLn(Qp)

}
︸ ︷︷ ︸

An

→
{
n-dimensional Φ-semisimple

WQp

cts−−→ GLn(Q`)

}
︸ ︷︷ ︸

Gn

Theorem 1.1 (Harris-Taylor, Henniart ’02). There is a (unique) bijection

An ↔ Gn
π → φπ

πφ ← φ

preserving L and ε-factors.
This bijection also satisfies local-global compatibility: if π =

⊗′
v πv is an algebraic

cuspidal automorphic representation of GLn(AQ), and ρ : Gal(Q/Q) → GLn(Q`)
satisfying for almost all unramified p′: πp′ ↔ ρ|WQp′

, then πp ↔ ρ|WQp
as well.

Remark 1.2. For G = GLn, Henniart showed that there was a unique bijection
preserving L and ε-factors. For general groups, it is still a mystery how to formulate
the local Langlands correspondence in a rigid way.

Let Adisc
n ⊂ An be the subset of discrete series, Gdisc

n ⊂ Gn be the subset of
discrete Weil parameters. For A, “discrete” means “essentially square-integrable”.
For G, ρ : WQp → GLn(Q`) is “discrete” if the centralizer Sρ ⊂ GLn(Q`) of ρ satisfies
Sρ/Z(GLn)(Q`) is finite.
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Remark 1.3. For G = GLn, the condition for ρ ∈ Gn to be “discrete” is equiva-
lent to “indecomposable”.

1.2. The case of GL2. For GL2, we have

A2 = Adisc
2 t Aprinc

2 = Aspecial
2 t Asc

2 t A
princ
2 .

Here:

• Aprinc
2 consists of principal series representations, which are those of the

form

Ind
GL2(Qp)
B(Qp)

((
a b
c d

))
7→ χ1(a)χ2(d).

This is generically irreducible, and when it’s irreducible it’s called “principal
series”. The finite-dimensional subquotients of these are also considered
“principal series”.
• Asp

2 are the infinite-dimensional subquotients of these parabolically induced
representations, when they are not irreducible.
• Asc2 are those which do not appear in parabolic induction.

Example 1.4. We explain how to construct a supercuspidal representation. It
will be induced from a representation of GL2(Zp), which is inflated from an irre-
ducible cuspidal representation

GL2(Fp)
λ−→ GLp−1(Q`).

Such λ are in bijection with characters χ : F×
p2
→ Q×` such that χ 6= χp, modulo the

equivalence relation χ ∼ χp. Let’s write λ = λχ.
If we induce this representation, it will not be irreducible. To pick out an ir-

reducible constituent, extend χ to a character of Q×
p2
→ Q×` of conductor 1. This

allows us to extend λχ to a representation of Q×p GL2(Zp) (where Q×p is the center),
which you then induce to GL2(Qp).

Correspondingly, we have a decomposition

G2 = Gprinc
2 t Gspecial

2 t Gcusp
2 .

• The subset Gprinc
2 consists of representations of the form χ1 ⊕ χ2.

• The subset Gcusp
2 parametrizes irreducible representations, e.g. start with

χ : Q×
p2
→ Q×` of conductor 1 such that χp−1|Z×

p2
6= 1, and view χ as a

character of WQp2
, and then induce up to WQp .
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• The subset Gspecial
2 consists of reducible but not decomposable representa-

tions. For example, you could consider the tower of extensions

Qp(µ`∞ , p
1/`∞)

Qp(µ`∞)

Qp

There is a two-dimensional representation of that factors through Gal(Qp(µ`∞ , p
1/`∞)/Qp),

which sends
σ 7→

(
1 t(σ)
0 χ`(σ)

)
where t(σ) is the isomorphism of tame inertia with Z`(1). All representa-
tions in Gsp

2 are twists of this.

1.3. General groups. In general, the correspondence takes the form of a map{
irreducible smooth admissible

representations of G(Qp)

}
︸ ︷︷ ︸

AG

→
{
n-dimensional Φ-semisimple

WQp

cts−−→ LG(Q`)

}
︸ ︷︷ ︸

GG

.

The L-group LG is obtained by a sort of contravariant process, involving dualizing
the root datum of G.

It can happen that G1, G2 are two different groups such that LG1 ' LG2. This
leads to interesting phenomena which are captured in Fargues’ Conjecture.

For general G, the map Adisc
G → Gdisc

G is supposed to be only finite-to-one (not a
bijection). If φ ∈ Gdisc

G , you define Sφ = Z
Ĝ

(φ)(Q`), and then the fibers of π 7→ φπ are
finite sets Πφ(G) parametrized by representations of Sφ with prescribed restriction
to Z

Ĝ
(φ)(Q`).

1.4. Local Jacquet-Langlands. We first focus on G = GLn. Isocrystals of
dimension n are in bijection with B(G), which is the set of “σ-conjugacy classes in
G(W (Fp)[1/p]),” i.e. the quotient of G(W (Fp)[1/p]) by the equivalence relation

g ∼ σ(y)gy−1.

Abbreviate K = W (Fp)[1/p]. This bijection takes b ∈ B(G) to (Kn, bσ).
For general G, |BunG | ' B(G). This B(G) is called “Kottwitz’ set”. It can be

equipped with a canonical topology, which we will not describe. Given b ∈ B(G),
we can define an algebraic group Jb/Qp such that

Jb(Qp) = {g ∈ G(K) | σ(g) = bgb−1}.
If b = 1, then Jb = G. in general, Jb is a twisted Levi of G. Exactly when b is basic,
then Jb is a form of G. In fact, Jb,K ' GK . (For general G, the notion of basic
means that the attached character νb : D→ GK factors through Z(GK).)



58 7. LOCAL LANGLANDS AND FARGUES’ CONJECTURE SPEAKER: JARED WEINSTEIN

Local Langlands predicts (for G = GLn) that there should be a canonical bijec-
tions

Adisc
GLn
↔ Adisc

Jb
.

(The situation is more complicated for general G.) In general, Jb = GLr(D) for
D/Qp a central division algebra of dimension d2, where n = rd.

Theorem 1.5 (Jacquet-Langlands, Rogawski). There exists a unique bijection

Adisc
GLn

∼−→ Adisc
Jb

,

denoted π 7→ πb, satisfying

Trπ(g) = (−1)n−r Trπb(g
′)

whenever g, g′ have the same irreducible (over Qp) characteristic polynomial.

Remark 1.6. Although π is infinite-dimensional, Harish-Chandra made sense of
Trπ. This is a priori a distribution, but it is represented by a function on the locus
of irreducible characteristic polynomials.

In general, there is some relationship between Πφ(G) and Πφ(Jb) but it is not a
bijection.

2. Preparations for Fargues’ Conjecture

2.1. Étale cohomology of diamonds. [Reference: Scholze’s book “Étale co-
homology of diamonds”.]

Given a stack X on Perf (with the v-topology), there exists a triangulated cat-
egory Dét(X ;Q`) [actually, the theory at present is only developed with torsion co-
efficients] satisfying Grothendieck’s 6-functor formalism. In particular, if f : X → Y
which is nice (i.e. representable in locally spatial diamonds, and finiteness condi-
tions) then there exist functors f∗, f∗, f!, f

! between Dét(X ;Q`) and Dét(Y;Q`).
If X = X is a locally spatial diamond, then Dét(X ;Q`) = D(Xét;Q`).

