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INTRODUCTION TO MODULAR FORMS

Introduction

Modular forms arose in association to the elliptic funcions in the early 19th century.
Nowadays the Galois rapresentation associated to modular forms play a central role in the modern Number
Theory. A goal in Number Theory is to understand the finite extensions of Q , and by Galois Thepry this
is equivalent to understand the absolute Galois Group GQ = Gal(Q′/Q). Now, we can say that we can
know the group if we know its representation, which is classified by the degrees. By Class Field Theory we
have a precise understanding of the representations of deg 1, or characters. Now, when we explore outside
the domain of Class Field Theory, the Galois representations associated to a modular forms are the first
one we encounter.
A modular form is a certain kind of holomorphic function on the upper half plane H = {τ |Imτ > 0}, which
we view simultaneusly as a complex manifold and as a Riemannian manifold equipped with hyperbolic
metric y−2(dx2 + dy2).
In brief, an holomorphic function f(τ) on H is a modular form if it transform in a certain way under a
subgroup of SL2(R).

Example 1

Let V be a vector space of finite dimension n, endowed with an invariant mesaure µ. We denote by V ′ the
dual of V .

Definition 1. If f is a rapidly decreasing smooth function on V , we can define the Fourier Transform

f ′ of f as:

f ′(y) =

∫
V

e−2πi<x,y>f(x)µ(x)

Let now Γ be the lattice in V , Γ′ its dual.

Proposition 1. Let v = µ(V/Γ), we get:∑
x∈Γ

f(x) =
1

v

∑
y∈Γ′

f ′(y)

After replacing µ by v−1µ, we can assume that µ(V/Γ) = 1. Moroever, by taking a basis e1, ..., en for
Γ, we can identify V with Rn, Γ with Zn and µ with dx1, ..., dxn. Thus we have: V ′ = Rn, Γ′ = Zn and
we are reduced to the classical Poisson Formula.

Remark 1. Consider V endowed with a simmetric bilinear form x.y positive and non degenerate, we can

identify V with V ′. Then we can associate to the lattice Γ the following function defined on R:

ΘΓ(t) =
∑
x∈Γ

e−2πtx.x

Proposition 2. We have:

ΘΓ(t) = t−n/2v−1ΘΓ′(t
−1)

with v = µ(V/Γ) volume of the lattice.
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Proof. Let f = e−πx.x, we have that f ′ = f , in fact if we choose an ortonormal basis of V and we identify

V with Rn, and µ becomes dx = dx1 . . . dxn and f = e−π(x2
1+···+x2

n). Then, since the Fourier Transform of

eπx
2

is eπx
2

we have done.

Now, using Proposition 1 on f and the lattice t1/2Γ we get the formula to be proved.

We are now going to consider the pair (V,Γ) with these two properties:

• The dual Γ′ of Γ is equal to Γ

• x.x ≡ 0 mod 2 ∀x ∈ Γ

Now, let m ≥ 0 integer, rΓ(m) := #{x ∈ Γ | x.x = 2m}. It is easy to see that rΓ is bounded by a
polynomial in m. This shows that the series with integer coefficients:∑

m=0

rΓ(m)qm

converges for | q |< 1.
Thus, one can define a function ΘΓ on H

ΘΓ(τ) =
∑
x∈Γ

rΓ(m)qm

we have:
ΘΓ(τ) =

∑
x∈Γ

q
(x.x)

2 =
∑
x∈Γ

eπiτ(x.x)

Proposition 3. We have:

ΘΓ(−1/τ) = (iτ)n/2ΘΓ(τ)

Proof. Since the two sides are analytic in τ it is suffice to prove this formula when τ = iz, with z ∈ R,

z > 0. We have:

ΘΓ(iz) =
∑
x∈Γ

e−πz(x.x) = ΘΓ(z)

Similarly,

Γ(−1/iz) = ΘΓ(z−1)

Then, by Proposition 2 with v = 1, Γ = Γ′ we can conclude.

Now, since 8|n we can rewrite the relation as:

ΘΓ(−1/z) = zn/2ΘΓ(z)

and ΘΓ is a modular form of weight n/2.

