Algebra II, MATH 251

Instructor: Dr. E. Goren.

Assignment 5

To be submitted by February 14, 12:00

- 1. Deduce from the theorems on determinants the following:
 - (1) If a column is zero, the determinant is zero.
 - (2) $det(A) = det(A^t)$, where A^t is the transposed matrix.
 - (3) If a row is zero, the determinant is zero.
 - (4) Let A be a matrix in "upper diagonal block form":

$$A = \begin{pmatrix} A_1 & \star \\ 0 & A_2 & \star \\ & \ddots & \\ 0 & 0 & A_k \end{pmatrix}.$$

Here each A_i is a square matrix say of size r_i , and A_2 starts at the $r_1 + 1$ column and $r_1 + 1$ row, etc. Prove that

$$\det(A) = \det(A_1) \det(A_2) \cdots \det(A_k).$$

Conclude that the determinant of an upper triangular matrix is given by

$$\det \begin{pmatrix} a_{11} & & * \\ 0 & a_{22} & \\ & \ddots & \\ 0 & 0 & a_{kk} \end{pmatrix} = a_{11}a_{22}\cdots a_{kk}.$$

(Here each a_{ii} is a scalar).

2. Calculate the following series of determinants.

(1)
$$\det\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $\det\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$, $\det\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$,...

$$(2) \det \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \det \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}, \det \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}, \det \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}, \cdots$$

(3)
$$\det \begin{pmatrix} x & -a_2 \\ 1 & x+a_1 \end{pmatrix}$$
, $\det \begin{pmatrix} x & 0 & a_3 \\ 1 & x & -a_2 \\ 0 & 1 & x+a_1 \end{pmatrix}$, $\det \begin{pmatrix} x & 0 & 0 & -a_4 \\ 1 & x & 0 & a_3 \\ 0 & 1 & x & -a_2 \\ 0 & 0 & 1 & x+a_1 \end{pmatrix}$, ...

3. Prove the following formula (the Vandermonde determinant):

$$\det \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ \vdots & & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{pmatrix} = \prod_{i>j} (x_i - x_j)$$

For example, for n = 2, 3 we have

$$\det\begin{pmatrix} 1 & x_1 \\ 1 & x_2 \end{pmatrix} = (x_2 - x_1), \ \det\begin{pmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \end{pmatrix} = (x_2 - x_1)(x_3 - x_1)(x_3 - x_2).$$

I encourage experimenting with the computer to answer question 2. Here is how you calculate determinants in Maple:

Input: with(linalg):

Input: A := matrix([[1,1,0],[1,1,1], [0,1,1]]);Output: A := matrix([[1, 1, 0], [1, 1, 1], [0, 1, 1]])

Input: det(A);

Output: -1

A := matrix([[x,y,0],[1,z,1],[0,1,1]]);Input: A := matrix([[x, y, 0], [1, z, 1], [0, 1, 1]])Output:

Input: det(A);Output: x^*z -x-y

Input: B := inverse(A);

matrix([[(z-1)/(x*z-x-y), -y/(x*z-x-y), y/(x*z-x-y)],Output:

Input: det(B)Output: 1/(x*z-x-y)

Bonus question - 15 points. Reed-Solomon Codes. Let \mathbb{F} be a finite field with q elements. List the non-zero elements of \mathbb{F}_q as $\{\beta_1, \dots, \beta_{q-1}\}$. Define a map

$$\mathbb{F}_q[x]_k \longrightarrow \mathbb{F}^{q-1},$$

by

$$f \mapsto T(f) := (f(\beta_1), \dots, f(\beta_{q-1})).$$

Prove that T is a linear map and find when is it injective. When this holds, the image of T is a (n, k)code. Find the minimal Hamming weight of a non-zero element of the code. Compare your result with Assignment 2.