Example 2.1. If X = [∗/G(Qp)], thenDét(X ;Q`) should be the derived category
of smooth representations of G(Qp) on Q`-vector spaces.

2.2. Geometric Satake. In the classical setting, with k a field, we define the
affine Grassmannian as a functor on k-algebras. It is the sheafification of

R 7→ GrGLn(R) = GLn(R((t)))/GLn(R[[t]])

for the fpqc topology.
There is a moduli description: GrGLn classifies “modifications of vector bundles”,

i.e. pairs On, E on R[[t]] together with an isomorphism On ' E away from t = 0.
Recall the Hecke stack

Hecke

Bunn Bunn×X
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which classifies
(E1, E2, x, i : E1|X\{x}

∼−→ E2|X\{x}).
The fibers of the map Hecke→ Bunn×X are essentially affine Grassmannians.
We have an action of G(k[[t]]) on GrGLn = G(k((t)))/G(k[[t]]). The space of

orbits is
G(k[[t]])\G(k((t)))/G(k[[t]]).

The Geometric Satake equivalence is an equivalence of ⊗-categories between
G(k[[t]])-equivariant perverse Q`-sheaves on GrGLn and Rep(GLn).

Example 2.2. The substack Grelem,d
GLn

⊂ GrGLn classifies extensions

On → E → i∗W

over R[[t]], where i : Spec R→ Spec R[[t]] and W is locally free of rank d over R.
Then Grelem,d

GLn
' Gr(d, n) (the usual Grassmannian). We have jd : Gr(d, n) ↪→

GrGLn . Under the Satake equivalence,

jd∗Q`[dim Gr(d, n)]↔ ∧dStd.

2.3. The BdR-affine Grassmannian. In the p-adic setting, we can define a
sheaf on PerfQp :

GrBdR
GLn

(S) = {modifications On ∼−→ E on XS[ \ S}.

If S = Spa(R,R+), then B+
dR(R) = ÔX

R[ ,R which is the completion of Ainf(R
+[)[1/p]

at ξ, and BdR(R) = B+
dR(R)[1/ξ]. Then GrBdR

GLn
is the sheafification of

S = Spa(R,R+) 7→ GLn(BdR(R))/GLn(B+
dR(R)).

Note that GrBdR
GLn

(R,R+) doesn’t depend on the choice of R+.

Theorem 2.3 (Fargues, Scholze). There exist a Satake equivalence for GrBdR
G ,

relating perverse sheaves on GrBdR
G and Rep(Ĝ).

3. The Conjecture

Now in the setting of the Fargues-Fontaine curve, we have a correspondence

Hecke

BunGLn BunGLn ×Div1
Fq

h← h→

The Satake equivalence Repalg
GLn

∼−→ Perv(GrBdR
GLn

) sends V 7→ SV .

Conjecture 3.1. Given φ ∈ Gdisc
GLn

, there exists Fφ ∈ Dét(BunG,Q`) with the
following properties:
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(1) For each b ∈ B(G), we have an open substack

[∗/Jb(Qp)] ' BunbGLn
↪→ BunGLn .

Then x∗bFφ is identified with πb, where π = πφ.
(2) (Eigensheaf property) For all V ∈ Rep(GLn),

h→! (h←∗Fφ ⊗ SV ) ' Fφ � (V ◦ φ)

(3) (Cuspidality) If φ is irreducible, then Fφ is supported on

BunssGLn
=

∐
b∈B(G)basic

[∗/Jb(Qp)].



CHAPTER 8

Drinfeld’s proof of the global Langlands correspondence
for GL(2)

Speaker: Sophie Morel

1. Overview

Let X/Fq be a smooth projective geometrically connected curve, F = Fq(X). We
assume g(X) ≥ 2 since we want to consider irreducible 2-dimensional representations
of π1(X).

1.1. First goal. Let n ≥ 2; often we will take n = 2. Given an irreducible
representation ρ : π1(X)→ GLn(Q`), we want to construct a non-zero function

fρ ∈ Cc(GLn(F )\GLn(AF )/GLn(O),Q`)

which is a Hecke eigenfunction with respect to ρ, i.e. for all x ∈ |X|, and all
Tv ∈ Hsph,x = Cc(G(Ox)\G(Fx)/G(Ox);Q`), we have

fρ ∗ Tx = σx(TX)fρ

where σx : Hsph,x → Q` corresponds to ρ(Frobx) under the Satake isomorphism.
Drinfeld constructed fρ as the trace of Frobenius associated to a sheaf. The idea

is that
Bunn(Fq) = GLn(F )\GLn(A)/GLn(O),

and then fρ could come from an `-adic sheaf on Bunn.

1.2. Function-sheaf dictionary. Let Y → Spec Fq be a nice stack. For K ∈
D(Y ) := Db

c(Y ;Q`) we get a function

fK : Y (Fq)→ Q`

sending y 7→
∑

i∈Z(−1)i Tr(Frobq,Hi(Ky)).
Note that we can interpret a representation ρ : π1(X) → GLn(Q`) as a rank n

Q`-local system E on X.
We wish to construct a sheaf AutE on Bunn such that FAutE is a non-zero

eigenform with respect to E. This is an unnatural condition to put on a sheaf, so
we replace it with the concept of an eigensheaf.

1.3. Eigensheaves.
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1.3.1. Weak condition. Let Hecke1 be the stack parametrizing elementary mod-
ifications E ↪→ E ′ of rank length at x.

Hecke1

Bunn Bunn

X

h← h→

supp

Using this we have a functor H1 : D(Bunn)→ D(X × Bunn) sending

K 7→ (supp×h→)!(h
←∗K ⊗Q`(

n− 1

2
)[n− 1])

(All functors are derived.)

Definition 1.1. K ∈ D(Bunn) is a weak Hecke eigensheaf with respect to E if
K 6= 0, and if there exists an isomorphism H1(K) ' E �K such that (H1)�2(K) '
E � E �K is S2-equivariant.

1.3.2. Less weak version. The weak condition actually implies the following stronger
condition. We consider all stacks Hecked parametrizing elementary modifications of
degree d at x. There is a similar diagram

Hecked

Bunn Bunn

X

h← h→

supp

We can then define Hd : D(Bunn)→ D(X × Bunn) sending

K 7→ (supp×h→)!(h
←∗K ⊗Q`(

d(n− d)

2
)[d(n− d)])

Definition 1.2. We say K is a Hecke eigensheaf if K 6= 0 and if for all d ∈
{1, . . . , n},

Hd(K) ' ∧dE �K.

Remark 1.3. Actually, the weak version implies the “less weak version”. Actually
(1) even implies the “strong eigensheaf property” involving any stratum of HeckeXI .

1.4. Updated goal. Let k be a field, e.g. k = Fq. Let X be a curve over k.
Given E a local system on X that is geometrically irreducible, find AutE ∈ D(Bunn)
that is a Hecke eigensheaf with respect to E.