Definitions

Given H and SL2(R) we can make SL2(R) act on C∗ = C ∪ {∞} in this way:

gz =
az + b

cz + d
for g =

(
a b
c d

)
∈ GL2(R), z ∈ C∗

We get:

Im(gz) =
Im(z)

|cz + d|2

i.e. H is stable under the action of SL2(R). We have that the element −1 =

(
−1 0
0 −1

)
∈ GL2(R) acts

trivially on H, then we can consider that it is the projective special linear group over R which operates.
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Definition 2. G = SL2(R)/∓1 is the Modular Group.

Let S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
, S, T in G.

Theorem 1. The group G is generated by S and T .

We can now consider the subset D of H formed of all points z such that |z| > 1 and |Re(z)| ≤ 1
2 :

D = {z = x+ iy : |z| > 1, |x| ≤ 1

2
}

It is possible to show that D is a fundamental domani for the action og G on H. More precisely:

Theorem 2. (1) ∀z ∈ H,∃g ∈ G : gz ∈ D

(2) Suppose that two distinct point z, z′ ∈ D are congruent mod G. Then: re(z) = ∓ 1
2 and z = z′+ 1 or

|z| = 1 and z′ = − 1
z

(3) Let z ∈ D and let Stab(z) = {g|g ∈ G, gz = z} the stabilizer of z in G. We get Stab(z) = 1 except

in the following three cases:

– z = i, in which case Stab(z) is the group of order 2 generated by S

– z = e2πi/3, in which case Stab(z) is the group of order 3 generated by ST

– z = eπi/3, in which case Stab(z) is the group of order 3 generated by TS

Corollary 1. By (1) and (2) follows that the canonical map from D to H/G is surjective and its restriction

to the interior of D is injective.

We can now state the first definition:

Definition 3. Let k be an integer, we say that f is weakly modular of weight 2k if f is meromorphic

on H and:

f(z) = (cz + d)−2kf =

(
az + b

cz + d

)
∀

(
a b

c d

)
∈ SL2(Z)

Proposition 4. Let f be meromorphic on H, f is weakly modular of weight 2k if and only if it satisfies

the two relations:

(a) f(z + 1) = f(z)

(b) f(−1/z) = z2kf(z)

Definition 4. A weakly modular function is a Modular Function if it is meromorphic at infinity.

Moroever, we say that a modular function is of level N if it is a meromorphic funtion on H invariant under

Γ(N) =

{(
a b

c d

)
|a ≡ d ≡ 1, b ≡ c ≡ 0 mod N

}
Definition 5. A modular function which is holomorphic everywhere is called a Modular Form, if suche

a form is zero at infinity it is called a cusp form.

A modular form of weight 2k is thus given by a series:

f(z) =
∑
n=0

anq
n =

∑
n=0

ane
2πinz

which converges for |q| < 1 and verifies the identity (b) above. It is a cusp form if a0 = 0

We can define modular forms also by means of lattices in a vector space.
Let Γ be a lattice in V , M = {(w1, w2) ∈ C∗ : Im(w1/w2) > 0}.
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Proposition 5. Two elements in M define the same lattice if and only if they are congruent mod SL2(Z).

If R is the set of lattices of C, we can identify it with the quotient of M by the action of SL2(Z).
Make now C∗ act on R sending Γ to λΓ for λ ∈ C∗, then the quotient M/C∗ is identified with H by
sending (w1, w2) to z = w1/w2 and this identification transforms the action of SL2(Z) on M into that of
G = SL2(Z)/{∓1} on H. So, by pasing to the quotient, we get that an element of H/G can be identified
with a lattice of C defined uo to an homothety.
So let F be a function on R with complex values, let k ∈ Z, we say that F is of weight 2k if:

F (λΓ) = λ−2kF (Γ) ∀Γ,∀λ ∈ C∗

Let F be such a function, if (w1, w2) ∈M , we denote by F (w1, w2) the value of F on the lattice Γ(w1, w2),
and we can rewrite the formula above as:

F (λw1, λw2) = λ−2kF (w1, w2)

Then ∃f function on H such that:

(*) f(w1, w2) = w−2k
2 f(w1/w2)

Since F is invariant by SL2(R) we see that f satisfies the identity:

(**) f(z) = (cz + d)−2kf =

(
az+b
cz+d

)
∀
(
a b
c d

)
∈ SL2(Z)

Conversely, if (∗∗) holds, by (∗) we can obtain a function F on R of weight 2k.
In conclusion, we can identify modular function of weight 2k with some lattice function of weight 2k.

