Math 235 (Fall 2009): Assignment 8 Solutions

4.a: It is easy to see the function is bijective. The remaining part is computational.

4.b: We can easily check that f(xi) = f(x)f(i), f(xj) = f(x)f(j) and f(xk) = f(x)f(k) for any $x \in \mathbb{R}$. By definition of the product, it follows that $f(\alpha\beta) = f(\alpha)f(\beta)$ for every $\alpha, \beta \in \mathbb{H}$.

Since f is bijective, it follows that the defining properties of a ring hold in \mathbb{H} . For instance, let us see why the product is associative. Let $\alpha, \beta, \gamma \in \mathbb{H}$. Then, $f((\alpha\beta)\gamma) = f(\alpha\beta)f(\gamma) = (f(\alpha)f(\beta))f(\gamma) = f(\alpha)(f(\beta)f(\gamma)) = f(\alpha)f(\beta\gamma) = f(\alpha(\beta\gamma))$. Since f is injective, $(\alpha\beta)\gamma = \alpha(\beta\gamma)$.

4.c: \mathbb{H} is a division ring because $\left\{ \begin{pmatrix} z_1 & z_2 \\ -\overline{z_2} & \overline{z_1} \end{pmatrix} : z_1, z_2 \in \mathbb{C} \right\}$ is a division ring (in fact, the inverse of $\begin{pmatrix} z_1 & z_2 \\ -\overline{z_2} & \overline{z_1} \end{pmatrix}$ is $\frac{1}{(|z_1||z_2|)^2} \begin{pmatrix} \overline{z_1} & -z_2 \\ \overline{z_2} & z_1 \end{pmatrix}$).

7: Suppose (x, y) = (f(x, y)) for some $f(x, y) \in \mathbb{C}[x, y]$. In particular, f(x, y)|x(because $x \in (f(x, y))$). Hence, $deg_x(f) = 0$ or 1 and $deg_y(f) = 0$. Similarly, $deg_y(f) = 0$ or 1 and $deg_x(f) = 0$. Thus $deg_x(f) = 0 = deg_y(f)$, i.e., $f(x, y) \in \mathbb{C}$. Clearly $f \neq 0$. So, $(f(x, y)) = \mathbb{C}[x, y]$. So it suffices to prove $(x, y) \subsetneq \mathbb{C}[x, y]$.

If $(x, y) = \mathbb{C}[x, y]$, then there are polynomials $a(x, y), b(x, y) \in \mathbb{C}[x, y]$ such that 1 = xa(x, y) + yb(x, y). Let c(x, y) := 1 = xa(x, y) + yb(x, y). Hence, 1 = c(0, 0) = 0. Contradiction!

16: Since -2 = 3 is not a square in \mathbb{F}_5 , $x^2 + 2$ does not have a root in $\mathbb{F}_5[x]$ and, hence, is irreducible. Thus, $(x^2 + 2)$ is a maximal ideal (why?). Therefore, the quotient is a field.

Now let us compute the expressions. Everything follows from the fact that $x^2 = -2 = 3$ in the quotient ring.

 $x^{2} + x = 3 + x$ and $x^{3} + 1 = 3x + 1$. Hence, $(x^{2} + x)(x^{3} + 1) = (x + 3)(3x + 1) = 3x^{2} + 10x + 3 = 3x^{2} + 3 = 3 \cdot 3 + 3 = 12 = 2$. Thus $(x^{2} + x)(x^{3} + 1) - (x + 1) = -x - 1 + 2 = 4x + 1$.

 $x^{2} + 3 = 3 + 3 = 1$. So, $(x^{2} + 3)^{-1} = 1$. Hence, $\frac{x^{2} - 1}{x^{2} + 3} = 3 - 1 = 2$.

What are the roots of $t^2+2 = t^2-3$ in the quotient ring? We will use the fact that any element in the quotient ring can be written uniquely as a polynomial of the form ax+b, where $a, b \in \mathbb{F}_5$. Let t = ax+b. Then $t^2 = a^2x^2+2abx+b^2 = 2abx+b^2+3a^2$. Hence, $t^2 = 3$ iff ab = 0 and $b^2 + 3a^2 = 3$. Since 3 is not a square in \mathbb{F}_5 , a can't be zero (why?). Hence, b = 0. Thus, $3a^2 = 3$, i.e., $a^2 = 1$. Hence, the roots are x and -x = 4x.

What are the roots of $t^2 + 3 = t^2 - 2$ in the quotient ring? Since 2 is not a square in \mathbb{F}_5 , t has to be of the form ax with $3a^2 = 2$ by the same reasoning as above. Hence, the roots are 2x and -2x = 3x.

17: Since $x^3 + x + 1$ does not have roots in \mathbb{F}_2 , it is an irreducible polynomial in $\mathbb{F}_2[x]$.

Now let us compute the expressions. Everything follows from the fact that $x^3 = x + 1$ in the quotient ring.

 $x^{3} + 1 = x$. So, $(x^{2} + x)(x^{3} + 1) = (x^{2} + x)x = x^{3} + x^{2} = x^{2} + x + 1$. Hence, $(x^{2} + x)(x^{3} + 1) - (x + 1) = x^{2}.$

 $x^{2}+3 = x^{2}+1$. We want to find $ax^{2}+bx+c$ such that $(x^{2}+1)(ax^{2}+bx+c) = 1$. But $(x^2+3)(ax^2+bx+c) = cx^2 + ax + (b+c)$. Hence a = c = 0 and b = 1. Thus, $(x^2+3)^{-1} = x$.

 $x^2 - 1 = x^2 + 1$. Therefore, $\frac{x^2 + 1}{x^2 + 3} = (x^2 + 1)x = 1$. What are the roots of $t^3 + t^2 + 1$ in the quotient ring? Let $t = ax^2 + bx + c$. Then $t^3 + t^2 + 1 = b(1 + c)x^2 + (a + b + ac + bc)x + (a + ab + b + 1)$ (we used the fact that $\alpha = \alpha^2$ in \mathbb{F}_2). This allows us to conclude that the roots are x + 1, $x^2 + 1$ and $x^2 + x + 1$.

What are the roots of $t^3 + 1$ in the quotient ring? Let $t = ax^2 + bx + c$. Then $t^{3} + 1 = (a + bc)x^{2} + (ac + bc + b)x + (a + b + c + ab + 1)$. We conclude the only root is 1.

18.a: One can see that 2 is not a square in \mathbb{F}_{19} . Hence, $x^2 - 2$ is irreducible in $\mathbb{F}_{19}[x]$. Thus L is a field.

18.b: Let t = ax + b. Then $t^2 - t + 2 = a(2b - 1)x + (b^2 - b + 2a^2 + 2)$. We conclude that the roots are 7x + 10 and 12x + 10.

18.c: We just show that it does not have a root in any of the fields. For \mathbb{F}_{19} , there are only 19 possibilities. For the quotient ring, we use the same technique we have been using for the other exercises.

18.d: $x^{19} = x \cdot (x^3)^6 = x \cdot 2^6 = (2^2)^3 x = (4 \cdot 4^2) x = (4 \cdot (-3)) x = -12x = 7x.$ Hence $x^{19} - x = 6x$.