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Chapter 1

Preliminary

Everything in the preliminary section follows the notations and definitions from [3].

1.1 Modular Forms

€ SLy(Z),

Definition. For l @ for all 7 € $ where § is the complex half plane. We can

c

a b __ at+b
T= cT+d
c d

b
extend action to the group GLJ (Q) to act on QU {oc} by l “ p ] () = Z:ZISZ
c

Definition. For N € N, define the principal congruence subgroup of level N to be

F(N):{[a Z]GSLQ(Z): Z Z]E (1) (1)] modN}

c
and say a subgroup of I" of SL2(Z) is a congruence subgroup if I'(N) C IT" for some N € N.

) S _
To(N) { Z | 5@ ‘C‘ 1= ; : mod N}
(4 b ] (o b] [1 +]

I'(N) = { Z g € SLy(Z) : Z J = 0 ;k mod N}

b
Note that by taking T'o(N) — (Z/NZ)" by l “ p ] — d mod N is a surjective homomorphism with kernel
c

[';(N) . This shows that I';(N) is normal in T'g(IV), and the quotient is isomorphic to (Z/nZ)".

Definition. For any v = [ “ € GLF(Q), define the factor of automorphy j(v,7) € C for 7 € $ to be

J(v,7) = ¢ + d. For such a v, we can define the weight & operator [y], on functions f: $§ — C by

(f ) (1) = (det )" Gi(y, 1) 7F f ((7))

for 7 € 9.
For a congruence subgroup I' of SLy(Z), we say that a meromorphic function f : $ — C is weakly modular of
weight & with respect to I', if f[y], = f for all v € I". That is, f (y(7)) = j (’Y,T)k flr).
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f is a modular form of weight k with respect to I', if it is holomorphic, weight-k invariant under I' and f [¢], is
holomorphic at oo for all & € SLy(Z). If in addition, the first coefficient of the Fourier expansion of f [a], is zero
for all & € SLy(Z), then f is a cusp form. We denote the set of modular forms of weight k& with respect to I by
My (T), and cusp forms by Sy (T).

1.2 Modular Curves

Definition. Let I' C SLy(Z) be a congruence subgroup. Define the modular curve Y(I') =T\$ = {I'r: 7 € 9} to
be the space of orbits of I' acting on $).

In particular, denote Y5(N) = To(N)\$, Y1(N) =T1(N)\H and Y(N) =T(N)\9.

We should note here that, technically, Y (I") is a curve, which is the set of solutions of some given equation.
what we are really defining here is Y (T')(C).

Definition. The set of enhanced elliptic curve for T'o(NNV), denoted Sy(N), consists of ordered pairs (E,C) where
E is an elliptic curve and C' is a cyclic subgroup of F of order N. (E,C) ~ (E’,C") if there is an isomorphism of
E and E’ taking C to C".

The set of enhanced elliptic curve for I'; (N), denoted S1(N), consists of ordered pairs (F, Q) where E is an
elliptic curve and @ is a point of order N. (F,Q) ~ (E’, Q") if there is an isomorphism of F and F’ taking Q to Q.

The set of enhanced elliptic curve for I'(IV), denoted S(N), consists of ordered pairs (E, (P, Q)) where FE is an
elliptic curve and (P, Q) are points in E that generates E [N] with Weil pairing ey (P, Q) = ¢*™/V. (Recall that
E[N] = (Z/NZ)%. (E,(P,Q)) ~ (E', (P',Q")) if there is an isomorphism of E and E’ taking P to P’ and Q to Q'.

Theorem. [3, Thm 1.5.1] Modulo details, there are bijections So(N) =2 Yo(N), S1(N) 2 Y1(N) and S(N) 2 Y(N).

Example. For N =1, Y5(1) = Y1(1) = Y(1) = SL2(Z)\$. Recall that an elliptic curve can be determined by a
lattice generated by 1 and some 7 € $). Two lattices generated the same elliptic curve if 7/ € SLy(Z)7. This agrees

with our theorem.

Y (T) can be made into a Riemann surface (1 dimension complex manifold) by taking the quotient topology ob-
tained from the quotient map 7 : $ — I by 7 — I'r. We can compactify Y (T") to get X(I') = SLa(Z)\ (H U QU {o0}).
The extra points are called the cusps. X (') is Hausdorf, connected and compact [3, Pro 2.4.2].