We will moreover want AutE ∈ Perv(Bunn) that is a Hecke eigensheaf with
respect to E and irreducible on every Bundn. This guarantees that AutE is non-zero,
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since there is a dense open subset where it is a non-zero local system. (A priori one
would be worried about cancellation.)

Having said this, we will give an argument that only works in positive charac-
teristic.

2. Idea of the construction

The idea is to use the Whittaker model. What is this?
For simplicity we will discuss the case of n = 2 only. Let B ⊃ N be the usual

Borel with its unipotent radical.
Fix a non-trivial character Ψ: A/F → Q×` .
The Whittaker space is the space of functions

ϕ : (N(A),Ψ)\GL2(A)/GL2(O)→ Q`

where the meaning of (N(A),Ψ)\ is that

ϕ(ux) = Ψ(u)ϕ(x) for all u ∈ N(A).

We also assume that everything has trivial central character, and that appropriate
growth conditions are imposed. Then the previous space coincides with

{f : B(F )\GL2(A)/GL2(O)→ Q` cuspidal}.

The bijection is given by(
ϕ(x) :=7→

∫
N(F )\N(A)

f(ux)ψ(u−1) du

)
← f

and

ϕ 7→

f(x) :=7→
∑
a∈F×

ϕ

((
a

1

)
x

)
This bijection is Hecke-equivariant, and we also know that the the Whittaker model
has multiplicity one.

The Casselman-Shalika formula gives an explicit description of a Whittaker func-
tion with a given Hecke eigenvalue.

3. Geometric version of B(F )\GL2(A)/GL2(O)

We will construct a stack Bun′2 with a proper map Bun′2 → Bun2. Then

Bun′2 = {E ∈ Bun2, s : Ω1
X ↪→ E}.

In this and all moduli descriptions that follow, all constructions are demanded to be
flat over S; in particular, the cokernel of s is flat over S.
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4. The Laumon sheaf

Definition 4.1. Let Cohd0 be the moduli space of torsion OX -modules (the
subscript 0 indicates the generic rank) of length d (flat over S). Define Coh0 =∐
d∈Z Cohd0.

There is a map Hecked → Cohd0 sending (E ↪→ E ′) 7→ E ′/E .
There is a map Xd/Sd = X(d) → Cohd0 sending D 7→ OX,D. There is also a

(non-representable) morphism Cohd0 → X(d) which sends
⊕

iOX,Di 7→
∑
Di. The

composition
X(d) → Cohd0 → X(d)

is the identity map.

Example 4.2. Let X = A1. Then Cohd0(A) is the set of torsion A[t]-modules of
length d, flat over A. Viewing an A[t]-module as an A-module with endomorphism,
we can re-interpret Cohd0(A) as the set of locally free A-modules of rank d plus
ρ ∈ EndA(V ) = [gld/GLd].

Let’s unravel the maps

X(d)(A)
π−→ Cohd0(A)

det−−→ X(d)(A).

The second map takes a matrix to the zeros of its characteristic polynomial (viewed
as a divisor on A1). The first map can be described concretely away from the “large
diagonal” ∆ (the union of all loci where coordinates coincide): it takes a1, . . . , ad ∈
Ad to the matrix diag(a1, . . . , ad). The map is a torsor under Gd

m away from the
diagonal, so we see the map is smooth of relative dimension d. (In fact it is true that
π is smooth of relative dimension d everywhere.)

Let E be a local system on X. We have sym: Xd → X(d).Then we can form E�d

on Xd. Then we make E(d) := (sym∗E
�d)Sd . This enjoys the following properties:

• E(d)[−d] is perverse (since it’s a summand of the pushforward of a perverse
sheaf by a finite map), irreducible if E is. The stalk over a divisor D is⊗

x∈|X|

Symdeg x(D)Ex.

• E(d) is a local system on X(d) −∆.
• E(d) = π∗ det∗E(d), so in particular E(d) descends through π.

Definition 4.3. Let Cohd,rss0 := det−1(X(d)−∆). We define L d◦
E := det∗E(d)|

Cohd,rss
0

[d].

We define the Laumon sheaf L d
E be the intermediate extension to Cohd0, and LE :=⊕

d∈N L d
E .

5. Whittaker sheaf

Fix ψ : Fq → Q×` a non-trivial character. (This will be the source of the Ψ.)
Then we get an Artin-Schreier sheaf Jψ on A1. (This is built using the Lang isogeny
L : A1 → A1.)
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We will define the “Whittaker functional” sheaf. There are actually several con-
structions of the Whittaker sheaf, and right now we are presenting the third con-
struction.

Definition 5.1. We define the moduli space Q whose S-points are

{E ∈ Bun2(S) : s1 : Ω1
X ↪→ E , s2 : Ω1

x ↪→ ∧2E}

such that such that (s1, s2) define a complete flag of subbundles genericallly.

This has a stratification
Q =

∐
d∈Z
Qd

where Qd parametrizes E of degree d.
There is an open substack j : Q ↪→ Q0 where coker si is torsion-free. There is a

map
ev : Q → A1

by sending Ext(OX ,Ω1
X) 7→ Ext1(OX ,Ω1

X).

Definition 5.2. We define another stack Zd as the fibered product

Zd Hecked

Q0
Bun2

h←

E

This parametrizes (E , s1, s2, β : E ↪→ E ′).

There is a map Zd → Qd sending by

(E , s1, s2, β : E ↪→ E ′) 7→ (E ′, β ◦ si).

We have a diagram

Zd

Qd Q0

Hecked Cohd0

(h→)′

q′

p′

π

Definition 5.3. We define

Ψ0 = j!ev∗(Jψ)⊗Q`(. . .)[. . .] ∈ D(Q0
).

(Shifts and twists are uniquely determined by asking Ψ0 to have weight 0.) We define

W d
E = h→

′
! ((p′)∗(Ψ0)⊗ (π ◦ q′)∗(LE))(...)[...] ∈ D(Qd).
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The point is that Qd(Fq) ↪→ N(F )\GL2(A)/G2(O), and fW d
E
is the restriction

of the Whittaker functional with eigenvalue E.
We have a map v′ : Q 7→ Bun′2 sending

(E , s1 : Ω1 ↪→ E , s2 : Ω1 ↪→ ∧2E) 7→ (E , s1 : Ω1 ↪→ E)

Definition 5.4. We define Aut′E = (v′)!(
⊕

d∈Z W d
E ) ∈ D(Bun′2).

Fact 5.5. Aut′E is a Hecke eigensheaf.

So we have a Hecke eigensheaf on “B(F )\GL2(AF )/GL2(O)”.

6. Second construction

We are going to make a second construction of the automorphic sheaf, which
gives a description more amenable to descent.

Lemma 6.1. Let L ∈ PicX(k) be ample enough, e.g. we’ll be interested in
L = Ω3 = (Ω1)⊗3.

Then there exists a constant c(g) such that for all d ≥ c(g), and all E ∈ Bundn(k),

Hom(OX ,L ) 6= 0 =⇒ E is very unstable

i.e. E ' E1 ⊕ E2 such that Ext1(E1, E2) = 0.