Example 2 - Eisenstein series

Lemma 1. Let Γ be a lattice in C. The series
∑′
γ∈Γ

1
|γ|σ is convergent for σ > 0, where we denote with∑′

the summation over all the non zero elements.

Let k be an integer, k > 1. If Γ is a lattice of C we put: Gk(Γ) =
∑′
γ∈Γ

1
|γ|2k . By the Lemma above we

know that the series converges absolutely. Using the definition given in the case of lattices, we can view
Gk as a function on M given by:

Gk(w1, w2) =

′∑
m,n

1

(mw1 + nw2)2k

So we get that the function on H is:

Gk(z) =

′∑
m,n

1

(mz + n)2k

Proposition 6. Let k be an integer, k ≥ 1. The Eisenstein series Gk(z) is a modular form of weight 2k

Proof. The above arguments show that Gk(z) is weakly modular of weight 2k. We have to show that it is

also everywhere holomorphic.

First suppose that z ∈ D, where D is the fundamental domain. Then we get:

|mz + n|2 = m2zz̄ + 2mnRe(z) + n2 ≥M2 −mn+ n2 = |mρ− n|2

By the Lemma above the series
∑′ 1

|mρ−n|2k is convergent. This shows that the series Gk(z) converges

normally in D, thus also (applying the result to Gk(g−1z) with g ∈ G) in each of the transforms gD of D

by G. Since these cover H, we see that Gk is holomorphic in H. It remains to see that Gk is holomorphic

at infinity. This amount to proving that Gk has a limit for Im(z) → ∞. But one may suppose that z
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remains in the fundamental domain D; in view of the uniform convergence in D, we can make the passage

to the limit term by term. The terms: 1
(mz+n)2k

relative to m 6= 0 give 0, the others give 1
n2k . Thus:

lim .Gk(k) =

′∑ 1

n2k
= s

∞∑
n=1

1

n2k
= 2ζ(2k)

So in particular Gk(∞) = 2ζ(2k)

Moroever, its Fourier expansion is:

Gk(z) = 2ζ(k)

(
1− 2k

Bk

∞∑
n=1

σk−1(n)qn
)

where: q = e2πiz, σk−1(n) =
∑
d|n d

k−1, and where Bk ∈ Q is the k-th Bernoulli number. If we normalize
the Eisenstein serie by getting:

Ek(z) =
Gk(z)

2ζ(k)

Then the Fourier expanzion if Ek(z) has rational coefficient and constant term 1. For example, the Fourier
expansion of the first two non zero Eisenstein series are:

E4(z) = 1 + 240

∞∑
n=1

σ3(n)qn

E6(z) = 1− 504

∞∑
n=1

σ5(n)qn

So we have a modular form of weight 2k and it is not a cusp form.

Remark 2. The Eisenstein series are the special case m = 0 of the Poincaré series Pm,k defined by:

Pm,k(z) =
∑

γ∈Γ∞−Γ

1

j(γ, z)k
exp(2πimγ(z))

For m > 0 and k ≥ 3 the Poincaré series are cusp forms of weight 2k.

Example 3

We denote by:

g2 = 60G4 =
4π4

3
E4

g3 = 140G6 =
8π6

27
E7

∆ := g3
2 − 27g2

3 =
(2π)12

1728
(E3

4 − E2
6)

It follows that ∆ is a modular form of weight 12, and that ∆ 6= 0 in H. Moroever, the q-expansions for the
Ek’s show that ∆ vanishes at ∞, so ∆ is a cusp form. ∆ has integral fourier coefficient:

∆(z) = qΠn≥1(1− qn)24 =
∑
n≥1

τ(n)qn

and this defines the Ramanujan function τ(n) (it can be shown that tau(n) ∈ Z ∀n ∈ Z, and that
τ(nm) = τ(n)τ(m)). Using ∆ we can define the j- invariant modular form, which is the modular function
of weight 0 defined by:

j(z) = 1728
g3

2

∆
= 1728

E3
4

E3
4 − E2

6

It is holomorphic in H (because ∆ 6= 0) and has a simple pole at ∞.
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Example 4

