Algebraic Geometry Seminar
The seminars are taking place at McGill University, Burnside Hall,
Room 1205 at Wednesdays 14:00- 15:30.
2001-2002 2000-2001
Schedule for 2001-2002
Fall, Winter.
Fall 2001
-
Thursday, August 2, 2001. 10:30, Burnside 920.
Speaker: Jeff Achter (Columbia)
Title: Differential Galois Theory and Abelian Varieties.
Winter 2002
-
Wednesday, January 23, 14:00-15:15, Burnside 1205
Speaker: S. Venereau (McGill)
Title: Is any regular embedding of C^k into C^n linearisable?
-
Wednesday, March 6, 14:00-15:15, Burnside 1205
Speaker: C. Ingalls (U. New Brunswick)
Title: Birational Classification of Orders over Surfaces
Abstract: We apply Mori's minimal model program for
log surfaces to obtain a birational classification of orders
over surfaces. This is related to the problem of
classifying division algebras or Brauer-Severi varieties
such as conic bundles. We will also discuss some
constructions of orders of negative Kodaira dimension.
-
Wednesday, March 13, 14:00-16:00, Burnside 1205
Speaker: V. Poppov (Steklov Inst.)
Title: *Self-dual algebraic varieties and nilpotent orbit
at 2:00 pm
*Automorphism groups
of finite dimensional simple algebras at 3:00 pm
-
Wednesday, March 20, 14:00-16:00, Burnside 1205
Speaker: V. Poppov (Steklov Inst.)
Title: *Generators and relations of affine coordinate rings of semisimple
groups at 2:00 pm
*Discrete complex reflection
groups at 3:00 pm
-
Wednesday, May 1, 13:30-14:30, Burnside 1205
Speaker: V. Brinzanescu (Bucharest/MPI Bonn)
Title: Holomorphic vector bundles on non-Kaehler elliptic
surfaces
-
Wednesday, May 1, 15:00-16:00, Burnside 1205
Speaker: K. Khuri-Makdisi (American U. of Beirut)
Title: Linear algebra algorithms for divisors on an algebraic curve
Schedule for 2000-2001
Fall, Winter.
Fall 2000
-
Wednesday, September 6, 2000.
Speaker: Lucy Moser-Jauslin (Dijon),
Title: A non linearizable action of S3 on C4.
-
Thursday, September 14, 2000. 15:00, Burnside 920.
<--- Note the unusual day, time and place.
Speaker: Nicole Lemire (U. Oregon),
Title: Multiplicative invariant fields and algebraic group invariants.
-
Wednesday, September 20, 2000.
Speaker: Karlheinz Kiyek (U. Padeborn),
Title: General elements for complete ideals in
two dimensional regular local rings and applications.
-
Wednesday, September 27.
Speaker: Irene Bouw (U.Penn.),
Title: Hurwitz spaces in mixed characteristic.
-
Wednesday, November 8.
Speaker: R. Jardin (Western Ontario),
Title: Homotopy theory and algebraic geometry.
-
Friday, November 10, 14:30-15:30.
Speaker: M. Lahyane (ICTP Trieste)
Title: About exceptional curves in rational surfaces.
-
Wednesday, November 15.
Speaker: J. Wlodarczyk (Purdue),
Title: Algebraic Morse Theory and Factorization of Birational Maps.
-
Wednesday, December 6.
Speaker: J. Achter (Columbia),
Title: Monodromy in families of abelian varieties.
-
Thursday, December 7.
Speaker: T. Asanuma (Toyama),
Title: Multiconnectedness and the Jacobian Conjecture.
Winter 2000
Wednesday, January 10.
Speaker: A. Hundemer (McGill),
Title: Effective Hilbert Nullstellensatz.
Wednesday, February 7.
Speaker: S. Hammond Marshall (Arizona (Tuscon)),
Title: Component groups of Neron models and p-adic Galois representations.
Wednesday, April 11.
Speaker: Pierrette Cassou-Nogues (Bordeaux),
Title: Sur la fonctions Zeta topologique.
La fonction zéta topologique a été
introduite par Denef et Loeser. On commencera par rappeller sa définition
et les conjectures que Denef et Loeser ont faites à son propos.
Après une discussion sur l'état de ces conjectures, on donnera
des indications sur des résultats obtenus par Artal, Luengo, Melle
et moi-même, à savoir : La fonction zéta topologique
n'est pas un invariant topologique, la conjecturede la monodromie est vraie
pour les singularités de surfaces superisolées.
Wednesday, April 18.
Speaker: Eyal Goren (McGill),
Title: On the geometry of Hilbert moduar varieties over ramified
primes.
This is a report on a work in progress with F. Andreatta.
Hilbert modular varieties associated to a totally real field L are singular
in characteristic p, if p is ramified in the field L. We define a stratification
that refines the Deligne-Pappas singularity strata and determine its properties.
This allows us to determine the structure of Newton strata and their dimensions.
This new result is one of a few examples where this is known.
Schedule for 1999-2000
Fall 1999
-
Wednesday, September 29, 1999 :
Speaker: M. Koras (Warsaw),
Title: Contractible affine surfaces with a quotient singularity
-
Wednesday, October 6, 1999 :
Speaker: B. Singh (Tata),
Title:Subintegrality and invertible modules.
-
Wednesday, October 20, 1999 :
Speaker: A. Hundemer (McGill),
Title: Comparing the Zariski and Classical topologies: All you always
knew and were afraid to ask.
-
Wednesday, October 27, 1999 :
Speaker: A. Hundemer (McGill),
Title: Comparing the Zariski and Classical topologies: All you always
knew and were afraid to ask (PART II).
-
Wednesday, November 17, 1999 :
Speaker: H. Farkas (Hebrew U.),
Title: Some geometry related to the modular group SL(2, Z).
-
Tuesday, December 14, 1999 :
Speaker: V. Ostrik (Harvard & Moscow),
Title: A basis in equivariant K-theory of the nilpotent cone.
Winter 2000
-
Wednesday, March 1, 2000 :
Speaker: E. Goren (McGill),
Title: Picard groups of moduli problems. Part I: Grothendieck Topologies.
-
Wednesday, March 8, 2000 :
Speaker: B. Broer (U de M),
Title: Picard groups of moduli problems. Part II: Etale, smooth
and flat maps.
-
Wednesday, March 22, 2000 :
Speaker: P. Russell (McGill),
Title: Picard groups of moduli problems. Part III: Moduli Topologies.
-
Wednesday, March 29, 2000 :
Speaker: P. Russell and E. Goren (McGill),
Title: Picard groups of moduli problems. Part IV: Moduli Topologies
(and versal families).
-
Wednesday, April 5, 2000 :
Speaker: E. Goren (McGill),
Title: Picard groups of moduli problems. Part V: Versal Deformations;
The Elliptic Topology.
-
Wednesday, April 12, 2000 :
Speaker: E. Goren (McGill),
Title: Picard groups of moduli problems. Part VI: The Elliptic Topology.
-
Wednesday, April 26, 2000 :
Speakers: The Participants,
Title: Picard groups of moduli problems. Part VII: Conclusion and
Discussion.