Take L = Ω3. Then for 0 ≤ i ≤ n = 2, we have an open immersion

Ci ↪→ Cohi := {coherent OX -modules of generic rank i}

and Ci is the substack where degM ≥ c(g) + i(i − 1)(g − 1) and Hom(M,L ) =
0. This implies Hom(M,Ωi) = 0 for 0 ≤ i ≤ 2, and then by Serre duality that
Ext1(Ωi−1,M) = 0.

Then define Ei = {M ∈ Ci, s : Ωi−1 → M}. The map (M, s) 7→ M makes Ei a
vector bundle over Ci, thanks to the property Ext1(Ωi−1,M) = 0 of M ∈ Ci. There
is an open substack E◦i ⊂ Ei where s is injective. The dual bundle is E∨i .

Ei E∨i

Ci

ρi

ρ∨i

This parametrize not subbundles but extensions, by a geometric form of Serre dual-
ity: E∨i parametrizes 0→ Ωi →M ′ →M → 0.

Denote the map ρ∨i : E∨i → Ci. There is an open substack E∨0
i ↪→ E∨i defined by

the extra condition that M ′ ∈ Ci+1.
We have E◦i ' E∨◦i−1, by using (M, s) to make

0→ Ωi−1 s−→M → coker(s)→ 0.
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Also E◦2 is an open substack of Coh′2, the analogue of Bun′2 but with coherent sheaves
instead of vector bundles: Coh′2 = {(M ∈ Coh2, s : Ω1 ↪→M)}. The square

E◦2 Coh′2

C2 Coh2

is Cartesian.
There is the following fundamental diagram:

E2 E◦2 ' E∨◦1 E∨1 E1 E◦1 ' E◦∨0 E∨0

C2 C1 C0 ⊂ Coh0

ρ2

j2

ρ∨1
ρ1

j1 ρ∨0

We define

FE,1 := (ρ∨∗0 LE)|E◦∨0 'E◦1
FE,2 := Four(j1!FE,1)|E∨01 'E02 .

Fact 6.2. We have

FE,2|E◦2∩Bun′2
' Aut′E |E◦2∩Bun′2

.

Key point: FE,1 is “clean”, i.e. j1!FE,1
∼−→ j1∗FE,1.

Corollary 6.3. The sheaf j1!FE,1 = j1!∗FE,1 is perverse.

Since the `-adic Fourier transform preserves perversity, we alsog et that FE,2 is
perverse, and is irreducible if E is (which we are assuming).

The clean-ness follows from the Vanishing Theorem proved by Gaitsgory.
The advantage of perversity is that it’s easier to descend perverse sheaves.
We have FE,2 on E◦2 .

E◦2 Coh′2

C2 Coh2

Observation: if d� 0,

(E◦2 )d (E2)d

Cd2

π

It’s easy to show that FE,2 is Gm-equivariant, so it descends to P(E2) over Cd2 . Then
we want to descend through a projective bundle, which will be true if it’s constant
enough on fibers.
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Proposition 6.4. Let ρ : V → S be a geometric vector bundle of rank r. Let
K ∈ Perv(P(V )) be irreducible. The following are equivalent:

(1) K descends to something on S,
(2) The Euler characteristic χK : V(k) → Z is constant along the fibers of

P(V )→ S.

We know K is locally constant on some dense open. We need to show its restric-
tion to this open descends. To get a big enough open, we use the following Lemma:
a perverse sheaf on a smooth scheme with constant Euler characteristic is a local
system.

To get the second condition, we use a result of Deligne. The result of Deligne
will show that χFE,2

does not depend on the rank 2 local system E. This reduces to
proving the constancy of Euler characteristics for a favorably chosen E.



CHAPTER 9

“Where does the conjecture come from? What happened
in Orsay, Trieste and Berkeley?” Part I

Speaker: Laurent Fargues

Warning: The conjecture does not come from saying “let’s copy-paste the Geo-
metric Langlands program to the setting of the Curve”.

Rather, it comes from thinking about and studying the following objects:
• p-adic period morphisms (de Rham and Hodge-Tate),
• p-adic geometry of Shimura varieties and Rapoport-Zink spaces,
• cohomology of these and Igusa varieties,
• the work of Vogan, Kottwitz, and Kaletha on the Local Langlands corre-
spondence.

1. Starting point for the Curve

1.1. Finite flat group schemes. It began (for me) by studying HN filtrations
of finite flat group schemes.

Let K/Qp be a complete field, with a not necessarily discrete valuation. (I was
studying p-adic Hodge theory over algebraically closed fields C, but not with an eye
towards Galois representations.)

Let G/OK be a finite flat group scheme, of order a power of p. I defined the height
of G to be logp |G|, and the degree of G to be

∑
i v(ai) where ωG =

⊕
iOK/aiOK is

the Dieudonné module. Here the valuation is normalized so that v(p) = 1.
Then we define µ(G) = degG

ht(G) ∈ [0, 1]. This lets us develop a theory of HN
filtrations.

1.2. p-divisible groups. The next step occurred in my paper “Théorie de la
réduction pour les groups p-divisibles”. Let H/OK be a p-divisible group (e.g. H =
A[p∞] for an abelian scheme A/OK).

For n ≥ 1, you can consider HN(H[pn]) as a function [0, nht(H)]→ [0, ndimH].

Definition 1.1. We define the renormalized Harder-Narasimhan polygon to be
the concave function [0,ht(H)]→ [0,dimH] defined by

x 7→ lim
n→∞

1

n
HN(H[pn])(nx).

Remark 1.2. If Pn is HN(H[pn]), then Pn+m ≤ Pn ∗ Pm where ∗ is “concatena-
tion”. This is what implies the convergence of the limit.

This definition led to the question: is HN(H) a polygon?
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1.3. The Hodge-Tate period map. The solution to this question came from
trying to linearize the non-linear objects that are finite flat group schemes. This
meant using Hodge-Tate periods of finite flat group schemes.

Recall: we are assuming K = K̂ = C. (We can always reduce to this case,
because the HN filtration satisfies Galois descent.)

Let H/OC be a p-divisible group. Then there is a Hodge-Tate period morphism

αH : Vp(H)→ ωHD [1/p]

sending

x 7→ (xD)∗
dT

T
.

Here we are viewing x ∈ Tp(H) as x : Qp/Zp → H, so xD : HD → Ĝm.
The linearization

αH ⊗ 1: Vp(H)⊗Qp C → ωHD [1/p]

is surjective. (This is the right half of the Hodge-Tate exact sequence.)
We can axiomatize this situation to triples X = (V,W, β) with V a finite-

dimensional Qp-vector space, W a finite-dimensional C-vector space, and β : VC �
W . Set

degX = dimC(kerβ)

rank X = dimQp V.

We then define the slope µ(X) := degX
rank X .

The function µ equips the category of (V,W, β) with the structure of an HN
category.

Theorem 1.3. The renormalized HN polygon satisfies

HN(H) = HN(Vp(H), ωHD [1/p], αH ⊗ 1).

In particular, HN(H) is a polygon.

1.4. Banach-Colmez spaces. Next I wanted to prove:

Theorem 1.4. The renormalized HN polygon satisfies

HN(H) ≤ Newt(HkC )

for kC the residue field of OC .

