SOLUTIONS TO QUIZ 2 – ALGEBRA I, MATH235, FALL 2007

- (1) 3^{248} is congruent modulo 7 to 2. (Use that $3^6 \equiv 1$, by Fermat, and so $3^{246} =$ $(3^6)^{41} \equiv 1 \mod 7, \text{ etc.}$
- (2) For which primes p > 2 does the equation $x^2 + x + 4$ have a unique solution in \mathbb{F}_p ? The discriminant is $1 4 \cdot 4 = -15$. To have a unique solution the discriminant should be zero and that means that p is either 3 or 5.
- (3) The gcd of the polynomials $x^2 + 1$ and $x^3 + 2x + 2$ over the field \mathbb{F}_5 is x + 2. (Just do the Euclidean algorithm: $x^3 + 2x + 2 = x(x^2 + 1) + x + 2, x^2 + 1 = (x 2)(x + 2)$.)
- (4) Let n be a positive integer. The number of solutions of a polynomial of the form $x^2 + ax + b$ in a ring $\mathbb{Z}/n\mathbb{Z}$ could be more than 2. (We've seen such examples when n is not prime.)
- (5) Which of the following relations on \mathbb{C} is an equivalence relation? (Circle all correct answers).
 - (a) $x \sim y$ if $|2x| \geq |y|$.
 - (b) $x \sim y$ if Re(x) = Re(y).
 - (c) $x \sim y$ if x + y = 0.

(d) $x \sim y$ if x = y.

 $x \sim y$ if Re(x) = Re(y) and $x \sim y$ if x = y are equivalence relations. For the relation $x \sim y$ if $|2x| \ge |y|$ symmetry fails: $3 \sim 1$ but not $1 \sim 3$. For the relation $x \sim y$ if x + y = 0 we don't have reflexive because we don't have $1 \sim 1$. (Other properties fail too in these last examples.)

- (6) Which of the following sets is an ideal of the ring $\mathbb{Z}[\sqrt{2}]$? (Circle all the correct answers)
 - (a) $\{2a + b\sqrt{2} : a, b \in \mathbb{Z}\}.$
 - (b) $\{a + 2b\sqrt{2} : a, b \in \mathbb{Z}\}.$ (c) $\{5a : a \in \mathbb{Z}\}.$ (d) $\{0\}.$

The sets $\{0\}$ and $\{2a + b\sqrt{2} : a, b \in \mathbb{Z}\}$ are ideals. The other two are not closed under multiplication by $\sqrt{2}$.

- (7) The unique factorization of $3x^3 + 5x^2 6x 10$ in $\mathbb{Q}[x]$ is $3(x + 5/3)(x^2 2)$. (The factorization $3(x + 5/3)(x + \sqrt{2})(x - \sqrt{2})$ is not over \mathbb{Q} , the factorization $(3x+5)(x^2-2)$ is not given using monic polynomials and the factorization 3(x-1)2(x+5/3)(x+1) cannot be correct because -1 is not a root.)
- (8) How many irreducible monic quadratic polynomials are there over \mathbb{F}_p ? The answer is p(p-1)/2. The reason is that any reducible monic polynomial is the product of two linear monic polynomials that may or may not be distinct. There $\binom{p}{2}$ choices for factorization with different linear terms + p for factorizaare tion as a square of a linear term. Altogether there are $\binom{p}{2} + p$ reducible monic quadratic polynomials. The number of monic quadratic polynomials is p^2 and $p^2 - (\binom{p}{2} + p) = p(p-1)/2.$

The proofs requested in Part II were all given in class.