
P -adic numbers
And

Bruhat-Tits Tree

In the first part of these notes we give a brief introduction to p-adic numbers. In
the second part we discuss some properties of the ’Bruhat-Tits’ tree. It is mostly
based on the first chapter of p-adic Numbers, p-adic Analysis and Zeta-Functions
by Neal Koblitz and also second and third chapters of p-adic numbers by Fernando
Q.Gouvea.

1 Field Of p-adic Numbers

In the first part of these notes, we introduce a new norm |.|p on Q, for any prime p.
We want to construct an extension of Q, Qp, such that Qp is complete with respect
to |.|p. We start with recalling some basic definitions.

If X is a nonempty set, a metric is a function d : X ×X → R+ such that
d(x, y) = 0 iff x = y
d(x, y) = d(y, x)
d(x, y) ≤ d(x, z) + d(z, y) ∀z ∈ X
A norm on a the field F is a map denoted ‖.‖ from F to R+ such that:
‖x‖ = 0 iff x = 0
‖xy‖ = ‖x‖ ‖y‖
‖x+ y‖ ≤ ‖x‖+ ‖y‖
We say that a metric d comes from a norm ‖‖ if d(x, y) = ‖x− y‖

1.1 Metrics On Rational Numbers

Definition 1. Fix a prime number p. Let:

ordp : Z\ {0} → R

be the function that assigns to any positive integer a, the highest power of p
which divides a,i.e., the greatest m such that a ≡ 0 (mod pm).
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We extend ordp to the field of rational numbers as follows: if x = a/b ∈ Q×
then

ordp(x) = ordp(a)− ordp(b)

For a = 0, we write ordp(0) =∞. We can easily check that for any x ∈ Q, the
value ordp(x) does not depend on its representation as a quotient of two integers.

The basic properties of ordp are the following:

Lemma 1.1. 1. ordp(xy) = ordp(x) + ordp(y)

2. ordp(x+ y) ≥ min {ordp(x), ordp(y)}

Definition 2. define the map |.|p on Q as follows:

|x|p =
{
p−ordp(x) if x 6= 0
0 if x = 0

Proposition 1. |.|p is a norm on Q.

Remark 1. We sometimes let |.|∞ denote the usual absolute value on Q and we
call it the ”absolute value at infinity”.

Definition 3. A norm is called non-Archimedean if ‖x+ y‖ ≤ max (‖x‖ , ‖y‖) for
all x, y in the field. A metric is non-Archimedean if d(x, y) ≤ max (d(x, z), d(z, y))
for all x, y, z; In particular, a metric is non-Archimedean if it is induced by a non-
Archimedean norm,since in that case d(x, y) = ‖x− y‖ = ‖(x− z) + (z − y)‖ ≤
max(‖x− z‖ , ‖z − y‖) = max(d(x, z), d(z, y))

It follows from Lemma ... that |.|p is non-Archimedean. A norm(or a metric)
which is not non-Archimedean is called Archimedean. The ordinary absolute value
is an Archimedean norm on Q.

1.2 Topological Properties Of non-Archimedean Metrics

Proposition 2. Let ‖.‖ be a non-Archimedean absolute value on a field K. If
x, y ∈ K and ‖x‖ 6= ‖y‖, then
‖x+ y‖ = max (‖x‖ , ‖y‖)

Proof. If we suppose that ‖x‖ > ‖y‖, then

‖x+ y‖ ≤ ‖x‖ = max {‖x‖ ‖y‖}

We also have x = (x+ y)− y, so
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‖x‖ ≤ max {‖x+ y‖ ‖y‖}

Since we know that ‖x‖ > ‖y‖, this inequality can only hold if

max {‖x+ y‖ , ‖y‖} = ‖x+ y‖

This gives the reverse inequality ‖x‖ ≤ ‖x+ y‖.

Corollary 1.2. In a space with a non-Archimedean metric, all triangles are isosce-
les.

Proof. Let x, y, z be the vertices of our triangle, so the length of the sides of the
triangle are

d(x, y) = ‖x− y‖
d(y, z) = ‖y − z‖
d(x, z) = ‖x− z‖

We also have (x − y) + (y − z) = (x − z). So if ‖x− y‖ 6= ‖y − z‖, by the
previous proposition ‖x− z‖ is equal to the bigger of the two. In any case two of
the sides are equal.

