
1

Applications of Expander Graphs

The three applications of expander graphs which this will cover are:
1. Error Correcting Codes
2. Super Concentrators
3. Hash Functions

The first two applications are covered in the first chapter of Hoory, Linial,
and Wigderson. While the last is covered in Cryptographic Hash Functions
from Expander Graphs by Charles, Goren and Lauter.

Dylan has already covered most of the background which we will need with
the exception to the idea of bipartite expander graphs called magical graphs.

Magical Graphs

For a set S ⊂ G, where G is a graph, let Γ(S) denote the neighbours of S in
G.

Given a bipartite graph G = (L,R;E) we refer to L as the left vertex set and
R as the right vertex set.

Definition: A bipartite graph G = (L,R;E) is called an (n,m; d)-magical
graph if |L| = n, |R| = m, every left vertex has d neighbours and for each
subset S ⊂ L the following properties hold:
a) |Γ(S)| > 5d

8
|S| when |S| ≤ n

10d
and

b) |Γ(S)| > |S| when |S| ≤ n
10d

.

Remark 1: As it is a bipartite graph all the edges must lie between a left
vertex and a right vertex.

Remark 2: As the left and right vertex sets can have different sizes we no
longer require the graph to be d-regular, instead we require the property that
every left vertex has d neighbours.

Remark 3: The two properties a) and b) give the ‘good expander’ properties
of the graph.

The following lemma states the existence of magical graphs when the size

2

of the two sets is large enough. The proof, which we will not give, uses a
probabilistic argument which shows that in fact most bipartite graphs are
magical.

Lemma 1: There exists a constant n0 such that for all d ≥ 32, n ≥ n0 and
m ≥ 3n

4
there exists an (n,m; d)-magical graph.

We will see shortly that the magical graphs will be useful in the first two
applications. The first application is to error correcting codes.

Error Correcting Codes

A common technical issue that arises in data transmission, especially with
data sent over long distances through the air where there may be interference,
is that sometimes parts of the transmitted data are corrupted during the
transmission.

We would like a method of encoding data so that if errors occur then most
of the errors can be detected and corrected.

Linear Codes

The idea is to map blocks of n bits to blocks of more bits, say n + k bits, in
a way that the redundancies can be used to detect and correct errors.

To start with we will define a metric on the space we are working with.

Definition: Given two strings of n + k bits c1 and c2 the Hamming Dis-
tance between c1 and c2, denoted dH(c1, c2), is the number of bits which are
different.

For example, dH(0101010, 0101011) = 1 since they differ only in the last
variable.

The method for sending and receiving encoded data using a linear code is as
follows:

1. The sender first divides the message into blocks of n bits.
2. These n bits are then mapped to different blocks of n + k bits called
codewords using an injective ‘encoding’ function.

3

3. These codewords are then transmitted.
4. The receiver divides the message into n + k bit blocks.
5. The receiver compares each block to a list of possible valid codewords.
6. If it the block is not a codeword the receiver replaces it by the closest code-
word. (By closest we mean in terms of the hamming distance, so codeword
with the fewest number of different digits. This closest entry is assumed to
be the initial codeword. This is the step where the errors are detected and
corrected.)
7. The receiver then applies the inverse (decoding) function to these code-
words to find the initial blocks of n bits. Stringing these blocks together
gives the initial message.

A formal definition for a linear code is:

Definition: A linear code is a n-dimensional subspace of n of Fn+k
2 .

Notice that we could use any finite field but we will use F2 for simplicity as
a bit can be thought of as F2.

Taking the standard basis vectors to a basis for a code gives you a function
which you can use to encode your data. The elements in the image of the
function are the codewords. Thus a code C ⊂ {0, 1}n is the set of possible
codewords.

If the distance between any two codewords entries on the list is 2d + 1 then
d errors can always be corrected, while d + 1 errors can always be detected.
Thus we want there to be a large distance between any two codewords so
that we can correct as many errors as possible.

Definition: The distance of a code C ⊂ {0, 1}n is

distance =
minc1 6=c2∈C dH(c1, c2)

n
.

However, we also want to send as few bits as possible which leads us to the
idea of the rate of a code.