Remark 1.5. The motivation was for studying the stratification of Shimura
varieties. This is “easy” in the situation of H/OK where [K : Qp] < ∞, using p-
adic Hodge theory. This gives a relation between the HN stratification and Newton
stratification of a Shimura variety.

Example 1.6. The theorem implies that if Hkc is isoclinic, then HN(H) is a
line.
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That led me to study Banach-Colmez spaces.
Recall that Banach-Colmez spaces are functors from “nice” C-algebras (nowadays

we recognize “nice” as a particular case of “perfectoid”) to Qp-Banach spaces of the
form:

(extension of a C-vector space by a Qp-vector space)/sub Qp-vector space.

Now we come back to: there exists an exact sequence of Banach-Colmez spaces

0→ Vp(H)→ (D ⊗B+
cris)

ϕ=p → LieH[1/p]→ 0

where D is the covariant Dieudonné module of HkC . This was later interpreted in
terms of modifications of vector bundles on the Curve.

Banach-Colmez spaces form an abelian category with two additive functions,
describing the “C-dimension” and the “Qp-dimension”. (Colmez proved that these
functions don’t depend on the presentation.)

This was motivation to introduce a notion of HN filtration on Banach-Colmez
spaces, with the two functions playing the roles of deg and rank . This implies the
desired theorem, by realizing the HN polygon as a Newton polygon.

1.5. Geometrization of Banach-Colmez spaces. Later we tried to geometrize
the Banach-Colmez spaces. This question was asked by Fontaine in his article for
Kato’s 50th birthday. It gave rise to §4 of our article on formal Qp-vector spaces,
where we geometrize lim←−pH.

We tried to classify Banach-Colmez spaces. We could construct a fully faithful
functor

{some BC spaces} ↪→

 Be-modules free of finite type
B+

dR-modules free of finite type
+ gluing data


where Be = Bφ=1

cris . The right hand side looked like Beauville-Laszlo gluing.





Part 5

Day Five





CHAPTER 10

“Where does the conjecture come from? What happened
in Orsay, Trieste and Berkeley?” Part II

Speaker: Laurent Fargues

1. Last episode

For H/OC a p-divisible group, we wanted to prove an inequality for the renor-
malized HN polygon of H:

HN(H) ≤ Newt(HkC ).

For this we use an exact sequence of Banach-Colmez spaces

0→ Vp(H)→ (D ⊗B+
cris)

ϕ=1 → LieH[1/p]→ 0

(where D is the covariant Dieudonné module of Hk) plus the fact that BC spaces
have HN filtrations. These facts easily imply the result.

2. The discovery of the Curve

I ended the previous talk by explaining that we constructed a fully faithful functor

{some BC spaces} ↪→

 Be-modules free of finite type
B+

dR-modules free of finite type
+ gluing data

 .

The right hand side looked like a Beauville-Laszlo description of vector bundles.
In the meantime, Berger proved that Be is Bezout, using results of Kedlaya.

Fontaine went further and proved that Be is a PID. Using this, he gave a short proof
of “weakly admissible implies admissible”.

This led to the discovery of the curve in Trieste. The first construction was as
a “gluing” of Spec Be and Spec B+

dR. Later, we realized that one can define it as
ProjP , where P was this graded algebra of p-adic periods.

Already in Trieste I conjectured that any vector bundle on X is
⊕

iO(λi), by
analogy with results of Kedlaya and Grothendieck’s classification of vector bundles
on P1. So I began to study the curve, and vector bundles on it.

3. The structure of the Curve

We tried to understand the set of closed points |X|. This led us to introduce the
notion of “primitive elements” in Ainf .
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Recall: for F/Fp a perfectoid field, Ainf = W (OF ). An element

ξ =
∑
n≥0

[xn]pn ∈ Ainf

is called primitive of degree d > 0 if x0 6= 0, x1, . . . , xd−1 ∈ mF , and xd ∈ O×F . This
notion comes from Weierstrass factorization theory.

We defined Y to be the set of irreducible primitive elements in Ainf up to mul-
tiplication by A×inf . There is a natural embedding Y ↪→ Spec Ainf , and a map

Y → |X|

sending ξ 7→ V (Π(ξ)) for a certain Weierstrass product Π(ξ) ∈ Bϕ=pd , inducing an
isomorphism

|Y |/ϕZ ∼−→ |X|.
We conjectured that Y “has the structure of a rigid analytic space”. We also

remarked that the residue fields of X are “strictly p-perfect”, which now go under
the name of “perfectoid fields”, whose tilts were finite degree extensions of F .

4. Vector bundles

We proved the classification result for vector bundles over X = Proj(P ). The
notion of “modifications of vector bundles” arose naturally in the proof.

For example, when trying to classify rank 2 vector bundles, degree −1 modifica-
tions of O(1/2)

0→ E → O(1/2)→ i∞∗C → 0

show up. We had to prove that E ' O2. (This is implied by the classification result.)
In fact, analogous problems had already been considered by Colmez-Fontaine in
their proof of “weakly admissible implies admissible”, and it involved the so-called
“fundamental lemma of p-adic Hodge theory”.

Let (λ0, λ1) ∈ C2 \ {(0, 0)}. Look at the Qp-linear map

(B+
cris)

ϕ2=p → C

given by
x 7→ λ0θ(x) + λ1θ(ϕ(x)).

This θ is a quasi-logarithm, for the Dieudonné module 〈θ, θ ◦ ϕ〉 (notice ϕ acts as(
0 p
1 0

)
). The “fundamental lemma” says that this is surjective with kernel a 2-

dimensional Qp-vector space.
I remarked that this is in fact a consequence of a result of Gross-Hopkins, building

on work of Laffaille. They study a de Rham period morphism

πdR : (Lubin-Tate space)→ P1

and show it is surjective. This surjectivity can be rephrased as saying that any
line in C2 is the Hodge filtration of of an elliptic curve over OC with supersingular
reduction. This surjectivity result for πdR plus comparison theorems imply our result
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about modifications of vector bundles. I thought this was a very cool application of
geometric thinking.

Idea: to prove the classification theorem we need to prove that if

0→ O2
X → E → i∞∗C → 0

is a degree 1 modification of O2, then

E '

{
O ⊕O(1)

O(1/2)

The Drinfeld upper-half space Ω shows up in the proof. The case E ' O ⊕ O(1)
shows up in relation to ∂Ω = P1(Q), and the case E ' O(1/2) shows up in relation
to Ω.

It turns out that Hodge-Tate periods of Lubin-Tate spaces, more precisely the
surjectivity of

πHT : infinite-level Lubin-Tate space→ Ω,

enter into the proof of the classification theorem. (Compare with the “de Rham case”
where the modification appears on the other side.) Combining this with comparison
theorems imply the desired results about modifications of vector bundles.

This was the first time I really saw the link between Rapoport-Zink spaces and
moduli of modifications of vector bundles. [Cf. my article “Rigid analytic p-divisible
groups”.] In particular, Ω is interpreted as a moduli space of modifications. This is
very important for the Hecke property in my Conjecture.

