QUIZ 3 – ALGEBRA I, MATH235, FALL 2007

*

PART A. (50 points for answering correctly 5 out of 6).

- (1) Which of the following functions is a ring homomorphism from $\mathbb{R}[x] \to \mathbb{R}$? (circle all correct answers)
 - (a) The map taking $f(x) = a_n x^n + \dots + a_1 x + a_0$ to a_0 .
 - (b) The map taking $f(x) = a_n x^n + \cdots + a_1 x + a_0$ to $a_1 + a_0$.
 - (c) The map taking $f(x) = a_n x^n + \cdots + a_1 x + a_0$, $a_n \neq 0$, to a_n and taking the zero polynomial to zero.
 - (d) The map taking $f(x) = a_n x^n + \dots + a_1 x + a_0$ to $a_0 a_1 + a_2 \dots + (-1)^n a_n$.

The correct answers are (a) and (d). They are special cases of evaluation homomorphisms. The first is by substituting 0 for x, the second is by substituting -1 for x.

- (2) Circle all correct statements:
 - (a) Every ideal of \mathbb{Z} is principal.
 - (b) Every ideal of $\mathbb{Z}[x]$ is principal.
 - (c) Every ideal of \mathbb{Q} is principal.
 - (d) Every ideal of $\mathbb{Q}[x]$ is principal.
 - (e) Every ideal of $\mathbb{Q}[x, y]$ is principal.
 - (f) Every ideal of $\mathbb{Q}[x]/(x^2 + x + 1)$ is principal.
 - (g) Every ideal of $\mathbb{Q}[x]/(x^2)$ is principal.

The correct answers are (a), (c), (d), (f), (g). For (a) and (d) these are theorems we proved. In case (c) and (f) we deal with fields $(x^2 + x + 1)$ is irreducible over \mathbb{Q}) and a field \mathbb{F} has only two ideals (0) and (1) = \mathbb{F} (because any non-zero ideal contains a unit and so is equal to \mathbb{F}). Case (g) (which is just the ring $\mathbb{Q}[\epsilon]$) was analyzed in class. The cases (b) and (e) were discussed in the notes, tutorials and/or assignments.

- (3) Let $\sigma = (1234)$, $\tau = (15)$ be permutations in the symmetric group S_5 . Then $\sigma^2 \tau \sigma^{-1}$ is
 - (a) (12453).
 - (b) (12)(45).
 - (c) (12534).
 - (d) (134)(25).

The correct answer is (12534).

- (4) The maximal order an element of S_7 can have is
 - (a) 7.
 - (b) 12.
 - (c) 14.
 - (d) 8.
 - (e) 10.

The answer is 12, realized for example by (1234)(567).

- (5) Which is of the following is the correct statement? (only one statement is correct)
 - (a) The ring $\mathbb{R}[x]/(x^2+1)$ is isomorphic to \mathbb{C} , the isomorphism taking x to i.
 - (b) The ring $\mathbb{R}[x]/(x^2+1)$ is isomorphic to $\mathbb{R} \times \mathbb{R}$, the isomorphism taking x to (0,1).
 - (c) The ring $\mathbb{R}[x]/(x^2+1)$ is isomorphic to \mathbb{R} , the isomorphism taking x to 0.
 - (d) The ring $\mathbb{R}[x]/(x^2+1)$ is isomorphic to the ring of dual numbers $\mathbb{R}[\epsilon]$, the isomorphism taking x to ϵ .

The correct statement is (a). We did it in class and it's in the notes too.

(6) The number of solutions for the equation $x^2 + x - 4 \equiv 0 \pmod{17 \cdot 19}$ is

- (a) 1.
- (b) 0.
- (c) 2.
- (d) 4.

The answer is 2. The discriminant is 17 and so there is one solution modulo 17. On the other hand $17 \equiv 36 \pmod{19}$ and so there are two solutions modulo 19. The number of solutions (mod $17 \cdot 19$) is $1 \times 2 = 2$.

PART B. (50 points) Answer the following question in the exam notebook. Make sure you quote explicitly and precisely the results you are using in your proof.

Let $\mathbb{F}_5 = \mathbb{Z}/5\mathbb{Z}$ be the field of 5 elements. Prove the following:

- (1) The polynomial $x^2 2$ is irreducible in \mathbb{F}_5 .
- (2) The ring $L = \mathbb{F}_5[x]/(x^2 2)$ is a field of 25 elements.
- (3) The polynomial $t^2 2$ has a root in L. What is it?
- (4) Prove that the polynomial $f(t) = t^2 + t 3$ is also irreducible over \mathbb{F}_5 . Find a root of f in L (write it as ax + b for some $a, b \in \mathbb{F}_5$).

The polynomial $x^2 - 2$ is irreducible in \mathbb{F}_5 because 2 is not a square in \mathbb{F}_5 . In fact, the squares are 0, 1, 4.

We proved that if \mathbb{F} is a field and h(x) is an irreducible (non-constant) polynomial then $\mathbb{F}[x]/(h(x))$ is a field and so in particular L is a field. We further proved that if h has degree n, then any element of $\mathbb{F}[x]/(h(x))$ is represented by a unique polynomial class of degree less than n. In particular, if \mathbb{F} has q elements then $\mathbb{F}[x]/(h(x))$ has q^n elements. Applying it to our situation we find that L has $5^2 = 25$ elements.

A root of the polynomial $t^2 - 2$ in L is x. Indeed, $x^2 - 2$ is zero in L. (Another root is -x).

The discriminant of $t^2 + t - 3$ is $1 + 4 \cdot 3 = 13 \equiv 3 \pmod{5}$, which is not a square in \mathbb{F}_5 (see above). Since a quadratic polynomial is reducible if and only if it has a root, and the roots of f(t) are $2^{-1}(-1 \pm \sqrt{3})$, if f(t) is reducible then 3 is a square in \mathbb{F}_5 and we know that's not the case.

To show 3 is a square in L, we solve the equation $(ax + b)^2 = 3$ for $a, b \in \mathbb{F}_5$. One finds that $a^2x^2 + 2abx + b^2 = 2abx + 2a^2 + b^2 = 3$. It follows that 2ab = 0 and so that either a = 0 or b = 0. If a = 0 it follows that $b^2 = 3$, which does not have a solution. Thus, b = 0and we find that $2a^2 = 3$ and we can take a = 2. Thus $3 = (2x)^2$ in L. The solutions for f(t) are then $2^{-1}(-1 \pm \sqrt{3}) = 3(-1 \pm 2x) = 2 \pm x$.