If f is weight k invariant with respect to I', then f is a degree k homogenous function on modular curves with
respect to I'. For details, see [3, Pg 41].
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Hecke Operators

We will motivate Hecke Operators following [3] by introducing double coset operators.

2.1 Double Coset

Definition. Let I'; and 'y be congruence subgroups and let o € GL3 (Q), define

Faly = {mavy2: 1 €T, 72 €T}

to be the double coset in GL3 (Q).

The group I'; acts on I';al’s by left multiplication, partitioning it into orbits. It can be shown that the number

of orbits is finite [3, pg 164|. Suppose I'yal'y = II,I'1 3; where {3;} are the orbit representatives

Definition. [3, Def 5.1.3] For congruence subgroups I'y and I's of SL2(Z) and o € GL3 (Q), the weight-k [['1als],,
operator takes functions f € My(T'1) to

Fllrals]y = FlBilk
J
This is well-defined [3, Exercise 5.1.3]. In fact, we have the following theorem.
Theorem. [I‘lal"g]k : Mk(l“l) — Mk(FQ) and Sk(l“l) — Sk(rg)

Proof. The full proof can by found on page 165 of [3]. Here, we will only show invariance.
For all v € T's, the map I'1\I'1al'ys — T'1\I';al’y given by T'y1 8 +— T’y B2 is well-defined and bijective. Therefore,

(f M1als2],) [V, = Zf [Bi7]), = [ [T1als], .

Special cases [3]:
1. When I'; D T'y, with o = I then [I'yal's], is the natural inclusion of M (I'y) into M (T'2).

2. Ty ¢ T'y. Taking o = I again, and letting {72 ;} be the set of coset representatives for I'1\I's makes the
double coset operator f [['1al's], =37, f[v2,5]; the natural trace map that projects My (I'1) onto My(I'2) by

symmetrizing over the quotient.
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3. If a™'I'ia =Ty then f[I'1al's], = f[a],, the natural translation, is an isomorphism.

2.2 T, and (d)

Definition. Let I'y = 'y = T'1(N) and let a € T'g(N). Recall that To(N)/T1(N) = (Z/NZ)" by the map

c

b
[ “ g ] — d mod N. This shows that 'y (N) < Tg(V), and we have

fFION)al (N, = f oy,

for all @ € Ty(NV) and f € My(T'1(N)). This is case 3 from above.
Note that this induces an action of o € T'o(N) on M (T'1(N)). Because I'1 (N) acts trivially on f, this really is
an action of (Z/NZ)" on My (I'1(N)). For d € (Z/NZ)", we can define the Diamond Operator

(d) : My (I'1(N)) = My, (I'1(N))

b
¢ ; ] € To(N) with 6 = d mod N.
C

by (d) f = £ [a], for any @ l

1
Definition. Again, let 'y =T9 =T1(N). Let a = [ ] for some prime p. Then define

p

Tp: My (T'1(N)) = Mg (T'1(N))

by T, f = f[L1(N)aTl'1(N)],.

Now, we will show that T}, and (d) commutes. For full detail, see page 169 of [3]. To do this, first observe that

1 0

0 p

1F1(N):{7€M2(Z):'y£[(1) ;] modN,detvzp}.

I (N) [
1
In fact, for any v € To(IV), yay~! = [ 0 * 1 mod N. Suppose that I'1(N)al'y(N) = U,;I'1(N)5;, and fix
p
v € I'g(N). Then
[ (N)ali(N) = Ti(N)yay 'Ti(N)
AT1(N)al'y(N)y~! by normality

= U Di(N)By !

Hence, we have U;T'1(N)3; = v U; T'1(N)B;7~! and thus U;T'1(N)y8; = U;T1(N)B;7 ! . Note, it need not be the
same for each term. We can now show commutativity with this identity.

Let v € Tg(N) where the lower right corner entry is § = d mod N. Then
(D Tpf = @Y S8l =D fBN =D Bl =Tpld) f
J J J

for all f € My (T'1(N)).
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In fact, we can find that 3; =

j 0
J for0 < j<pand B = men b if pt N where mp—nN =1
p N »p 0 1

[3, Page 170].

Proposition. [3, Prop 5.2.1]

) 1 _
?zé f ifp| N
0 p
Tpf = == -k
1 1 5 m n p 0 ]
Z?:o +f if p¥ N where mp —nN =1
0 p N p 0 1
L L Jdg k
In other words,
Ly () ifp| N
=0 p
T, f(r) = P b

LYy £ (5 + ) i p N

Note that in this last formula, it does not matter that f € My(T'1). In fact, with this algebraic formula, we can
define Hecke operators on any congruence subgroup I'.