5. Modifications of vector bundles

The second occurrence of modifications of vector bundles was in the proof of
“weakly admissible implies admissible”.

We have seen that given an isocrystal (D,ϕ) we can attach a vector bundle
E(D,ϕ) on the curve X.

Given a filtered ϕ-module (D,ϕ,Fil) we can attach a modification E(D,ϕ,Fil)
given by the Hodge filtration.1

Let K/Qp be a discretely valued extension with perfect residue field, C = K̂ and
Γ = Gal(K/K), W a finite-dimensional K-vector space.

I really tried to understand why it was a filtration that gave a modification.
One would expect that lattices give modifications. I figured out that there was an
equivalence

{Filtrations of W} ∼−→ {Γ-invariant B+
dR-lattices in W ⊗K BdR}.

The functor takes

Fil 7→ Fil0(W ⊗K BdR) =
∑
i∈Z

FiliW ⊗ t−iB+
dR.

1In the slides of my talk at Laumon’s conference, I already say “we apply a Hecke operator” to
get this modification.
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This clarified why a Hodge filtration on (D,ϕ) was equivalent to a Γ-equivariant
modification of E(D,ϕ).

Let G = GLn. Consider the action of Gm on GrG by “loop rotations”, so λ ∈ C×
acts on GrG(C) = G(C((t)))/G(C[[t]]) by t 7→ λt.

For µ a cocharacter of G, let Grµ be the open Schubert cell. There is an affine
fibration Grµ → G/Pµ which is C×-equivariant, which satisfies (Grµ)C

× ∼−→ G/Pµ.
This helps to understand the preceding formula. We replace U(1) by Γ =

Gal(K/K). The LHS acts by t 7→ λt and the RHS acts by σ(t) = χp(σ)t.
So the fact about GrG over C is analogous to the bijection between Γ-equivariant

modifications and filtrations.

6. The special program in Toronto

At this program Peter Scholze invented diamonds. I discussed with him a ques-
tion of Colmez-Fontaine. Let F = C[. We have an isomorphsim

mF
∼−→ Bϕ=p

ε 7→
∑
m∈Z

[εp
−n

]pn.

This realizes the global sections Bϕ=p geometrically as the “open ball”.
The question of Colmez-Fontaine was whether there was a similar geometric

interpretation of Bϕ=p2 . This is the global sections of a bundle of slope 2, which lies
outside the interval [0, 1] of slopes of p-divisible groups.

I was at first pessimistic about this. But Peter pointed out that I proved the
multiplication map

Bϕ=p ×Bϕ=p → Bϕ=p2

is surjective. Picking t1, t2 ∈ Bϕ=p which are Qp-linearly independent, we have a
short exact sequence

0→ Qp → Bϕ=p ⊕Bϕ=p → Bϕ=p2 → 0

which suggested that Bϕ=p2 could be realized by an “algebraic space”.

7. The Hot Topics workshop at MSRI

In one of the talks, somebody asked Scholze if any perfectoid field of characteristic
p is the tilt of a characteristic 0 perfectoid field. Fontaine and I knew the answer
was affirmative, and moreover that up to powers of Frobenius the closed points of
the Curve were the same as untilts. That suggested a new picture of the Curve as a
“moduli space of untilts”.

In the modern formulation, this statement becomes “Div1 = Spa(Qp)
�/ϕZ”.
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8. Luminy

I organized a conference in Luminy, where Scholze asked if I could classify G-
bundles on the Curve, for any reductive group G/Qp. He needed this for his work
with Caraiani.

I answered that it should be given by B(G). This was an important impetus to
consider general groups. If I had restricted my attention to GLn, I would probably
never have discovered the conjecture. (In particular, one doesn’t see the L-packet
phenomenon and the action of Sϕ in the case of GLn.)

Remark 8.1. Even for GLn, one considers GLn1 ×GLn2 ↪→ GLn1+n2 to con-
struct Eisenstein series; so it is necessary to consider groups of a more general form
even to study GLn.

9. The special program in Berkeley

Scholze introduced many new objects: diamonds, local Shimura varieties (gen-
eralizations of Rapoport-Zink spaces) parametrizing moduli spaces of modifications
of G-bundles, ...

I decided to upgrade everything to BunG for general G (as opposed to GLn).
The key observation was: the Drinfeld tower shows up in the Hecke property

for GLn.
The biggest mystery for me was: how do you get local Langlands from the

conjectural eigensheaf Fϕ? In Drinfeld’s context, you take the trace of Frobenius
to get a function. But here we don’t want to get a function. Scholze suggested
taking the stalk of Fϕ at the trivial G-bundle. I was not convinced at first, but what
really convinced me was the perspective on Local Langlands by Kottwitz/Kaletha,
which explained the link between local Langlands and isocrystals. In particular, an
important fact was that if G′ is an inner form of G/Qp, then G′ is an extended pure
inner form of G if and only if G′×X is a pure inner form of G×X, i.e. the reductive
group scheme G′ over X is obtained from twisting by a G-bundle.





CHAPTER 11

The Conjectures

1. The Lubin-Tate tower (G = GL2)

1.1. Lubin-Tate space at infinite level. Let K = W (Fp)[1/p].
The Lubin-Tate tower is a deformation space for p-divisible groups. Let G0/Fp

be a connected p-divisible group of height 2 and dimension 1. This corresponds to

the isocrystalMG0 = K2 with φMG0
=

(
0 1
p 0

)
(in the contravariant normalization).

This is associated to the vector bundle EG0 = O(1/2) on the Fargues-Fontaine curve.
We discussed that there is a perfectoid space MG0,∞/SpaK, whose functor of

points are

S 7→
{

modifications O2 → O(1/2) on XS[

with cokernel locally free of rank 1 over OS

}
At finite level the description would actually be more complicated – one needs to
describe a Zp-lattice in a Qp-local system associated to a vector bundle by results of
Kedlaya-Liu.

Warning 1.1. We have Aut(O2) = GL2(Qp), not GL2 as an algebraic group.
(These are sheaves on Perf, e.g. the left side is by definition S 7→ AutXS

(O2).)

It turns out that End(MG0) = D is a quaternion algebra over Qp, hence this acts
onMG0,∞. So the latter has commuting actions of GL2(Qp) and D×.

1.2. The Gross-Hopkins period map. There is a map πGH : MG0,∞ → P1
K .

This is a morphism of adic spaces, but we’ll just describe what it does at the level
of diamonds.

The fiber of O(1/2) at is i∗O(1/2) = MG0 ⊗K OS . This is because O(1/2) is the
descent of the trivial bundle MG0 ⊗OY(0,∞),S .

The space of degree 1 modifications of O(1/2) along i : S ↪→ XS[ , i.e. sequences
of the form

0→ F → O(1/2)→ i∗W → 0

correspond to surjections

MG0 ⊗K OS = i∗O(1/2)� W︸︷︷︸
rank 1

.

The space of such modifications is therefore P(MG0)K . This induces the Gross-
Hopkins period map

πGH : MG0,∞ → P1
K .
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Theorem 1.2. The map πGH is surjective, and in fact it’s a pro-étale GL2(Qp)-
torsor.

