Algebra II MATH 251

Instructor: Dr. E. Goren.

Assignment 2

To be submitted by January 24, 12:00

1. Let V be the set of all sequences of complex numbers $(a_0, a_1, a_2, ...)$ satisfying

$$a_n = a_{n-1} + a_{n-2}, \quad \forall n \ge 2.$$

Show that V has a natural structure of a vector space over \mathbb{C} . Find its dimension and a basis.

2. Let V be an n-dimensional vector space over a field \mathbb{F} . Let $T = \{t_1, \ldots, t_m\} \subset V$ be a linearly independent set. Let W = Span(T). Prove:

$$\dim(W) = m.$$

3. Let W be a subspace of a vector space V of dimension n. Let $\{t_1, \ldots, t_m\}$ be a basis for W. Prove that there exist vectors $\{t_{m+1}, \ldots, t_n\}$ in V such that $\{t_1, \ldots, t_m, t_{m+1}, \ldots, t_n\}$ is a basis for V.

4. Let V_1, V_2 be finite dimensional vector spaces over a field \mathbb{F} . Prove that

$$\dim(V_1 \oplus V_2) = \dim(V_1) + \dim(V_2).$$

5. Consider $V := \mathbb{R}[t]_n$, the vector space of polynomials of degree < n with real coefficients. Let

$$r_1 < r_2 < \dots < r_n$$

be any real numbers. Show that for every *i* there exists a unique polynomial f_i in V that vanishes at all the r_j except for r_i where it obtains the value 1. Give an explicit formula for f_i . Show that

$$f_1, f_2, \ldots, f_r$$

comprise a basis for V.

6. Let $\mathcal{B} = \{(1,1), (1,5)\}$ and $\mathcal{C} = \{(2,1), (1,-1)\}$ be bases of \mathbb{R}^2 . Find the change of basis matrices $\mathcal{B}M_{\mathcal{C}}$ and $\mathcal{C}M_{\mathcal{B}}$ between the bases \mathcal{B} and \mathcal{C} . Let $v = \binom{8}{28}$ with respect to the standard basis. Find $[v]_{\mathcal{B}}$ and $[v]_{\mathcal{C}}$.

7. Let \mathbb{F} be a finite field with q elements.

(1) Show that the kernel of the ring homomorphism

$$\mathbb{Z} \longrightarrow \mathbb{F}$$

defined by $n \mapsto n \cdot 1 = 1 + \dots + 1$ (*n* times) is of the form $p\mathbb{Z}$ for some prime *p*. Conclude that we may assume that $\mathbb{F} \supseteq \mathbb{Z}/p\mathbb{Z}$ for some prime *p*.

(2) Prove that \mathbb{F} is a vector space of finite dimension over $\mathbb{Z}/p\mathbb{Z}$ and if this dimension is *n* then \mathbb{F} has p^n elements¹.

Bonus question (= 20%). Let \mathbb{F} be a finite field of q elements. Let $V = \mathbb{F}^n$ and let C be a code (= a subspace) of dimension k, hence having q^k elements. Let d be the minimal Hamming weight of a non zero element of C. Prove that

$$d \le n - k + 1.$$

¹Note: at this point you've proven that every finite field has cardinality p^n for some prime p.