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(This lecture is based on [HLW06])

Recall that if G is an undirected graph with n vertices, then its adja-
cency matrix has n real eigenvalues \y > Ay > ... > \,. Then, in order to
construct a family of d-regular expanders, by the Alon-Milman theorem, we
need to bound the spectral gap (d — A2) from below. Hence it is important
to understand the behavior of \,.

1 Main statement and definition

Theorem 1.1 (Alon-Boppana). There exists a constant ¢ such that for every
connected finite reqular graph G,

Xa(G) > 2vVd —1 (1 — é)

where A = diam(G) and d = deg(v) for every vertex v.

Corollary 1.2. Let (G,,)>°_; be a family of connected, d-regular, finite graphs
with |V (Gp)| — o0 as m — oco. Then,

liminf Ao (Gp,) > 2vVd — 1

m—00



In view of this corollary, we define Ramanujan graphs as graphs that are
optimal in this sense:

Definition 1.3. An (n,d)-graph G (n vertices and d-regular) is called Ra-

manujan if
AMG) <2vd—-1

where A(G) = max |A|.
[Ail#d

2 The infinite tree 7; and its spectrum

Throughout this section T' = T, V = V(T') and N(v) denotes the set of
neighbors of a vertex v € V. We can define

AT . ZQ(V) — lQ(V)

just like in the finite case, that is,

(Arf)(w) = > flw).

weN (v)

We view Az in B(l2(V')), the Banach algebra of bounded linear operators on
(V).

Definition 2.1. We say a function f : V' — C is spherical around vertex
v if f(u) depends only on the distance between u and v (dist(u,v)).

For any function f : V — C, we can define its spherical symmetriza-
tion around v to be a function f that is spherical around v and such that

S fw= Y f(u) for every i > 0.
dist(u,v)=t dist(u,v)=t
Definition 2.2. The spectrum of A is
o(Ar) :=={A\: A\ — Ay is not invertible}

(For basic properties of the spectrum, see [Rud91])

Theorem 2.3 (Cartier). o(Ar) = [-2v/d — 1,2v/d — 1]



Proof. (sketch)

We start by fixing a vertex v € V and consider it to be the ‘root” of our
tree.

It can show that in our case,

AE O'(AT> s 61} ¢ 1mg(>\f — AT>

where 0, is the characteristic function of v (d,(v) = 1 and d,(u) = 0 for all
the other u € V).
So, it is enough to show that

0y = (Al — Ag) - f (1)

has a solution (in l(V)) if |A\| < 2v/d — 1 and does not have a solution if
|A| > 2v/d — 1 (see theorems 12.26 and 10.13 in [Rud91]).

Claim 1. We may assume f in equation (1) is spherical around v (more
precisely, if (1) has a solution for some f, then it also has a solution for some
f spherical around v).

In fact, if f satisfies (1), then it is easy to show its spherical symmetriza-
tion around v also satisfies (1).

If f is spherical around v, then it is determined by a sequence fy, f1, fo, ...
such that f(u) = f; for every u satisfying dist(u,v) = i. Using this notation
it is not hard to see that a spherical function f satisfies (1) if and only if:

/\fz - fi—l + (d - 1>fi+1 for 1 2 1

Using linear algebra we can show the solutions { f;} of (2) are of the form

Aty /A2—4(d—1)

fi = ap’. + Bp', where ps = 2(d—1)
Now, if [A] < 2v/d =1 then |p<| = 7. Hence, |f;| = O((d —1)7?)

laccording to the authors, this is an easy computation; the upper bound
is easy to check but I could not verify the lower bound]. Since there are
O((d — 1)?) vertices at distance 4, this means such an f would not be in

I, (in fact, ||f]|5 > C’i(d —1)H((d —1)72)% = C’il = o0). Hence, if
i=0 1=0
Al < 2v/d—1, then A ¢ o(Ar).



If A >2Vd—1, then r = |p_| < \/C%. In this case, we choose a = 0,

giving f = fp’. Then, ||f||; < C i(d = 1)i(|pr))* = €| i((d - 1)r)’.

Since r < \/%, we obtain (d—1)r? < 1 and, thus, ||f||> < co. Hence, f € I,.
It is clear that it satisfies (2) for all ¢ > 1. We just have to check it satisfies
Mo =dfi +1,ie., A\ =dBp_ + 1. One can check that this holds for some
choice of (. So, if A > 2+/d — 1, then A € o(Ar).

A similar argument shows that if A < —2v/d — 1, then A € o(Ar). O

3 A proof of the Alon-Boppana lower bound

We proceed now to the proof of theorem 1.1. In this section, G is a graph

as in theorem 1.1 and A = Ag. It is not hard to see that \y(G) = I]Iclftii T;ﬁzf

(where 1 denotes the constant function which maps everything to 1). So,
we will define a convenient f that will give us the required lower bound for

A (G).