Now, we try to extend (d) and Tp to all n € Z*. For n € ZT with ged (n, N) = 1, define (n) to be (n mod N).
If ged (n, N) > 1, then define (n) = 0. This definition makes (-) multiplicative on ZT. For prime powers p”, define
Ty =TTyt — PF1 (p) Tpr—2 for r > 2. Then for n = [[p;* as its prime factorization, define T, = HTp;i. By

construction 7, and (d) still commute.

2.3 Modular Curve Interpretation

Let I'; and I'; be congruence subgroups of SLy(Z). Suppose I'mal'y = II,I'1 5;, where {3;} are coset representations.
Let X1 = X(I'1) and X5 = X (I'2), then [['1al's], : Div(X2) — Div(X1) by ot = 32, T'18;(7) |3, Pg 166].

We will consider the case where the Hecke operators act on I' = T'1(N) (don’t care about the weight). We
will now give a geometric interpretation of this, following Remark 1.11 and section 1.3 of [4], and page 174 of [3].
Recall that the modular curve Y;(N) is in bijective correspondence with S1(N). S1(N) consists of pairs (F,Q)
where F is an elliptic curve and @ is a point of E of order N. For p { N, the moduli space interpretation is
Tp : Div(S1(N)) = Div(S1(N)) by [E,Q] — > [E/C,Q + C] where the sum is taken over all subgroups C of E
of order p such that C' N (Q) = {idg}. This comes from the fact that we have the following correspondence,

Div(Yi(N)) 2 Div(Vi(N)) TN = S, TH(N)B ()
) ) ) )
Div(S1(N)) 2 Div(S1(N)) (B, L +A] = So[E/C ++0]

For more details about why this is true, see page 174 of [3].

There is an isogeny from C/A to C/A’ if and only if there exists some m € C such that mA C A’. If p{ N, then
there are exact p+1 distinct p-isogenies from (C/(r,1), +). Their images are: ((C/ <%j, 1> , %) forj=0,..,p—1
and ((C/ (p7, 1), %) If p| N, then we lose the last p-isogeny, because the point £ is of order less than N. Note, these
p+ 1 isogenies are exactly ¢;(7) = %j for j =0,...,p—1and ¢oo(7) = (p) pr. The map f(7) — wy = 2wif(r)dr is
an isomorphism between S(T") and Q! (Xt) of holomorphic differentials on Xr [4, Lemma 1.12]. This also shows

that dim Sy (') is finite and equal to g = genus (X(I')). Notice that ¢7(wy) = 2mif (%) d (T%) = %f (T%) dr
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for all j =0,...,p — 1. Combining this fact, with the algebraic definition of T, we see that for p{ NV,
wr,(p) = Y 95 (wr).

2.4 Petersson Inner Product

_ dzdy

Definition. Define the hyperbolic measure on the upper half plane du(7) = e for all T € $.

We can extend the measure to H* = U QU {co} because Q U {oo} has measure zero. This is invariant under
under GLF (R), so in particular, it’s SLy(Z)-invariant. Recall that

D* = {T €9 |Re(r)| < % 7| > 1} U {o0}

is a fundamental domain of $* under the action of SLs(C). It can be shown that for any continuous and bounded
functions ¢ : $ — C and o € SLy(Z), [},. ¢ (a(r))du(r) converges. Let {a;} C SLy(Z) be a set of coset
representatives, so that SLy(Z) = II; {£I} T'ey;.

Now, consider ¢ : $ — C in My(I"). Since ¢ and du are are I' invariant, we have

> [ olestndnt = [ omautr) (24.1)

D
a; D

Furthermore, Ua,; D* represents X (I') up to some boundary identification, so we can define fX(F) o(1)du() to be
equation (2.4.1).

Definition. For a congruence subgroup I', define the volume of T" to be Vf = fX(F) du(r).
Fact. VF = [SLQ(Z) : {:l:} F} VSLQ(Z)'

Definition. Let I' C SLy(Z) be a congruence subgroup. Define the Petersson Inner product by

(,)p: Se(T) x SK(I') = C

1

r =t F(@)g(r) (Im(7))" dp(r)
Vr Jxr)

(fi9

It can be shown that this is well-defined (f(7)g(7) (Im(7))" is T invariant and the integral converges). Addi-
tionally, it is not hard to see that this is linear in the first variable, and conjugate linear in the second. Additionally,
it’s Hermitian-symmetric and positive definite. The reason for Vir is so that if IV C T, then (-, ), = (-, ) on S(I').
This is only defined on cusp forms because because the inner product does not converge on all of M;(T").