Definition: The rate of a code C ⊂ {0, 1}n is

Rate =
log |C|

n
.

4

Thus we want to maximize the rate as well as the distance because this will
mean that the codewords are spread out throughout the string and you are
using as much of the string as possible. For example, you don’t want all
the codewords to be clumped in the first few bits because this would be
inefficient; you would be transmitting more bits than you would need.

This leads us to the natural problem.

Problem: Is it possible to design a linear code with |C| = 2k with rate > R0

and distance > d0?

Using magical graphs we can construct a linear code the following properties.

Theorem: There exists a linear code with rate ≥ 1
4

and distance ≥ 1
10d

.

We will start with the following lemma.

Lemma 2: Given a (n, 3n
4

; d)-magical graph G and a subset S ⊂ L where
|S| < n

10d
there exists a vertex u ∈ R with exactly one neighbour in S.

Proof of Lemma 2: By the definition of a magical graph

Γ(S) ≥ 5d

8
.

Rewriting this equation gives us

|S| ≤ |Γ(S)| 8

5d
.

As d ≥ 1 we see that
|S| < 2|Γ(S)|.

This means that although each vertex in S has d neighbours, the average
number of neighbours for a vertex in Γ(S) is less than 2. Obviously a vertex
in Γ(S) has at least one neighbour. Thus there is a vertex u ∈ Γ(S) with
only one neighbour, i.e., |Γ(u) ∩ S| = 1.

Proof of the Theorem: Let G be an (n, 3n
4

; d)-magical graph. Let S ⊂ L
where |S| < n

10d
.

5

We will index all the vertices in R by vi and in L by wj. Start by creating a
3n
4

by n matrix A where ai,j is 1 if vi is adjacent to wj, i.e.,

ai,j =

{
1 if vi ∈ R adjacent to wj ∈ L

0 otherwise.

Normally the adjacency matrix is a square matrix but for a bipartite graph
the diagonal blocks are zero and the remaining blocks are the transpose of
each other (as the adjacency matrix is a symmetric). Thus we are only
concerned with one of these remaining blocks. The following gives the form
for a adjacency matrix of a bipartite graph in terms of our matrix A

(
0 A
AT 0

)
.

Recall the formal definition of a code we gave was a subspace of Fn
2 . Let

C = ker A. We want to show that C is a code.

As there are only 3n
4

rows we see

Rank A ≤ 3n

4
.

This implies

dim C ≥ n

4
.

Thus
|C| ≥ 2

n
4 .

As the rate was log2 of the code’s size this proves Rate ≥ n
4
.

As the code is a linear subspace, given two non-zero codewords c1 and c2 you
could shift them preserving the distance so that one is zero and the other is
c2 − c1. Thus the distance of the code equals the least number if ones in a
non-zero codeword.

6

Suppose there was x ∈ C ⊂ Fn
2 where x had less than n

10d
ones. Let S ⊂ L be

the vertices which correspond to non-zero digits of x. Then |S| < n
10d

. From
Lemma 2 there exists vi such that |Γ(vi) ∪ S| = 1.

Ax =

...

1 (ith entry)
...

 .

Thus x /∈ C as x is not in the kernel which is a contradiction. This shows
there is no codeword with less than n

10d
ones. Therefore dH ≥ 1

10d
which

concludes the proof.

Next we will use magical graphs to construct super concentrators.

Super Concentrators

Definition: A graph G is called a super concentrator if there are subsets I
and O, called the input and output sets respectfully, such that for every k
and for all S ⊂ I and T ⊂ O with |S| = |T | = k, there exits k vertex disjoint
paths in G from S to T.

Super concentrators are graphs that have a large number of totally indepen-
dent paths between ‘input nodes’ and ‘output nodes’.

If you model a data network in a way where there are a lot of independent
paths between sender and receiver then the network is resilient to line breaks.

This can be useful when you design a circuit. Although it also makes sense
that you would want to be using as few edges as possible to reduce the cost
of the wire, (when circuits were still made of wire), which leads us to the
following problem.

Problem: Given n what is the smallest K such that there is a super con-
centrator with n input and output vertices and Kn edges?

