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(This lecture is based on [HLW06])

Recall that if G is an undirected graph with n vertices, then its adja-
cency matrix has n real eigenvalues λ1 ≥ λ2 ≥ ... ≥ λn. Then, in order to
construct a family of d-regular expanders, by the Alon-Milman theorem, we
need to bound the spectral gap (d − λ2) from below. Hence it is important
to understand the behavior of λ2.

1 Main statement and definition

Theorem 1.1 (Alon-Boppana). There exists a constant c such that for every
connected finite regular graph G,

λ2(G) ≥ 2
√
d− 1

(
1− c

Δ2

)
where Δ = diam(G) and d = deg(v) for every vertex v.

Corollary 1.2. Let (Gm)∞m=1 be a family of connected, d-regular, finite graphs
with |V (Gm)| → ∞ as m→∞. Then,

lim inf
m→∞

λ2(Gm) ≥ 2
√
d− 1
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In view of this corollary, we define Ramanujan graphs as graphs that are
optimal in this sense:

Definition 1.3. An (n, d)-graph G (n vertices and d-regular) is called Ra-
manujan if

λ(G) ≤ 2
√
d− 1

where λ(G) = max
|λi|6=d

|λ|.

2 The infinite tree Td and its spectrum

Throughout this section T = Td, V = V (T ) and N(v) denotes the set of
neighbors of a vertex v ∈ V . We can define

AT : l2(V )→ l2(V )

just like in the finite case, that is,

(ATf)(v) =
∑

w∈N(v)

f(w).

We view AT in B(l2(V )), the Banach algebra of bounded linear operators on
l2(V ).

Definition 2.1. We say a function f : V → C is spherical around vertex
v if f(u) depends only on the distance between u and v (dist(u, v)).

For any function f : V → C, we can define its spherical symmetriza-
tion around v to be a function f̃ that is spherical around v and such that∑
dist(u,v)=i

f̃(u) =
∑

dist(u,v)=i

f(u) for every i ≥ 0.

Definition 2.2. The spectrum of AT is

σ(AT ) := {λ : λI − AT is not invertible}

(For basic properties of the spectrum, see [Rud91])

Theorem 2.3 (Cartier). σ(AT ) = [−2
√
d− 1, 2

√
d− 1]
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Proof. (sketch)
We start by fixing a vertex v ∈ V and consider it to be the ‘root’ of our

tree.
It can show that in our case,

λ ∈ σ(AT )⇐⇒ δv /∈ img(λI − AT )

where δv is the characteristic function of v (δv(v) = 1 and δv(u) = 0 for all
the other u ∈ V ).

So, it is enough to show that

δv = (λI − AT ) · f (1)

has a solution (in l2(V )) if |λ| < 2
√
d− 1 and does not have a solution if

|λ| > 2
√
d− 1 (see theorems 12.26 and 10.13 in [Rud91]).

Claim 1. We may assume f in equation (1) is spherical around v (more
precisely, if (1) has a solution for some f , then it also has a solution for some
f̃ spherical around v).

In fact, if f satisfies (1), then it is easy to show its spherical symmetriza-
tion around v also satisfies (1).

If f is spherical around v, then it is determined by a sequence f0, f1, f2, ...
such that f(u) = fi for every u satisfying dist(u, v) = i. Using this notation
it is not hard to see that a spherical function f satisfies (1) if and only if:

λf0 = df1 + 1
λfi = fi−1 + (d− 1)fi+1 for i ≥ 1

(2)

Using linear algebra we can show the solutions {fi} of (2) are of the form

fi = αρi+ + βρi−, where ρ± =
λ±
√
λ2−4(d−1)

2(d−1)
.

Now, if |λ| < 2
√
d− 1 then |ρ±| = 1√

d−1
. Hence, |fi| = Θ((d − 1)−

i
2 )

[according to the authors, this is an easy computation; the upper bound
is easy to check but I could not verify the lower bound]. Since there are
Θ((d − 1)i) vertices at distance i, this means such an f would not be in

l2 (in fact, ||f ||22 ≥ C
∞∑
i=0

(d − 1)i)((d − 1)−
i
2 )2 = C

∞∑
i=0

1 = ∞). Hence, if

|λ| < 2
√
d− 1, then λ /∈ σ(AT ).
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If λ > 2
√
d− 1, then r := |ρ−| < 1√

d−1
. In this case, we choose α = 0,

giving f = βρi−. Then, ||f ||22 ≤ C
∞∑
i=0

(d − 1)i(|βri|)2 = C|β|2
∞∑
i=0

((d − 1)r2)i.

Since r < 1√
d−1

, we obtain (d−1)r2 < 1 and, thus, ||f ||22 <∞. Hence, f ∈ l2.
It is clear that it satisfies (2) for all i ≥ 1. We just have to check it satisfies
λf0 = df1 + 1, i.e., λβ = dβρ− + 1. One can check that this holds for some
choice of β. So, if λ > 2

√
d− 1, then λ ∈ σ(AT ).

A similar argument shows that if λ < −2
√
d− 1, then λ ∈ σ(AT ).

3 A proof of the Alon-Boppana lower bound

We proceed now to the proof of theorem 1.1. In this section, G is a graph

as in theorem 1.1 and A = AG. It is not hard to see that λ2(G) = max
f⊥1

fTAf

||f ||2

(where 1 denotes the constant function which maps everything to 1). So,
we will define a convenient f that will give us the required lower bound for
λ2(G).