For T' C SLy(Z) a congruence subgroup and o € GL3 (Q), define o/ = det(a)a™!. By computation, we have
that [a], = [/], and [[al']; = [[a'T], are their adjoints under the Petersson Inner Product [3, Prop 5.5.2]. In
particular, on S (I'1(N)), and for p{ N, we have adjoints: (p)* = (p)~' and T, = (p)~ " T,. For this, we can show
that (n) and T, for ged (n, N) = 1, are all normal. By the Spectral Theorem of linear algebra, since S (I'1(N))
is finite dimensional, and (n), T,, for ged (n, N) = 1 are a commuting family of normal operators, there exists an
orthogonal basis of simultaneous eigenvectors for the operators.

Let T denote the C-algebra generated by the all Hecke operators T), and (d). A modular form is an eigenform if
it is a simultaneous eigenvector for all T € T. Note that this does not form a basis, because T is not semi-simple.
Let T denote the set of all T, and (n) where gcd(n, N) = 1. This algebra is semi-simple and so we have an

orthogonal basis of simultaneous eigenforms.
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2.5 Eigenforms

Definition. If f € S;(T") is an eigenform if it is a simultaneous eigenvector for all 7' € T. If it has Fourier expansion
f(1) =302 an(f)g™ where a1 (f) =1 then we say [ is normalized.

Let f be an eigenform, then it has an associated algebra homomorphism Ay : T — C where T'f = A\(T) f for all
T € T. Additionally, we can define y : (Z/NZ)" — C* by sending n to the eigenvalue of (n) corresponding to f,
that is (n) f = x(n)f. It can be shown that x is a Dirichlet character.

Proposition. [4, 1.17]Given a non-zero algebra homomorphism X\ : T — C, there is exactly one eigenform, up to
scaling, such that Tf = XN(T)f for all T € T.

Proposition. [3, Prop 5.8.5] Let f € M (N) with associated character x. Then f is a normalized eigenform if

and only if the coefficients of the Fourier series satisfies the following:
1. a1 (f) =1
2. apr(f) = ap(Hlay—1(f) = x(P)p*apr—2(f) for all p prime and r > 2
8. Amn(f)y = am(f)an(f) when ged (m,n) =1
To summarize, a,(f) = a1 (f)NT}).

Definition. For a modular form f € My (N) where x is a Dirichlet character, define its L-function to be L(s, f) =

oo —s _ S 2WINT g 3 : : :
Yomeq apn~® where f(7) =3 jane is its Fourier series expansion.

With some work, the previous proposition shows that f is a normalized eigenform, if and only if its L function

has an Euler product expansion [4, Thm 1.26] [3, Thm 5.9.2]
—S —1-2s\"1
L(s, )= —app™ +x@p*"%) .
P

Here, we take x(p) = 0 for p|N.



Chapter 3

(Galois Representation

The definitions and constructions in this chapter come from various sections of [4].

3.1 Jacobian

Recall that the map f(7) — w; = 2mif(7)dr is an isomorphism between S3(I') and Q' (Xr) of holomorphic
differentials on Xt [4, Lemma 1.12]. This shows that dim S (T') is equal to g = genus (X (T)).

Let V. = S5(I')? = Hom (S2(T"),C) be the dual space of S3(T"), the weight 2 cusp forms of some congruence
subgroup I' of SLy(Z). This is a complex vector space of dimension g = genus (X (I')). The integral homology
A = H, (X(T'),Z) maps naturally to V by sending a homology cycle ¢ to the functional ¢. where ¢.(f) = [ wy.
The image of A is a discrete Z-module of rank 2g, so it can be viewed as a lattice in V. We call the complex torus
V/A, the Jacobian variety of X (T") over C. If I' = T'o(V) or I'y (), we will write Jo(IN) and J;(N) respectively.

Fix 79 € 9. Define the Abel-Jacobi map ®4; : X(I')(C) — Jr by ®a5(P)(f) = f:; wy. This is well-defined
and does not depend on the choice of path. By linearity, we can extend this to a map on Div (X (T")). Then we can
restrict it down to the degree 0 divisors Div°® (X (T')). Here, the Abel-Jacobi map no longer depends on the base

point 7g.