Remark 1.3. This shows that P1
K is not “simply connected” in the pro-étale

topology!

Let’s take a closer look at the modifications. Given a degree 1 modification

0→ F → O(1/2)→ i∗W → 0,

we see that F is pointwise of rank 2 and degree 0. The classification theorem implies
F ' O2 or O(1)⊕O(−1) or O(2)⊕O(−2), etc. But bundles can only map trivially
to other bundles of lower degree, since negative slope bundles have no global sections.
So in fact F must pointwise be O2. Globally, what we can say is that it is semistable
of slope 0. A theorem of Kedlaya-Liu, F says that semistable slope 0 bundles on
XS[ are equivalent to rank 2 Qp-local systems L on S. (Explicitly, L is the space of
trivializations of F .)

1.3. The Hodge-Tate period map. Consider the space of all modifications

0→ O2 → E → i∗W → 0.

We can play the same game: such a modification is determined by the kernel of

O2
S = i∗O2 → i∗E

i.e. by a rank 1 sub-bundle of O2
S . This defines the Hodge-Tate period map

πHT : MG0,∞ → P1
K .

However, this is no longer surjective.

Theorem 1.4. The Hodge-Tate period map πHT factors through ΩK = P1
K \

P1(Qp), and the mapMG0,∞ → ΩK is a pro-étale D×-torsor.

Given
0→ O2 → E → i∗W → 0,

we deduce that E has rank 2 and degree 1. Pointwise E is O(1/2) or O ⊕ O(1) (as
before, one checks that the other bundles in the classification can’t fit into such a
short exact sequence). Now we have to consider two cases:

• If E ' O ⊕O(1), then the map O2 → E is determined by a matrix(
a b
c d

)
, a, b ∈ Hom(O,O) = Qp; c, d ∈ Hom(O,O(1)) = Bφ=p.

Hence ad − bc ∈ Bφ=p has a zero at S. Then πHT sends this point to
[−b : a] ∈ P1, because πHT sends a modification to the kernel of the map at
S, and one easily computes that(

a b
c d

)(
−b
a

)
=

(
0

ad− bc

)
vanishes at S.
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Remark 1.5. For general n, we have

Pn−1 = {0→ On → E → i∗W → 0} → Bundeg 1
n .

The allowable E are

O(1/n) O ⊕O(
1

n− 1
) O2 +O(

1

n− 2
) . . . On−1 ⊕O(1).

What is the induced stratification on Pn−1? The pre-image of O(1/n) is

π−1
HT(O(1/2n)) = Ω := Pn−1 \ union of Qp-rational hyperplanes.

The pre-image of On−1 ⊕O(1) is

π−1
HT(On−1 ⊕O(1)) = Pn−1(Qp).

The rest of the stratification fills this in, e.g. the union of Qp-rational hyperplanes
minus Qp-rational planes of codimension 2, etc.

This is a special case of the Newton stratification of Caraiani-Scholze.

Picture: MG0,∞ has an action of GL2(Qp) ×D×. The quotient by GL2(Qp) is
the Gross-Hopkins period map, and makesMG0,∞ a pro-étale GL2(Qp)-torsor over
P(MG0). On the other hand, the quotient by D× is the Hodge-Tate period map, and
makesMG0,∞ a pro-étale D×-torsor over Ω.

MG0,∞

D× y P(MG0) Ω x GL2(Qp)

GL2(Qp)

πGH

D×

πHT (1.1)

2. Connection to Fargues’ Conjecture

We have a diagram

Hecke

BunGL2 BunGL2 ×(SpaK)�/ϕZ

h← h→×supp

Let φ : WQp → GL2(Q`) be a discrete Weil parameter and let Fφ be the Hecke eigen-
sheaf in Dét(BunG,Q`) predicted by Fargues’ conjecture. Applying the eigensheaf
property to Std ∈ Rep(GL2), we have Sat(Std) = Q`|Hecke1 [1].

Since the Satake sheaf is supported on Hecke1, we might as well replace Hecke
by Hecke1.

Hecke1

Bundeg 1
GL2

Bundeg 0
GL2
×(SpaK)�/ϕZ

h← h→×supp
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The eigensheaf property says that

(h→ × supp)!(h
←∗Fφ) ' Fφ � φ. (2.1)

Consider the fibered product

? [∗/GL2(Qp)]× (SpaK)�/ϕZ

Hecke1 Bundeg 0
GL2
×(SpaK)�/ϕZ

(x1×Id)

h→×supp

The fibered product is essentially just the space of degree 1 modifications of the
trivial bundle (up to quotienting by the action of GL2(Qp) and ϕZ). We just saw
that this is P1. So the fibered product is

(P1
K/GL2(Qp))/ϕ

Z [∗/GL2(Qp)]× (SpaK)�/ϕZ

Hecke1 Bundeg 0
GL2
×(SpaK)�/ϕZ

(h→)′

i x1×Id

h→×supp

(2.2)

Pulling back (2.1) through (x1, Id)∗ gives

(x1, Id)∗(h→ × supp)!h
←∗Fφ[1] ' (x1, Id)∗(Fφ � φ) (2.3)

By definition, x∗1(Fφ) = πφ. So the RHS of (2.3) is (x1, Id)∗(Fφ � φ) ' πφ � φ. By
proper base change we may rewrite the LHS of (2.1) as:

(x1, Id)∗(Fφ � φ) ' (h→)′!i
∗h←∗Fφ[1] ' (h→)′!(h

← ◦ i)∗Fφ[1]. (2.4)

Assume φ is irreducible. Then Fargues’ Conjecture implies that Fφ is supported
on the semistable locus: Fφ = j!j

∗Fφ where j : Bunss,deg 1
GL2

↪→ Bundeg 1
GL2

. We know
that Bunss,deg 1

GL2
= [∗/Jb(Qp)], so a sheaf on it can be identified with a representation

of Jb(Qp). In other words, Fφ = j!(πφ)b.
Putting this into the RHS of (2.4), we get

(h→)′!i
∗h←∗Fφ[1] ' (h→)′!(h

← ◦ i)∗Fφ[1] ' (h→)′!(h
← ◦ i)∗j!((πφ)b)[1]. (2.5)

Now we look at the LHS of (2.6)

[P1
K/GL2(Qp)]/ϕ

Z

Hecke1

[∗/Jb(Qp)] Bundeg 1
GL2

i

h←

j

(2.6)
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The right vertical composition map sends “degree 1 modifications of the trival bundle
to the modification”. So the fibered product is

[Ω1
K/GL2(Qp)]/ϕ

Z [P1
K/GL2(Qp)]/ϕ

Z

[∗/Jb(Qp)] Bundeg 1
GL2

α

j′

h←◦i

j

(2.7)

By proper base change applied to (2.7), the RHS of (2.5) can be rewritten as

(h→)′!(h
← ◦ i)∗j!((πφ)b)[1] ' (h→)′!(j

′
!)α
∗((πφ)b)[1]. (2.8)

Let’s combine this with more of (2.2)

[Ω1
K/GL2(Qp)]/ϕ

Z [P1
K/GL2(Qp)]/ϕ

Z [∗/GL2(Qp)]× (SpaK)�/ϕZ

[∗/Jb(Qp)] Bundeg 1
GL2

α

j′

h←◦i

(h→)′

j

(2.9)
The composition along the top row,

(h→)′ ◦ j′ : [Ω1
K/GL2(Qp)]/ϕ

Z → [∗/GL2(Qp)]× (SpaK)�/ϕZ

is basically a structure morphism. Let’s try to under the left vertical map in (2.9).
We saw that the Hodge-Tate period map induced an isomorphism

MG0,∞/(GL2(Qp)× Jb(Qp))
∼−→ [Ω1

K/GL2(Qp)].