This really should not be too surprising if we think what this says in the case of
|.|p on Q. It says that if two rational numbers are divisible by different powers of
p, then their difference is divisible precisely by the lower power of p(which is what
it means to be the same size as the bigger of the two).

Let a ∈ K be an element and and r a positive real number. Consider the open
ball of radius r and center a

B(a, r) = {x ∈ K : ‖x− a‖ < r}

and the closed ball of radius r and center a

B̄(a, r) = {x ∈ K : ‖x− a‖ ≤ r}

We have the following proposition

Proposition 3. Let K be a field with a non-Archimedean absolute value.

1. If b ∈ B(a, r), then B(a, r) = B(b, r)

2. If b ∈ B̄(a, r), then B̄(a, r) = B̄(b, r)
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3. B(a, r) is both open and closed.

4. B̄(a, r) is both open and closed for r 6= 0.

5. For r, s 6= 0, we have B(a, r)∩B(b, s) 6= φ if and only if B(a, r) ⊂ B(b, s)
or B(a, r) ⊃ B(b, s).

6. For r, s 6= 0, we have B̄(a, r)∩ B̄(b, s) 6= φ if and only if B̄(a, r) ⊂ B̄(b, s)
or B̄(a, r) ⊃ B̄(b, s).

Definition 4. Two metrics d1 and d2 on a set X are equivalent if a sequence is
Cauchy with respect to d1 if and only if it is Cauchy with respect to d2. Two norms
are equivalent if they induce equivalent metrics.

Remark 2. In the definition of |.|p instead of (1/p)ordpx we could have writ-
ten ρordpx with any ρ ∈ (0, 1). We would have obtained an equivalent non-
Archimedean norm.

Exercise 1.1. Prove the remark .
A nice property for the choice of |.|p = (1/p)ordpx is given in the following

exercise.

Exercise 1.2. Let X be a nonzero rational number. Prove that∏
p≤∞
|x|p = 1

where p ≤ ∞ means that we take the product over all of the primes of Q,
including the ”prime at infinity”.

In the following theorem, by the trivial norm we mean the norm ‖.‖ on Q such
that ‖0‖ = 0 and ‖x‖ = 1 for x 6= 0

Theorem 1.3. (Ostrowski). Every nontrivial norm ‖.‖ on Q is equivalent to |.|p
for some prime p or for p =∞.
Building Qp

Let p be a prime number. Define

C = Cp(Q) = {(xn) : (xn) is a Cauchy sequence w.r.t |.|p}
Proposition 4. Defining

(xn) + (yn) = (xn + yn)
(xn)(yn) = (xnyn)

makes C a commutative ring with unity.
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Exercise 1.3. Check that the sum and product of two Cauchy sequences, as defined
above, are also Cauchy sequences.

Exercise 1.4. Find two non-zero Cauchy sequences (w.r.t |.|p) whose product is the
zero sequence.

We should check that this ring contains Q, since we want to construct something
that extends Q. In fact all we need to do is notice that if x ∈ Q, the sequence

x, x, x, ...

is certainly Cauchy. We denote this sequence by (x).

Lemma 1.4. The map x→ (x) is an inclusion of Q into C
We want that different Cauchy sequences in Q whose terms get close to each

other have the same limit, but they are different objects in C. So we must pass to a
quotient of C.

Definition 5. We define N ⊂ C to be the ideal

N =
{

(xn) : |xn|p → 0
}

of sequences that tend to zero with respect to the absolute value |.|p.

Lemma 1.5. N is a maximal ideal of C.

Since taking a quotient by a maximal idea gives a field, we can give the next
definition:

Definition 6. We define the field of p-adic numbers to be the quotient of the ring C
by its maximal ideal N :

Qp = C/N

In order to extend the |.|p to Qp we need the next lemma:

Lemma 1.6. Let (xn) ∈ C. If (xn) /∈ N ,then ∃n0 such that for any n,m ≥ n0,
|xn|p = |xm|p(The sequence is eventually stationary).