Trivially it is always possible to have a super concentrator with n2 edges. We
would like to construct one with fewer edges. Using magical graphs we can
prove the following theorem.

7

Theorem: There exists a constant K which depends only on the degree d
and n0, where the n0 is the constant mentioned in Lemma 1.

To do this we will need a result from graph theory.

Definition: A perfect matching for a bipartite set is a set of edges in a graph
such that each vertex in the left set is incident to precisely one vertex in the
right set.

Hall’s Marriage Theorem: Given a bipartite graph G = (L,R,E) there
exists a perfect matching if and only if |X| ≤ |Γ(X)| for any X ⊂ L.

Proof: Given a
(
n, 3n

4
; d
)
-magical graph and S ⊂ L.

We will use Hall’s theorem to show that there is a perfect matching from S
to Γ(S).

By the definition of a magical graph

|Γ(S)| =

{
5d
8
|S| if |S| ≤ n

10d

|S| if n
10d

< |S| ≤ n
2

In the first case if d = 1 then |Γ(S)| ≥ |S| since every vertex in S has a
unique vertex in Γ(S) while if d > 1 then |Γ(S)| ≥ 10

8
|S| < |S|.

In the second case we also have |Γ(S)| ≥ |S|.

Thus in both cases |Γ(S)| > |S|.

This implies by Hall’s Theorem there exists a perfect matching from S to
Γ(S).

We will recursively construct a super concentrator. We proceed by induction
on n. Recall there was a constant n0 in Lemma 1 which proves the existence
of magical graphs. If n < n0 choose a complete bipartite graph. It has n2

edges and is a super concentrator.

If n ≥ n0 choose two copies G1 = (L1, R1, E1) and G2 = (L2, R2, E2) of a
(n,m; d)-magical graph given by Lemma 1 (where m =

⌈
3n
4

⌉
and d = 32).

8

Let C be a super concentrator between R1 and R2. We choose C to be the
super concentrator found by induction. Thus we glue G1 and G2 together
using C. We also add an edge from each vertex in L1 to the corresponding
vertex in L2.

Thus the vertices of the graph are

V = L1 ∪R1 ∪R2 ∪R1.

Thus the edges of the graph are

E = E1 ∪ E2 ∪ E(C) ∪ {edges from vi ∈ L1 to wi ∈ L2}.

We want to show that this graph is a super concentrator with input set L1

and output set L2.

Choose S ⊂ L1 and T ⊂ L2 such that |S| = |T | = k.

If k ≤ n
2

then |ΓG1(S)| ≥ |S| and |ΓG2(T)| ≥ |T | since G1, G2 are magical.

By Hall’s Theorem there exists a perfect matching from S to S ′ ⊂ ΓG1(S)
and T to T ′ ⊂ ΓG2(T).

As C is a super concentrator this implies there are disjoint paths from S ′ to
T ′. This is disjoint paths from S to S ′ and S ′ to T ′ and T ′ to T. Thus linking
them together you get k disjoint paths from S to T.

If k > n
2

identifying the vertices in L1 and L2 there exists an overlap. Thus
match S ∩ T and S ∩ T directly using the edges between L1 and L2.

Then you are left with sets S \ T and T \ S which are smaller than n
2
. Then

you can use the previous method to construct disjoint paths from S \ T and
T \ S.

Thus C ′ is a super concentrator.

The number of edges are:

9

e(n) =

{
2nd + n + e(3n

4
) for n > n0

n2 for n ≤ n0.

Solving this recurrence relation gives a constant K which depends only on
n0 and d. More precisely we want K such that 2nd + n + K(3n

4
) ≤ Kn and

K ≥ n0. Thus K = max(4(2d + 1), n0) satisfies these conditions and hence
this concludes the proof.

Finally we will use expander graphs to generate hash functions.

Hash Functions

A hash function is a function which takes a large, unbounded amount of data
and maps it to a string of n-bits. As well it is a publicly known function.
However, while everyone should know how to compute the hash, it should be
hard to find the inverse to the function.

One main reason for hash functions is to give a digital signature for docu-
ments. For example, Microsoft will sign their files by calculating the hash of
its files. After the computer downloads one of their files the computer cal-
culates the hash of the file and compares this hash to the digital signature.
This way it checks to make sure the file is the authentic file and not a virus
pretending to be Microsoft’s file.

