ASSIGNMENT 6 - MATH235, FALL 2009

Submit by 16:00, Monday, October 19

- 1. Calculate the following:
 - (1) $(2^{19808} + 6)^{-1} + 1 \pmod{11}$.
 - (2) 12, 12², 12⁴, 12⁸, 12¹⁶, 12²⁵ all modulo 29.

2. Use the Euclidean algorithm to find the gcd of the following pairs of polynomials and express it as a combination of the two polynomials.

x⁴ - x³ - x² + 1 and x³ - 1 in Q[x].
x⁵ + x⁴ + 2x³ - x² - x - 2 and x⁴ + 2x³ + 5x² + 4x + 4 in Q[x].
x⁴ + 3x³ + 2x + 4 and x² - 1 in Z/5Z[x].
4x⁴ + 2x³ + 3x² + 4x + 5 and 3x³ + 5x² + 6x in Z/7Z[x].
x³ - ix² + 4x - 4i and x² + 1 in C[x].
x⁴ + x + 1 and x² + x + 1 in Z/2Z[x].

3. Diffie-Hellman's key exchange protocol.

The Diffie-Hellman key exchange protocol is a method to allow two parties, A and B, to share a secret while communicating "in the open". It was a revolutionary idea at the time. Here is how it's done. A third party, trusted by A and B chooses a large prime number p and a non-zero element $g \in \mathbb{Z}/p\mathbb{Z}$ such that $\{g, g^2, \ldots, g^{p-1}\}$ are precisely all the non-zero congruence classes modulo p. The data p and g are then published for anyone to use.

A chooses a number a and B chooses a number b. A sends to B the element g^a modulo p and B sends to A the element g^b modulo p. The communication is done over an open channel. Then A calculates $(g^b)^a$ – the a-th power of the number A got from B, and B calculates $(g^a)^b$ – the b-th power of the element he got from A. Now both know $g^{ab} = (g^a)^b = (g^b)^a$. This is their shared secret. The assumption is that it is not feasible to an eavesdropper to calculate g^{ab} from the data g^a , g^b .

Answer the following questions.

- (1) What is it exactly that we need to know about integers modulo *p* to be sure that *A* and *B* indeed arrive at the same congruence class modulo *p*?
- (2) It is a fact that a g as above exists. Explain why we do not want to choose g such that $g^2 = 1$, or $g^3 = 1$, for example.
- (3) Let p = 13. Find all the elements $g \mod 13$ that have the property that $\{g, g^2, \ldots, g^{12}\}$ are precisely all the non-zero congruence classes modulo 13. (Labor reduction hint: if you

have calculated $\{g, g^2, \ldots, g^{12}\}$ note that you can easily determine the list $\{h, h^2, \ldots, h^{12}\}$ for any h of the form g^i .)

- (4) Suppose one had a method to determine a knowing g^a and g (i.e., one could solve the "discrete log problem"). Explain how one would then break the security of Diffie-Hellman.
- (5) Suppose that three parties *A*, *B*, *C*, wanted to share a secret. Propose a method to do that.