Now we can define the p-adic norm on Qp.

Definition 7. Let x ∈ Qp and (xn) any Cauchy sequence representing it. We define

|x|p = limn→∞|xn|p
.
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By the lemma above, we know that this limit exists, but we still need to check
that it is well-defined, i.e, if we take another sequence representing x we will get
the same limit.

Exercise 1.5. Show that |x|p, as defined above, does not depend on the choice of
the sequence (xn) representing x.

Exercise 1.6. show that for x ∈ Qp |x|p = 0 if and only if x = 0.

Exercise 1.7. show that |.|p is non-Archimedean over Qp

Remark 3. For x ∈ Q the definitions of |x|p in Q and Qp are consistent. We have
indeed an absolute value on Qp which extends the p-adic absolute value on Q.

Proposition 5. The image of Q under the inclusion Q ↪→ Qp is a dense subset of
Q.

Proposition 6. Qp is complete w.r.t |.|p.

Remark 4. Qp is not algebraically closed and if we take the algebraic closure of
Qp, it will not be complete. So we must complete this new field to get an alge-
braically closed and complete extension of Q.

Now that we have constructed Qp, it would be a good idea to give a more con-
crete description of Qp.

Definition 8. The ring of p-adic integers is

Zp = {x ∈ Qp : |x|p ≤ 1}

Proposition 7. For any x ∈ Zp, there exists a unique Cauchy sequence an con-
verging to x of the following type:

• an ∈ Z and 0 ≤ an ≤ pn−1

• an ≡ an−1 (mod pn−1)

Let x ∈ Zp and (an) be the Cauchy sequence described in the above theorem.
We write them in base p. Let a0 = b0 for some 0 ≤ b0 ≤ p − 1. Since a1 ≡ a0

(mod p), a1 = b0 + b1p for some 0 ≤ b1 ≤ p− 1. Going up the sequence, we get

a0 = b0 0 ≤ b0 ≤ p− 1
a1 = b0 + b1p 0 ≤ b1 ≤ p− 1

a2 = b0 + b1p+ b2p
2 0 ≤ b2 ≤ p− 1

a3 = b0 + b1p+ b2p
2 + b3p

3 0 ≤ b3 ≤ p− 1
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Lemma 1.7. Given any x ∈ Zp, the series

b0 + b1p+ ...+ bnp
n + ...

obtained as above, converges to x.
Proof. The only thing that we need to notice is that a series converges to x if

the sequence of its partial sums converges to x. But the partial sums of the above
series are the an, which we already know converge to x.

So we have this equality in Qp

x = b0 + b1p+ ...+ bnp
n + ...

.
Now we need to get all of Qp. Let x ∈ Qp and |x|p = pm ≥ 1. Let z = pmx,

then |z| = |pm||x| = p−mpm = 1. So we can write x = z/pm where z ∈ Zp. We
get the following corollary

Corollary 1.8. Every x ∈ Qp can be written in the form

x = b−n0p
−n0 + ...+ b0 + b1p+ +...+ bnp

n + ...

=
∑

n≥−n0

bnp
n

with 0 ≤ bn ≤ p− 1
The following theorem known as ”Hensel’s lemma” is one of the most important

algebraic property of Qp. Basically, it says that often one can decide whether a
polynomial has roots in Zp by finding an approximate root of the polynomial.

Theorem 1.9. (Hensel’s Lemma ) Let F (x) = a0 + a1x + ... + anx
n be a poly-

nomial in Zp[x]. Suppose that there exits a p-adic integer α1 ∈ Zp such that

F (α1) = 0 (mod pZp)

and

F ′(α1) 6= 0 (mod pZp)

where F ′(x) is the formal derivative of F (x). Then there exits a p-adic integer
α ∈ Zp such that F (α) = 0 and α ≡ α1 (mod pZp)

Proof. We will construct a sequence of integers α1, α2, ..., αn, ... such that, for all
n ≥ 1 we have

7



i) F (αn) ≡ 0 (mod pn)

ii) αn ≡ αn+1 (mod pn)

Since |αn+1 − αn|p ≤ p−n, the sequence (αn) is Cauchy. Its limit α satisfies
F (α) = 0(by continuity) and α ≡ α1 (mod p)(since αn ≡ α1 (mod p) for all
n ≥ 1). So once we construct αn the theorem will be proved.