Refer to (1.1): applying the Gross-Hopkins period map effects quotienting out in the
other order:

MG0,∞/(GL2(Qp)× Jb(Qp)) [Ω1
K/GL2(Qp)]

[P1/Jb(Qp)] [∗/Jb(Qp)]

∼
πHT

πGH∼ α

and we can now interpret the bottom horizontal map also as a structure map, so
pushforward along amounts to taking cohomology. Replacing (h→)′! ◦ j′! with this
structure morphism, we can rewrite the RHS of (2.8) as

(h→)′!(j
′
!)α
∗((πφ)b)[1] '

(
RΓc(MG0,∞,Q`)[1]⊗ (πφ)b

)Jb(Qp)

and by (2.1), it is equated with πφ � φ.
Another way to write this is:

H1
c (MG0,∞;Q`)

cusp '
⊕

π∈Acusp
2

π ⊗ π∨b � φπ.

This is a theorem of Deligne-Carayol. The higher rank version, for GLn, is due to
Harris-Taylor.
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3. How to do automorphic to Galois?

3.1. Number fields vs function fields. We briefly survey the analogy be-
tween number fields and function fields.

3.1.1. G = GL1. For F = Q, one generates abelian extensions by adjoining
division points of Gm. There is a uniformization

C/2πiZ exp−−→ Gm(C).

For F = Fq(T ) and A = Fq[T ], one generates abelian extensions by adjoining
division points of the Carlitz module M . With C = F̂∞, there is a uniformization

C
exp−−→ C/ξA = M(C).

For F/Q an imaginary quadratic extension, one generates abelian extension by
adjoining division points of CM elliptic curves. For general function fields F , one
can generate abelian extension by adjoining division points of Drinfeld A-modules
of rank 1.

3.1.2. G = GL2. Over F = Q, one finds the Langlands correspondence in the
cohomology of moduli spaces of elliptic curves. Over function fields, one finds the
Langlands correspondence in the cohomology of moduli of Drinfeld A-modules of
rank 2.

The function-field picture generalizes well to Drinfeld A-modules of rank d. These
generalize to Drinfeld shtukas for GLd with a pole at∞ and varying 0. These gener-
alize further to arbitrary reductive G. For number fields one has moduli of abelian
varieties, but these encompass allow access to a much more restricted selection of
groups g.

3.2. Drinfeld’s shtukas. Fix X/Fq a smooth projective curve.

Definition 3.1. Let S an Fq-scheme. Let I be a finite set. An X-shtuka over
S of rank n with legs xi ∈ X(S) is the datum of:

• a vector bundle E on X ×Fq S of rank n,
• an isomorphism

φE : (Id×FrobS)∗E|X×S\⋃Γxi

∼−→ EX×S\⋃Γxi
.

Let ShtX,I be the moduli stack of these, which has a map ShtX,I → XI by projecting
to the xi.

The spaces ShtX,I are quite large (infinite type and infinite dimensional). To cut
them down, we impose bounds on the poles of φE . For G = GLn, eachW ∈ Rep(ĜI)
gives a bounded version ShtX,I,W which is a Deligne-Mumford stack.

Example 3.2. Drinfeld studied the case G = GL2, I = {1, 2}, W = Std�Std∨

to prove global Langlands for GL2 over function fields.
Laurent Lafforgue studied the case G = GLn, I = {1, 2}, W = Std�Std∨ to

prove global Langlands for GLn over function fields.
Vincent Lafforgue studied general G, I,W to get the automorphic-to-Galois di-

rection in general.



3. HOW TO DO AUTOMORPHIC TO GALOIS? 87

We’d like to transport this to the situation of local fields.

3.3. p-adic fields. We try to replicate this for X replaced by “(SpaZp)�”.
Recall that for S = Spa(R,R+) ∈ Perf, we defined

Y[0,∞),S = SpaW (R+) \ {$ = 0}.
Recall the diamond formula

Y�[0,∞),S = X × S�.

Definition 3.3 (Mixed characteristic shtukas). Let S ∈ Perf and S#
i be an

untilt of S over Qp for all i ∈ I. This gives a collection of divisors S#
i ↪→ Y(0,∞),S .

A shtuka is the datum of:
• a rank n vector bundle E on Y[0,∞),S ,
• a meromorphic isomorphism

φE : Frob∗S E|Y[0,∞),S\
⋃

i S
#
i

∼−→ E|Y[0,∞),S\
⋃

i S
#
i
.

Picture of Y[0,∞),S ⊂ SpaW (R+):

Example 3.4. If there are no legs, i.e. I = ∅, then (E , φE) corresponds to a
Zp-local system L on S. This is a theorem of Kedlaya; the inverse correspondence
takes L 7→ L⊗Zp OY[0,∞),S

(Kedlaya-Liu).

A pair (E , φE) on Y(0,∞),S ⊂ Y[0,∞),S with no legs is the same as a vector bundle
on XS .

Given a shtuka, we get a vector bundle on XS by “looking near ∞”. By looking
near 0, we get a Zp-local system, hence a semistable bundle of slope 0. So ShtG,b can
be described as shtukas with an isomorphism E∞ ' E0. By adding a trivialization
of E0, we get the infinite-level moduli space of shtukas ShtG,b,I,∞ → ShtG,b,I .

For W ∈ Rep(ĜI), we get a bounded version ShtG,b,W,∞.

Theorem 3.5 (Scholze). ShtG,b,W,∞ is a locally spatial diamond.

Remark 3.6. This space ShtG,b,I,W,∞ has a G(Qp)× Jb(Qp)×W I
Qp

- action.
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The proof works by considering a period map to an affine Grassmannian, which
is a pro-étale torsor onto its image, thus reducing to the theorem to a statement for
the affine Grassmannian.

Example 3.7. The Lubin-Tate tower at infinite level is a special case:

Sht
GL2,

(
0 1
p 0

)
,{1},Std∞

'M�G0,∞.

3.4. Kottwitz’ Conjecture. Given φ : WQp → Ĝ(Q`). Conjecturally we have
associated representations πφ, (πφ)b. Then we decompose the action

G(Qp)× Jb(Qp)×W I
Qp

y RΓc(ShtG,b,W,∞; Sat(W ))cusp

into irreducibles. Kottwitz’ Conjecture predicts that this decomposition has the form

RΓc(ShtG,b,W,∞; Sat(W ))cusp '
⊕
φ irred

πφ � (πφ)∨b � (W ⊗ φI)

where W ◦ φI is the inflated Galois representation

W I
Qp

φI−→ LGI
W−→ GLN (Q`).
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