Algebra II, MATH 251

Assignment 4

To be submitted by February 7, 12:00

1. Let $W = \{(x, y, z, w) : x + y + z + w = 0, x - y + z - w = 0\}$, $U_1 = \{(x, x, x, x) : x \in \mathbb{R}\}$ be subspaces of \mathbb{R}^4 . Find a subspace $U \supset U_1$ such that $\mathbb{R}^4 = U \oplus W$. Let T be the projection of \mathbb{R}^4 on U along W. Write the matrix representing T with respect to the standard basis.

2. Let V and W be any two finite dimensional vector spaces over a field \mathbb{F} . Let $T : V \longrightarrow W$ be a linear map. Prove that there are bases of V and W such that with respect to those bases T is represented by a matrix composed of 0's and 1's only. If T is an isomorphism, prove that with respect to suitable bases it is represented by the identity matrix.

3. Let V be a vector space of dimension n and let W be a vector space of dimension m, both over the same field \mathbb{F} . Prove that $\operatorname{Hom}(V, W) \cong M_{m \times n}(\mathbb{F})$ as vector spaces over \mathbb{F} . Here $M_{m \times n}(\mathbb{F})$ stands for matrices with n columns and m rows with entries in \mathbb{F} .

4. Consider the transformation that rotates the plane \mathbb{R}^2 by angle θ counter-clockwise. Write this transformation as a matrix in the standard basis. Write it also as a matrix with respect to the basis (1,1), (1,0).

5. Explain how we may view the complex numbers \mathbb{C} as a vector space of dimension 2 over \mathbb{R} . Find a basis for \mathbb{C} over \mathbb{R} . Show that multiplication by *i* is a linear transformation with respect to the structure of a vector space over \mathbb{R} . Write a two-by-two matrix *A* representing it and prove that $A^2 + I = 0$ (here *I* is the two-by-two identity matrix).

6. Write the following permutation σ as a product of disjoint cycles. For each cycle determine its sign and its order. Determine the sign and order of the permutation σ itself.

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 6 & 4 & 5 & 1 & 2 & 7 & 9 & 8 \end{pmatrix}$$

7. For the groups S_3 and S_4 write explicitly all the odd transformation and all the even transformations (make a list!).

Bonus question - up to 20 points. What can you say on the maximal order of an element of the symmetric group S_n ?