Theorem. [/, Thm 1.15] (Abel-Jacobi Theorem). The map ®4; : Div® (X (T)) — Jr has kernel consisting of
precisely P (X(T')) which is the set of princial divisors. Therefore, the map induces an isomorphism between Jr and
the Picard group, Pic’ (X (T)) = Div® (X(I')) /P (X(T)).

Hecke operators act on V = (S3(I"))" via duality and they hold A stable. Hence, Hecke operators give rise to

endomorphisms of Jr.
Definition. A correspondence on a curve X is a divisor C' on X x X taken modulo {P} x X and X x {Q}.

Let m; and 75 denote the projection of X x X onto each of the factors. Then C induces a map on Div(X) by
C(D) = my (77 1(D) - C), where D; - Dy denotes intersection of the two divisors. C preserves the divisors of degree
0 and sends principal divisors to principal divisors. Hence C' gives an algebraic endomorphism of Jac(X). We can
in fact define composition of correspondences to get that the set of correspondences form a ring. See [6] for more
details.

Now, back to X (T'). See page 32 of [4] for more details. We define the Hecke correspondence T;, to be the
closure in Xr x Xr of the locus of points (A, B) in Yr x Y, where there is a degree n isogeny of elliptic curves

with T structure from A to B. Let’s examine a concrete example, with I' = 'y (V) and let p t N. Consider the
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graph of T}, in (X;(N) x X;(N)). This is a correspondence. Consider what the induced map of T, is on divisors.
By definition,
T,((E,P)) =m (v (E,P))-T,) = > _(E/C, P mod C)

where the sum runs over the subgroups C of E with order p. If (A4, B) belongs to T, then the isogeny dual to
A — B gives a p-isogeny from B to pA so that T = (p! Tp.

Let I' = I'(N). Let ¢x,(n) be the Frobenius morphism on X;(N) /g, which is a degree p isogeny that raises
coordinates to the p-th power. Here, X;(N) r, is the reduction of the curve to characteristic p. For more detail on
how this is done, see page 36 of [4]. Consider the graph of ¢x, () in (X1(NV) x X1(N)) 5 . It is a correspondence
of degree p, which will now be called F'. Fix a point (E, P) € X1(N)/r,. Our goal is to compute T}, (£, P)) using
the Frobenius map. Let (Euwo, Px) = ¢x,(n) ((E, P)). To find the other elliptic curves p-isogenous to E, we can
consider the ellitpic curves E, such that when we apply the Frobenius to it, we get E. To do so, we consider the
transpose correspondence F’ (interchange the two factors of X;(N) x X;(N)). The corresponding endomorphism

on Jr induced by F” is the dual endomorphism of ¢ ;.. Consider the divisor
F'((E,P)) = (E1, P1) + ... + (Ep, )

Since ¢g,, the Frobenius endomorphism on F;, is an isogeny of degree p from (E;, P;) to (E, P), we also have the
dual isogeny from (E, P) to (E;,pP;). If E is ordinary at p then (Ex, Px), (E1,pP1);-.., (Ep, pP,) are a complete
list of distinct curves with I'-structure which are p-isogenous to (F, P). Hence, we have the following equality on
divisors,

Ty (B, P)) = (Eoc, Poo) + (E1,pP1) + .+ (EppPy) = (F + () F') (. P))..

Since ordinary points are dense in X1(N)r,, T, = (F + (p) ') as endomorphisms of Ji(N) g, .

Theorem. [{, Thm 1.29] For p{ N, the endomorphism of T, of Jrr, satisfies T, = F + (p) F'. This is called the

FEichler-Shimura congruence relation.

3.2 Shimura’s Construction

Definition. Let S (T',Z) to be the space of modular forms with integral Fourier coefficients in S3(T"). Given a
ring A, define S3(T', A) = So(I', Z) ® A. Note, S3(T,C) = S3(I"). Let Tz be the ring generated over Z by the Hecke
operators T;, and (d) acting on Sy (I',Z). Given a ring A, define T4 = Tz ® A. T4 acts on Sy (I, A) in a canonical

way.

Let f =77, an(f)q" be an eigenform. Let K; be a number field generated by all the a,(f)’s. Let Ay : Tg —
K be associated algebra homomorphism. Iy = ker Ay N Tz. The image of Iy (Jr) is a subabelian variety of Jp

which is stable under the actions of Tz and is defined over Q.