Strategy of the proof: Consider Δ = diam(G) and s, t ∈ V (G) such that
dist(s, t) = Δ. Roughly speaking, we will define f such that its values for
vertices ‘near’ s are positive, its values for vertices ‘near’ t are negative and
the remaining ones are mapped to zero. More specifically, we let k = bΔ

2
c−1

and consider Td,k, the d-‘regular’ tree of height k (see figure 1). We construct
an eigenvector g for ATd,k

(the adjacency matrix of Td,k) whose eigenvalue

satisfies µ ≥ 2
√
d− 1(1 − c

Δ2 ). By defining the values of f according to the
values of g in a certain way (and normalizing its positive and negative values

such that < f,1 >=
∑
f(x) = 0), we can show that fTAf

||f ||2 ≥ µ, giving us the

lower bound we wanted.

We want to construct an eigenvector g for ATd,k
(with eigenvalue µ). If

we assume g is spherical around v (the root of Td,k), we get the following
equations for g:

µg0 = dg1

µgi = gi−1 + (d− 1)gi+1, for i = 1, ..., k
gk+1 = 0

(3)

(to simplify notation we assume there is a (k + 1)-th level and the value
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of g at this level is zero)

Claim 3.1. There is a µ > 1 − c
Δ2 (with c ≈ 2π2) such that there is a real

solution g of (3) that is non-negative and non-increasing.

Proof. Define h : {0, ..., k + 1} → R by h(i) := (d− 1)−
i
2 sin((k + 1− i)θ).

It is easy to see that hk+1 = 0. Let us check that h satisfies (3) regardless
of the value of θ:

hi−1 + (d− 1)hi+1 = (d− 1)−
i−1
2 · [sin((k + 2− i)θ) + sin((k − i)θ)]

=
√
d− 1(d− 1)−

i
2 · 2 sin((k + 1)θ) cos(θ) = µhi

The condition for i = 0 reads

(2d− 2) · cos(θ) · sin((k + 1)θ) = d · sin(kθ)

The smallest positive root of this equation is in (0, π
k+1

) because the dif-
ference of the two terms of this equation change sign between 0 and π

k+1
.

So, θ ∈ (0, π
k+1

). Hence, θ0 <
π
k+1
≈ 2π

Δ
, since k = bΔ

2
c − 1. By the Taylor

expansion of cos, cos(θ0) > 1− c
Δ2 (so c ≈ 2π2).

Moreover, since θ ∈ (0, π
k+1

), h is non-negative and non-decreasing.

Let s and t be two vertices that realize the distance Δ. We define the
sets of points ‘near’ s, ‘near’ t and the rest of them:

Si := {v : dist(s, v) = i} for i = 0, ..., k
Ti := {v : dist(t, v) = i} for j = 0, ..., k
Q := V (G) \

⋃
0≤i≤k

(Si ∪ Ti)

Notice that the sets Si and Tj are disjoint (for any i, j). We are now
ready to define f : V (G)→ R :

f(v) =


c1gi if v ∈ Si
−c2gi if v ∈ Ti
0 otherwise

where c1 and c2 are positive constants that will be determined later.

Claim 3.2. With this definition we have
(Af)v ≥ µfv for v ∈ ∪

i
Si and (Af)v ≤ µfv for v ∈ ∪

i
Ti
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Proof. Let v ∈ Ti for some i > 0. Then, of its neighbors, p ≥ 1 belong to
Ti−1, q belong to Ti and (d− p− q) belong to Ti+1. Thus,

(Af)v = −(p · c2gi−1 + q · c2gi + (d− p− q) · c2gi+1)

Now, by (3) and claim 3.1,

(Af)v = −c2 · (pgi−1 + qgi + (d− p− q)gi+1)
= −c2 · (gi−1 + (p− 1)gi−1 + qgi + (d− p− q)gi+1)
≤ −c2 · (gi−1 + (p− 1)gi+1 + qgi+1 + (d− p− q)gi+1)
= −c2 · (gi−1 + (d− 1)gi+1)
= −c2 · (ATd,k

g)i = −c2µgi = µfv.

A similar argument works for v ∈ Si.

As a consequence of claims 3.1 and 3.2, we obtain the following

Theorem 3.3 (Alon-Boppana).

λ2(G) ≥ 2
√
d− 1

(
1− c

Δ2

)
Proof. By claim 3.2,

fTAf =
∑

v∈V (G)

fv(Af)v

=
∑

v∈∪Si

fv(Af)v +
∑

v∈∪Ti

fv(Af)v +
∑
v∈Q

fv(Af)v

≥
∑

v∈∪Si

fvµfv +
∑

v∈∪Ti

fvµfv = µfTf = µfTf = µ ||f ||2

Finally, by choosing suitable c1 and c2, we get∑
v∈∪Si

fv = −
∑
v∈∪Ti

fv

and, thus, f ⊥ 1.
Therefore, by claim 3.1,

λ2(A) ≥ fTAf

||f ||2
≥ µ ≥ 2

√
d− 1

(
1− c

Δ2

)
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4 Further Remarks

Conjecture 4.1. For every integer d ≥ 3 there exists arbritrarily larde d-
regular Ramanujan graphs.

Theorem 4.2 (Lubotzky-Phillips-Sarnak [LPS88], Margulis [Mar88], Mor-
genstern [Mor94]). For every prime p and every positive integer k there exist
infinitely many d-regular Ramanujan graphs with d = pk + 1.
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