SOLUTIONS TO QUIZ 1 – ALGEBRA I, MATH235, FALL 2007

- (1) Let A, B, C be sets. The set $(A \setminus (A \setminus B)) \cup (B \setminus A)$ is equal to B. (How to know? draw a diagram).
- (2) The number of surjective functions from $\{1, 2, 3, 4\}$ to $\{1, 2\}$ is 14. (Why? There are altogether $16 = 2^4$ functions. Those that are not surjective take either only the value 1, or only the value 2. Thus there are 2 non surjective functions.)
- (3) If a|5c-d and a|d-3c and a is odd, then a|c and a|d. (Why? a divides (5c-d) + (d-3c) = 2c. Since a is odd (a, 2) = 1 and so a|c. Then a|(d-3c) + 3c so a|d).
- (4) Let α be the cardinality of \mathbb{R} and β the cardinality of the set of squares of natural numbers $\{0, 1, 4, 9, 16, 25, \ldots, n^2, \ldots\}$. Then $\alpha > \beta$. (The cardinality of the squares is the cardinality of \mathbb{N} . The inclusion $\mathbb{R} \supset \mathbb{N}$ gives $\alpha \geq \beta$ and we have proven in class (Cantor's diagonal argument) that $\alpha \neq \beta$.)
- (5) One of the following lists consists entirely of irrational numbers. Which?
 - (a) $\sqrt{2}, \sqrt{3}, \sqrt{4}, \sqrt{5}.$
 - (b) $\sqrt{2}, \sqrt{\sqrt{2}}.$
 - (c) $\sqrt{2}, (1+i)^4$.
 - (d) All the solutions to $x^3 = -1$ in complex numbers.

The answer is $\{\sqrt{2}, \sqrt{\sqrt{2}}\}$. (Either by eliminating the rest: $\sqrt{4} = 2$, $(1+i)^4 = -4$..., or by using that if $\sqrt{\sqrt{2}}$ is rational then so is its square, i.e., $\sqrt{2}$ is rational, but we know this is not so.)

- (6) The gcd of 3990 and 546 is 42.
- (7) Which of the following statements is correct?
 (a) The matrices { (a b b 0 d) : a, d ∈ ℝ, b ∈ ℂ } are a subring of M₂(ℂ).
 (b) {2n : n ∈ ℤ} is a subring of ℤ.
 (c) {a + bi : a, b ∈ ℝ, ab = 0} is a subring of ℂ.
 (d) The matrices { (a b 0 d) : a, d ∈ ℂ, b ∈ ℝ } are a subring of M₂(ℂ).
 The correct answer is (a). In (b) we don't have 1. in (c) 1, i are elements of the set but not 1 + i. In (d) the set is not closed under multiplication (typically you'll get

but not 1+i. In (d), the set is not closed under multiplication (typically, you'll get a complex entry for b after multiplication).

(8) Let A be the set of complex numbers z such that z^2 is real and B the set of complex numbers z such that $\overline{z} + z = 0$. Then $A \cap B = \{bi : b \in \mathbb{R}\}$. (B is in fact the imaginary axis and is contained in A).

Answer the following question.

Prove that $\sqrt{2}$ is an irrational number.

Almost everyone followed one of the two proofs given in class. We insisted you be very precise (for example, when stating $\sqrt{2} = a/b$ saying also that (a, b) = 1 which is used later), or when writing $\sqrt{2} = p_1^{a_1} \cdots p_r^{a_r}$ that the p_i are distinct primes etc. On the whole we were very forgiving since this is the first test most of you take in a university. In the coming quizzes higher standards will be imposed).