Now we will construct α2. Since α2 ≡ α1 (mod pn), we should have α2 =
α1 + b1p for some b1 ∈ Zp. We have

F (α2) = F (α1 + b1p)
= F (α1) + F ′(α1)b1p+ terms in pn with n ≥ 2

≡ F (α1) + F ′(α1)b1p (mod p2)

We can find α2 if and only if we can find b1 such that

F (α1) + F ′(α1)b1p ≡ 0 (mod p2)

We know that F (α1) ≡ 0 (mod p), so F (α) = px for some x. We get

px+ F ′(α1)b1p ≡ 0 (mod p2)

which gives

x+ F ′(α1)b1 ≡ 0 (mod p)

Notice that F ′(α1) is not divisible by p. So it is invertible in Zp. Let

b1 = −x(F ′(α1))−1 (mod p)

.
In fact, we can choose such a b1 ∈ Z such that 0 ≤ b1 ≤ p − 1. Then α2 =

α1 + b1p will satisfy the properties we want.
We can show that the same calculation works to get αn+1 from αn. Hence we

can construct the whole sequence.

2 Lattices Of Q2
p And the Bruhat-Tits Tree

In this section we study the structures of lattices of Q2
p and we explore some prop-

erties of Bruhat-Tits tree.
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We start by making an observation. Let x ∈ Zp. We know that we can write
x = b0 + b1p+ b2p

2 + ... for some bi ∈ Fp. We define

ϕ : Zp → Fp

x 7−→ b0

Since

ϕ(x) = 0⇔ b0 = 0
⇔ x ∈ pZp

ker(ϕ) = pZp and hence Zp/pZp
∼= Fp.

Definition 9. We call a subset L ⊆ Q2
p a lattice if L is a rank 2 free Zp-module of

Q2
p. Equivalently L is a lattice of Q2

p if there exists 2 independent vectors v1, v2 ∈
Q2

p such that

L = Zpv1 + Zpv2

= {xv1 + yv2|x, y ∈ Zp}

.
L0 = Z2 = Zp(1, 0) + Z(0, 1) and L = Zp(pa, 0) + Z(0, pb), a, b ∈ Z are

examples of lattices of Q2
p.

In the next discussion we fix a lattice L = Zpv1 + Zpv2 and we want to charac-
terize all lattices L′ such that L ⊇ L′ ⊇ pL.

Define

ϕ′ : L → F2
p

xv1 + yv2 7−→ (ϕ(x), ϕ(y))

where ϕ is the map defined above.
As before we can verify that ker(ϕ′) = pL and so we have L/pL ∼= F2

p. Hence
for L′ such that L ⊇ L′ ⊇ pL, L′/pL is a subspace of F2

p.
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The extreme cases are when

L′/pL =
{

0 iff L′ = pL
F2

p iff L′ = L

The other cases are when L′/pL is isomorphic to a one dimensional subspace
of F2

p. There are p + 1 such subspaces and they are generated by (a, 1), a ∈ Fp

and (1, 0).

2.1 Bruhat-Tits Tree

We want to construct a graph whose vertices are the equivalence classes of the
lattices of Q2

p. We define an equivalence relation on the set of lattices of Qp such
that

L ∼ L′ ⇔ L′ = λL for some λ ∈ Q×p
The Bruhat-Tits tree is the graph T , with vertices [L], where [L] is the equivalent

class of some lattice L of Q2
p. There is an edge between two vertices v1 and v2 of

T if and only if

∃L s.t v1 = [L]
∃L′ s.t v2 = [L′]

and
L ⊃ L′ ⊂ pL

We notice that since L ⊃ L′ ⊃ pL implies L′ ⊃ pL ⊃ pL′, T is actually an
undirected graph.

Now consider the group

GL2(Qp) =
{(

a b
c d

)
:a, b, c, d ∈ Qp, ad− bc 6= 0

}
.