Definition. Define Ay = Jr/I; (Jr). It is an abelian variety defined over Q and depends only on [f] the orbit of f
under Gg. Its endomorphism ring contains Tz /I which is isomorphic to an order in K. In fact, from the actions
of T, we get an embedding Ky — Endg(As) ® Q [4, Prop 1.49] .

Ay is a complex tori [4, Lemma 1.46]. Let Vy of V' = S3(T")” on which T actsonvia Ay ({f : Tf = XT)fVT € T}.
Vr has dimension 1 as a complex vector space[4, Thm 1.22, Lemma 1.34]. Let 7y be the orthogonal projection of

V onto V; relative to the Petersson inner product.
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Let [f] be all the eigenforms whose Fourier coefficients are Galois conjugates to those of f. The number of forms
is [Kyp: Q. Let Viy = @ge(s)Vy and mpy) = 3° (5 Ty Which is simply the orthogonal projection of V' onto V. It
should be noted that 7y € Tk, and [y € Tg.

Lemma. [4, Lemma 1.46] The abelian variety is isomorphic over C to the complex torus Viy/m(s(A) with the map
7f VA = Vig/mis) (A) corresponding to the natural projection from Jr to Ay.

This also shows that A is of dimension [K : Q).

Proposition. [4, Proposition 1.53] The following are equivalent:
e The curve E is isogenous over Q to Ay for some newform f on some congruence gorup I
e There is a non-constant morphism defined over Q from Xo(N) to E

We won'’t discuss what newforms are, but basically we can decompose Sy (I'1(V)) into newforms and oldforms.
For more information, see section 5.6 of [3].

In particular, if F is an elliptic curve that satisfy the above property, then we say it is a modular elliptic curve.
Conjecture. Shimura-Taniyama Conjecture [4, Conj 1.54]. All elliptic curves defined over Q are modular.

Of course, we now know this is true for semi-stable elliptic curves (Andrew Wiles).
Define the Tate module of Ay by Ty (Ay) = lim (Ay ["]). Te(Af) @z, Qq is free Ky ® Qp module of rank 2 [4,
Lemma 1.48].

Theorem. [/, Thm 1.41] For p{ N¢, the characteristic polynomial of the Frobenius endomorphism F' on Tq,-module
Tg(Af) ® Qy is X2 — T,X + <p>p =0.

Proof. By Eichler-Shimura relation. O

3.3 Main Theorems

For this section, we will let f = > | a,(f)g" be an eigenform of weight 2 and level N. Let x : (Z/NZ)" — C* be
its associated character, such that(d) f = x(d)f. Let Ky be a number field generated by all the a,(f)’s and values
of x.

The action of the Hecke algebra on J; (V) provides an embedding K¢ — Endg(Af) ® Q. Recall that T} (Af) ®z,
Qg is a free Ky ® Q; module of rank 2. The action of the Galois group commutes with that of K, so by choosing a
basis for the Tate module, we get an interpretation Gg — GL2 (K ® Q) . Because K ® Qg can be identified with

the product of completions of Ky at the primes over ¢, we just induced an ¢-adic representation of Gg from f.
Theorem. [5, Thm 4.4.1]

1. Suppose k > 2. Then for all primes p of Ky, there exists an odd irreducible Galois representation

Prp: Go = GLo ((Kf)p)

such that for all £ prime to N and to p, pys , is unramified at ¢, and the characteristic polynomial of ps ,(Froby)
is 22 — ag(f)x + x(0)eF1.
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2. Suppose k = 1. Then there exists an odd irreducible Galois representation
pPf GQ — GLQ((C)

such that for all £ prime to N, py is unramified at £, and the characteristic polynomial of py(Froby) is
22 — ay(f)a+ x(0).

Full proofs of these statements can be found in [1] and [2] for statements 1 and 2 respectively. The reason why
the weight 1 case is stated in a separate statement is because it comes from Artin representations, and statement
1 comes from f-adic representations.

For k = 2, J;(N) has good reduction at all primes p { N. This shows that the action of the Galois group on
Ty (Af) ® Qg is unramified and is described by the Frobenius endormorphism ¢ on the Tate module of the reduciton.
The characteristic polynomial of ¢ is X? — T,X + (p) p = 0 by the Eichler-Simura relation.
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