Let Θ be the Jacobi theta function of the first example:

Θ(τ) =
∑
n∈Z

eiπτn
2

Then:
Θ(2τ)2 =

∑
a,b∈Z

qa
2+b2

is a modular form of weight 1 and level 4. This is an instance of a very general contruction involving rings
of integers and quadratic fields, such as Z[i].
Suppose α ∈ Z[i] is non zero, and:

χ : (Z[i]/(α)x −→ Cx

is an isomorphism. Assume that χ(i) = 1, extend χ to a multiplicative function on Z[i] by declaring it to
be 0 on elements which are not primes to α. It is a result of Hecke that the series:

Θχ(τ) =
1

4

∑
a,b∈Z

χ(a+ bi)qa
2+b2

is a modular form of weight 1 and level 4|α|2, and if x is non trivial, then Θχ is a cusp form.

Example 5

The abelian group (Z[i]/8Z[i])x has generators: 3, 5, i, 1 + 2i with order: 2, 2, 4, 4 respectively.
Let χ : (Z[i]/8Z[i])x −→ Cx be the unique homomorphism which is trivial on the first three generators
and which sends 1 + 21 to i. Then Θχ is a modular form of weight 1.
For p prime, the p-th coefficient in the Fourier expansion of Θχ is:

ap(Θχ) =

{
χ(a+ bi) + χ(a− bi) if p ≡ 1 mod 4, p = a2 + b2

0 if p ≡ 3 mod 4, or p = 2

Now, if p ≡ 1 mod 4 we can write p = a2 + b2 with a odd and b even. A short calculation shows that:

ap(Θχ) =


2 if 8|b
−2 if 4|b but 8 - b
0 if 4 - b

Referring back to the example showed in the previous talk about two dimensional Artin representation
over Q, we find that ∀p odd prime we have the following relation:

ap(Θχ) = trρ(Frobp)

for the Galois representation ρ : Gal(Q′/Q) −→ GL2(C) with:

trρ(Frobp) =


2 if p = a2 + 64b2

−2 if p = a2 + 16b2, b odd

0 if otherwise

and the equation stated above hints an extraordinary relation between modular forms and Galois rapre-
sentation of Gal(Q′/Q).

Example 6

More in general, if Q : Zr −→ Z is any positive defined integer-valued quadratic form in r variables, r
even, then:

ΘQ(τ) =
∑
x∈Zr

qq(x)
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is a modular form of weight r/2 on some group Γ0(n) =

{(
a b
c d

)
∈ PSL2(Z)|c ≡ 0 mod N

}
with some

character χ mod N , i.e.

ΘQ(

(
aτ + b

cτ + d

)
= χ(d)(cτ + d)r/2ΘQ(τ) ∀

(
a b
c d

)
∈ Γ0(N)

The integer N is the level of Q and it is determined as follow write Q(x) = 1
2x

tAx where A is an even
symmetric r × r matrix (i.e. A = (aiaj), aij = aj ∈ 2Z)); then N is the smallest NA−1 is again even.
The character χ is given by χ(d) =

(
D
d

)
with D = (−1)r/2detA.

For example, if we take:

• Q(x1, x2) = x2
1 + x2

2, A =

(
2 0
0 2

)
, N = 4, χ(d) = (−1)

d−1
2

• The two quadratic forms:
Q1(x1, x2) = x2

1 + x1x2 + 6x2
2

Q2(x1, x2) = 2x2
1 + x1x2 + 3x2

2

have level N = 23 and character χ(d) =
(−23

d

)
=
(
d
23

)
.

The sum ΘQ1
(τ) + 2ΘQ2

(τ) is an Eisenstein series: 3 + 2
∑
n=1(

∑
d|n χ(d))qn of weight 1 and level 23, and

the difference: ΘQ1
−ΘQ2

is two times the cusp form qΠn=1(1−qn)(1−q23n) the 24-th root of ∆(τ)∆(23τ).
If we want modular forms on the full modular group PSL2(Z), then we must have N = 1 as the level Q,
i.e. the even symmetric matrix A must be unimodular.
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