Define the following action of Gl2(Qp) on the set of vertices of T : for any
M ∈ Qp let

fM : v = [L] 7−→ [ML]

where

ML = {Ml : l ∈ L}
= span 〈Mv1,Mv2〉
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for L = spanZp 〈v1, v2〉.
Since Mλ.L = λ.ML

L ∼ L′ ⇔ML ∼ML′.

Hence the action fM is well defined.
Now we consider one specific vertex of T , [L0] the equivalence class of lattice

L0 = Zp(1, 0) + Zp(0, 1) of T . By the discussion that we had before, we already
know all L′ such that L0 ⊃ L′ ⊃ pL0. So the neighbors of L0 are{

pL0 + Zp(a, 1) a ∈ Fp

pL0 + Zp(1, 0)

The only thing that we need to verify is that these formulations actually give us
lattices of Q2

p. For a ∈ Fp,

pL0 + Zp(a, 1) = spanZp 〈(p, 0), (0, p), (a, 1)〉
= spanZp 〈(p, 0), (a, 1)〉

since (0, p) = p(a, 1)− a(p, 0). In the case pL0 + Zp(1, 0) we have

pL0 + Zp(1, 0) = spanZp 〈(1, 0), (0, p)〉

Gl2(Qp) also acts on edges of T , since if L ⊃ L′ ⊃ pL, then ML ⊃ ML′ ⊃
MpL = pML. Hence if [L] and [L′] are neighbors, [ML] and [ML′] are also
neighbors.

Claim 1. Gl2(Qp) acts transitively on the vertices of T .
To see that let L = Zpv1 + Zpv2 be an arbitrary lattice of Q2

p. Since v1, v2 are
independent over Qp, M = (v1|v2) ∈ Gl2(Qp) and we have ML0 = L. Since
M is invertible, we can also write L0 = M−1L. Now take any two lattices L1,
L2. ∃M1,M2 ∈ Gl2(Qp) such that M1L0 = L1 and M−1

2 L2 = L0. Hence
M1M

−1
2 L2 = L1

L2

f
M−1

2→ L0

fM1→ L1

We have seen that L0 is of degree p + 1. Since Gl2(Qp) acts transitively on
vertices and also acts on edges, all other vertices in T are of degree p + 1(T is
(p+ 1) regular).

We need the following theorem in order to verify the next fact about the set of
vertices of T .
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Theorem 2.1. Let a group G act transitively on a set S. Then there is a bijection
between S and the quotient group G/StabG(s0) for any s0 ∈ S, given by

f : G/StabG(s0)→ S

gStabG(s0) 7−→ g.s0

It is not hard to see that stabGl2(Qp)(L0) = Gl2(Zp). By the previous theorem

{vertices of T} bijection↔ Gl2(Qp)/Gl2(Zp)

Since GL2(Zp) fixes L0, it acts on the edges incident to L0. This action is also
transitive: let L = spanZp 〈(p, 0), (a, 1)〉 and L′ = spanZp 〈(p, 0), (b, 1)〉 be two

arbitrary neighbors of L0. Then we can verify that
(

1 b− a
0 1

)
∈ GL2(Zp)

takes L to L′.
Using this and the fact that GL2(Qp) acts transitively on the vertices of T , we

can also show that GL2(Qp) acts transitively on the edges of T . In fact, we only
need to show that we can take any edge in T to any edge incident to L0.

Now we try to find the stabilizer of the edge e : [L0] − [L′0] where L′0 =
spanZp 〈(1, 0), (0, p)〉. Let

B =
{(

a b
c d

)
∈ GL2(Zp) : c ∈ pZp

}
.

SinceB ⊂ GL2(Zp), it fixes L0. It is not hard to see thatB also fixes L′0. Hence

B ⊂ Stab(e)

There is another possibility for M ∈ stab(e). M can switch L0 and L′0. All such

M belongs to
(

0 1
p 0

)
B, since

(
0 1
p 0

)
switches L0 and L′0:

(
0 1
p 0

)
L0 = L′0(

0 1
p 0

)
L′0 = pL0 ∼ L0

Hence stab(e)=B ∪
(

0 1
p 0

)
B = B′. By using the theorem 2.1 again we get

{edges of T} bijection↔ GL2(Qp)/B′.
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