Strategy of the proof: Consider A = diam(G) and s,t € V(G) such that
dist(s,t) = A. Roughly speaking, we will define f such that its values for
vertices ‘near’ s are positive, its values for vertices ‘near’ ¢t are negative and
the remaining ones are mapped to zero. More specifically, we let k = L%J -1
and consider T, the d-‘regular’ tree of height k (see figure 1). We construct
an eigenvector g for Ag,, (the adjacency matrix of Ty,) whose eigenvalue
satisfies 1 > 2v/d — 1(1 — %5). By defining the values of f according to the
values of g in a certain way (and normalizing its positive and negative values

such that < f, 1 >=>" f(z) = 0), we can show that % > u, giving us the

lower bound we wanted.

We want to construct an eigenvector g for Ag,, (with eigenvalue p). If
we assume ¢ is spherical around v (the root of T,;), we get the following
equations for g:

pgo = dgi
0wy = gifl"{'(d_l)gljrl? for i = 1,...,k (3)
g1 = 0

(to simplify notation we assume there is a (k + 1)-th level and the value
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of g at this level is zero)

Claim 3.1. There is a > 1 — %5 (with ¢ = 21 such that there is a real
solution g of (3) that is non-negative and non-increasing.

Proof. Define h: {0,....k +1} — R by h(i) := (d — 1)~z sin((k + 1 — 7)6).
It is easy to see that hy; = 0. Let us check that h satisfies (3) regardless
of the value of 0:

hic1 + (d — Dhis (d—1)""2" - [sin((k + 2 — 9)6) + sin((k — i))]
d—1

Vi —1(d = 1)7% - 2sin((k + 1)0) cos(0) = ph;

The condition for 7 = 0 reads
(2d —2) - cos(0) - sin((k +1)0) = d - sin(k0)

The smallest positive root of this equation is in (0, ;37) because the dif-

ference of the two terms of this equation change sign between 0 and 7.
So, 0 € (0, 717)- Hence, Oy < 5 =~ QK“, since k = L%J — 1. By the Taylor
expansion of cos, cos(fy) > 1 — = (so ¢ ~ 27?).

Moreover, since 6 € (0, kiﬂ), h is non-negative and non-decreasing. n

Let s and ¢ be two vertices that realize the distance A. We define the
sets of points ‘near’ s, ‘near’ t and the rest of them:

S; = A{v:dist(s,v) =i} fori=0,....k
T, = {v:dist(t,v) =i} for j=0,..,k
Q = V(G)\ U (5UT)

0<i<k

Notice that the sets S; and 7} are disjoint (for any 7,j). We are now
ready to define f: V(G) - R :

c19; ifves,
f(’U) = —Ca(; ifve E
0 otherwise

where ¢; and ¢y are positive constants that will be determined later.

Claim 3.2. With this definition we have
(Af)y > puf, forveus, and  (Af), < uf, forveUT;



Proof. Let v € T; for some ¢ > 0. Then, of its neighbors, p > 1 belong to
T;—1, q belong to T; and (d — p — q) belong to T;;;. Thus,

(Af)o = —(p-c29i-1 +q-c2g; + (d—p—q) - c2gir1)
Now, by (3) and claim 3.1,

(Af)e = —c2- (pgic1 +qgi + (d —p — @)gis1)
= —c2-(gic1 + (@ —1)gi1 +q9i + (d —p — q)gis1)
< = (gie1 + (0 — 1)Giy1 + q9it1 + (d —p — @) giv1)
= —c2-(gi-1 +(d—1)git1)
= —Co- (ATd kg) = —Cug; = :ufv-
A similar argument works for v € S;. m

As a consequence of claims 3.1 and 3.2, we obtain the following

Theorem 3.3 (Alon-Boppana).

2(G) 2 2T (1= )

Proof. By claim 3.2,
fFAf = X fu(Af)

veV(G)
= GEU:S' fv<Af) + eZU:T' fv<Af)v + %fv(Af)v
> ¥ bt B fonfo=uff = uf"f = ullfIF

Finally, by choosing suitable ¢; and ¢y, we get

ohi==> 1

veUS; veUT;

and, thus, f L 1.
Therefore, by claim 3.1,

fTAf c
Ao(A) > Tz d—l(l—P>



4 Further Remarks

Conjecture 4.1. For every integer d > 3 there exists arbritrarily larde d-
reqular Ramanujan graphs.

Theorem 4.2 (Lubotzky-Phillips-Sarnak [LPS88], Margulis [Mar88], Mor-
genstern [Mor94)). For every prime p and every positive integer k there exist
infinitely many d-reqular Ramanujan graphs with d = p* + 1.
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