In order for the hash to be useful for digital signatures it should be infeasible
for someone to create another document with the same hash.

More formally, four properties which we would want in any cryptographic
hash function are:
1. easy to compute the hash value for any given message,
2. infeasible to find a message that has a given hash,
3. infeasible to modify a message without changing its hash,
4. infeasible to find two different messages with the same hash.

The problem is that many hash functions which are used today are in the
same family. Some of the hash functions in this family have already been
proven to be vulnerable to attacks. The fear is that the rest will eventually

10

also prove to be vulnerable to attacks. Thus it would be desirable to an
alternative which is provably secure while still easy to compute.

The idea of having a provably secure hash is to have a hash where solving the
problems given in 2, 3 and 4 requires you to solve a mathematical difficult
problem like factoring numbers.

We want a method which is mathematically secure but still easy to compute.

Right now the methods which are provably secure take more time to compute.
However, perhaps with some work they can be streamlined and there can be
circumstances where it would still be worthwhile.

We will discuss methods for constructing provably secure hash function using
Ramanujan expander graphs.

Expander Graphs

Suppose we are given an 3-regular expander graph G.

We are choosing 3-regular for simplicity since we are working base 2. How-
ever, if we had a k-regular expander graph we could write the data base k−1
and the same idea would work.

The steps for getting hash (using a random walk on a 3-regular graph) from
unbounded string on bits is given as follows:

1. We choose a vertex v0. (Choosing a different vertex would give us a
different hash function.)
2. Order the edges for each vertex from 1 to 3. The orderings of the edges
will not be consistent for different vertices.
3. Starting at v0 if the first digit is 0 then take the least edge, if it is 1 take
the next edge.
4. Call the the other endpoint of the edge v1.
5. If the second digit is 0 take the least remaining edge (don’t include the
edge you just used), if it is 1 use the other edge.
6. Call the other endpoint of this edge v2.
7. Repeating in this fashion gives a random walk which has no backtracking.
8. The endpoint of the random walk is the output.

11

Thus the output is a number between 1 and n where n is the number of
vertices in the graph, or log2 n bits.

A random walk on an expander graph mixes quickly. By this we mean the
endpoint approximates uniform distribution after O(log(n)) steps.

Next we will give a method for constructing expander graphs using elliptic
curves.

Pizer’s Ramanujan Graphs

We will assume a bit of background on elliptic curves. See Silverman’s Elliptic
Curves for more details.

Let p be a large prime say 256 bits and let l be a small prime as in our
previous discussion we can assume it is 2.

An elliptic curve can be thought of an a non-singular curve of degree 3.

Adding a point at infinity turns the points on this curve into an abelian
group where the point at infinity was the identity.

We will be interested in a certain type of elliptic curve called a supersingular
elliptic curves. The isomorphism classes of supersingular elliptic curves can
be classified by an invariant called the j-invariant. We will let the values for
the j-invariant be the vertices for the graph we will be constructing.

The j-invariant must lie in the field. As we will be dealing with finite fields
this means there are only finitely many vertices.

Recall an l-isogeny is a surjective homomorphism (when you work over the
algebraic closure) where the kernel is a cyclic group of order l. We will draw
an edge between two vertices if there is an l-isogeny between them.

Again when work over the algebraic closure the l-torsion points form a group
Z
lZ ×

Z
lZ which means there are l + 1 of these l-isogenies. This means we have

an l + 1-regular graph.

Although we will not prove it here, it follows from the fact that it is a
Ramanujan graph that this graph has good expander properties.

12

As we can put an ordering on the (l + 1) isogenies, because we can order
their generators, we can order the edges in a natural fashion.

Next we make a random walk as was mentioned earlier.

The problem of finding an input which has a hash output of a particular
value reduces to the problem of factoring a map into l-isogenies, which is a
hard problem.

The graph can also be shown to have a large girth (in other words, there are
no small cycles).

The other method for constructing good expander graphs mentioned in the
paper by Charles, Goren and Lauter has been shown to be vulnerable to
attacks.

