
MATH 235 Assignment 7 Solutions

1.1: x2 − 3 is quadratic and hence is irreducible over Q/R iff it has no roots in
the corresponding fields. But x2−3 = (x−

√
3)(x+

√
3) and since

√
3 lies in R but

not Q we conclude x2 − 3 is irreducible in Q[x] but not in R[x].

1.2: As above, it suffices to check for roots of x2 +x−2 in the two corresponding
fields. It is easy to see however that both 1 and −2 satisfy the equation over the
rationals. Hence 1 and −2 also satisfy the equation over F3 and F7. Hence the
polynomial is not irreducible over either field.

2: Using the rational root test, we conclude that the only possible rational roots
that 2x4 + 4x3 − 5x2 − 5x + 2 could possibly have lie in the set {±1,±2,±1/2}.
Checking these 6 values explicitly, we conclude that the only rational root is -1.

3: We would like to prove that the only ideals of Z× Z are the sets of the form
< (a, b) >= {(a · x, b · y) : x, y ∈ Z} for any a, b ∈ Z. It is easy to see that each of
the above sets is in fact an ideal, because multiplication and addition are pointwise
operations in this ring and (a), (b) are both ideals of Z. Suppose now that ICZ×Z is
some arbitrary ideal. Consider the 2 projection maps πj : I → Z, πj((x1, x2)) = xj

for j = 1, 2. It is easy to see that the image πj(I) is necessarily an ideal of Z, for
example, z ·π1(x, y) = π1(zx, 1y) and (zx, 1y) lies in I if (x, y) does because I is an
ideal. It follows that the image π1(I) = (a) and π2(I) = (b) for some a, b ∈ Z. We
claim that this implies I =< (a, b) >. Indeed, if (x, y) ∈ I, then x ∈ (a) and y ∈ (b),
say x = ar1 and y = br2. Then (x, y) = (a, b)(r1, r2) and so (x, y) ∈< (a, b) >.
Since ∃ z ∈ I st. π1(z) = a, this implies (1, 0) · z = (a, 0) ∈ I. Likewise (0, b) ∈ I
and hence the sum (a, b) ∈ I. This suffices to show I =< (a, b) >.

4.1: We need to check the ideal axioms on the set I ∩J . Assume x, y ∈ I ∩J and
r ∈ R are arbitrary elements. First, it is clear that 0 lies in I ∩ J since it necessary
lies in I and J as they are ideals. Second, −x and x+y lie in I ∩J because x and y
both lie in I and J by assumption and again, they are ideals so they must contain
−x and x + y. Finally r · x and x · r lies in I ∩ J for the same reason.

4.2: Again we argue similarly and check the ideal axioms on I + J by using the
fact that I and J are ideals. It is clear that 0 lies in I + J . If x = i1 + j1 and
y = i2 + j2, then −x = (−i1) + (−j1) and x + y = (i1 + i2) + (j1 + j2) both lie
in I + J . Finally r · x = (r · i1) + (r · j1) and x · r = (i1 · r) + (j1 · r) using the
distributive law of rings, and so I + J is also closed under multiplication by R.

4.3: By definition, (a) + (b) = {na + mb : n, m ∈ Z} is the set of all Z linear
combinations of a and b. From work done earlier in the course, we know that all such
combinations are necessarily divisible by GCD(a, b) and also that the GCD(a, b) can
be written as such a linear combination. It follows that (a) + (b) = (GCD(a, b)).
Consider now the ideal I = (a) ∩ (b). If x ∈ I then x is divisible by both a and
b, and hence by their LCM. On the other hand the least common multiple lies in
both (a) and (b) and hence in I. It follows that I = (LCM(a, b)).
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5: Let ICM2(F) be a non-trivial (2-sided) ideal. We will show that I contains the
identity matrix. Since I is non-trivial, in particular it contains a non-zero element
m and let us say that we have

m :=
(

a11 a12

a21 a22

)
.

Since m is non-trivial, one of the aijs must be non-zero. Without loss of generality
we will assume a11 is non-zero (we can always multiply the matrix in such a way as
to permute the rows and columns until we get a non-zero element in this position.
Since I is an ideal, that matrix must also be in I). We can then do some simple
matrix multiplication to show that

m′ :=
(

1 0
0 0

)
.

(
a11 a12

a21 a22

)
.

(
1 0
0 0

)
=

(
a11 0
0 0

)
must lie in I. Likewise the matrix

m′′ :=
(

0 0
1 0

)
.

(
a11 0
0 0

)
.

(
0 1
0 0

)
=

(
0 0
0 a11

)
also lies in I. Hence the sum m′ + m′′ lies in I but this is clearly invertible as a11

is (because it is non-zero and F is a field). Hence I contains an invertible element
and therefore contains the identity element since it is an ideal. Therefore I is the
whole ring.

6.1: It is trivial to see that 0 and 1 are both in Z[
√

3]. If x = a + b
√

3 and
y = c + d

√
3 then x + y = (a + c) + (b + d)

√
3 and xy = (ac + 3bd) + (ad + bc)

√
3

both of which clearly lie in Z[
√

3].

6.2(a): Note that
√

3 lies in the set but
√

3×
√

3 = 3 does not. Hence the set is
not an ideal.

6.2(b): Let c + d
√

3 be an arbitrary element of Z[
√

3] and let 2a + 2b
√

3 be
an arbitrary element of our set. Then their product is 2(ac + 3bd) + 2(ad + bc)

√
3

which also lies in the set in question. Hence the set is closed under multiplication
by Z[

√
3] and it is easy to show that it satisfies the other necessary properties of

an ideal. Hence the set is an ideal and in fact it is easy to see that it is the ideal
generated by 2.

6.2(c): Again it is obvious that the set satisfies the necessary properties except
possibly closure under multiplication by Z[

√
3] so we check this. Let c+ d

√
3 be an

arbitrary element of Z[
√

3] and let (2a+15b)+(5a+2b)
√

3 be an arbitrary element of
our set. Then their product is (2ac+15bc+15ad+6bd)+(5ac+2bc+2ad+15bd)

√
3 =

(2(ac+3bd)+15(bc+ad))+(5(ac+3bd)+2(bc+ad))
√

3. This is of the desired form so
we conclude the set is an ideal. We claim that in fact it is the ideal (2+5

√
3)Z[

√
3].

It is easy to see that this set contains the ideal because it contains the generator (just
set a = 1, b = 0). On the other hand, (2+5

√
3)(a+ b

√
3) = 2a+15b+(5a+2b)

√
3,

which is the form of every element in our set.

7.1: This set is a subring. Indeed one can check directly that the product of two
upper triangular matrices is again of the same form. Since the set also contains the
0 and identity matrix and is obviously closed under addition, we are done.
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7.2: The set
{(

a 0
0 0

)
: a in C

}
is not a subring of M2(C) because it does not

contain the identity matrix. One should note however that the set is in fact a ring,

with the multiplicative identity element
(

1 0
0 0

)
. This is an interesting example

of when one ring is contained in another, but is not a subring because either the
additive or multiplicative identity is different. Try to think of other examples where
this could happen.

7.3: This set is a subring. The only non-trivial matter to check is that it is closed
under multiplication. Indeed we have(

a b
0 a

)
.

(
c d
0 c

)
=

(
ac ad + bc
0 ac

)
.

7.4: This is a subring for the same reasons as 7.1.

7.5: This is not a subring. Indeed it is not closed under multiplication. For
example, (

1 2
0 1

)
.

(
i 1
0 −i

)
=

(
i 1− 2i
0 −i

)
.


