Lecture 8 L^p -stability

Let Ω be a bounded polyhedral domain in \mathbb{R}^n , let P be a conforming partition of Ω and let $S_P = S^d(P)$ be a Lagrange finite element space. Write

$$h_{min} = \min_{\tau \in P} h_{\tau}, \quad h_{max} = \max_{\tau \in P} h_{\tau}, \quad \gamma = \max_{\tau \in P} \gamma_{\tau}.$$

The direct (Jackson) estimate

$$\inf_{v \in S_P} \|u - v\|_{W^{k,p}(\Omega)} \le Ch^{s-k}_{max} |u|_{W^{s,p}(\Omega)}, \quad (0 \le k \le s \le d),$$
(8.1)

we have proved

$$\inf_{v \in S_P} \|u - v\|_{W^{k,p}(\Omega)} \le Ch_{max}^{d-k} |u|_{W^{m,p}(\Omega)}, \quad (m > n/p),$$
(8.2)

where $C = C(\gamma)$. Furthermore, we have proved the inverse (Bernstein) estimates for $v \in S_P$:

$$\|v\|_{L^{p}(\Omega)} \le Ch_{\min}^{\frac{n}{p} - \frac{n}{q}} \|v\|_{L^{q}(\Omega)}, \quad (1 \le q \le p \le \infty),$$
(8.3)

and

$$\|v\|_{W^{1,p}(\Omega)} \le Ch_{\min}^{m-k} \|v\|_{L^{p}(\Omega)}, \tag{8.4}$$

where $C = C(\gamma)$.

§1 L^p -stability

For $v = \sum_{z \in \mathcal{N}_P} \xi_z \phi_z$, define the quantity

$$[v]_{p} = \left(\sum_{z \in \mathcal{N}_{P}} |\xi_{z}|^{p} \|\phi_{z}\|_{L^{p}}^{p}\right)^{1/p}.$$
(8.5)

Theorem 8.1. Let $0 . Then for any <math>v \in S_P$

$$c_1[v]_p \le \|v\|_{L^p} \le c_2[v]_p, \tag{8.6}$$

where $c_1 = c_1(n, d, p, \gamma)$ and $c_2 = c_2(n, d, p)$.

Proof. Let
$$v = \sum_{z \in \mathcal{N}_P} \xi_z \phi_z$$
,
 $\|v\|_{L^p} = \sum_{\tau \in P} \|v\|_{L^p}^p = \sum_{\tau \in P} \left\|\sum_{z \in \mathcal{N}_\tau} \xi_z \phi_z\right\|_{L^p(\tau)}^p \le C \sum_{\tau \in P} \sum_{z \in \mathcal{N}_\tau} |\xi_z|^p \|\phi_z\|_{L^p(\tau)}^p$, $(C = C(d))$,

Lecture 8

by convexity of $x \mapsto x^p$. Let $\kappa_{z,\tau} = |\xi_z|^p ||\phi_z||_{L^p(\tau)}^p$, it is clear that $\kappa_{z,\tau} = 0$ if $\tau \cap \operatorname{supp} \phi_z = \emptyset$ and

$$\sum_{\substack{\tau \in P\\ \tau \cap \omega_z \neq \emptyset}} |\xi_z|^p \|\phi_z\|_{L^p(\tau)}^p = |\xi_z| \|\phi_z\|_{L^p(\omega_z)}^p, \quad (\omega_z = \operatorname{supp} \phi_z).$$

We have

$$\|v\|_{L^p}^p \le C \sum_{\substack{\tau \in P\\z \in \mathcal{N}_P}} \kappa_{z,\tau} = C \sum_{\substack{z \in \mathcal{N}_P\\\tau \cap \omega_z \neq \emptyset}} \kappa_{z,\tau} = C \sum_{z \in \mathcal{N}_P} |\xi_z| \|\phi_z\|_{L^p(\omega_z)}^p = C[v]_{L^p}^p,$$

where C depends on d. Conversely, we want

$$\sum_{z \in \mathcal{N}_{\tau}} |\xi_z| \|\phi_z\|_{L^p(\tau)}^p \le C \bigg\| \sum_{z \in \mathcal{N}_{\tau}} \xi_z \phi_z \bigg\|_{L^p(\tau)}^p,$$

but this is true by scaling τ back to σ and C here will depend on γ .

§2 Conditioning

Consider the following Poisson problem:

$$\begin{cases} -\Delta u = f & \text{in } \Omega\\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

Consider the finite element space $S_P = S^d(P) \cap H^1_0(\Omega)$. \mathcal{N}_P only contains the interior nodes. The Galerkin problem (PG) is:

$$a(u_P, v) = \langle f, v \rangle \quad v \in S_P,$$

where $u_P \in S_P$ and $a(\cdot, \cdot)$ is the bilinear form $a(u, v) = \langle \nabla u, \nabla v \rangle$. Solving (PG) is equivalent to solving the linear system $A\xi = \eta$, where

$$A_{yz} = a(\phi_y, \phi_z) = \langle \nabla \phi_y, \nabla \phi_z \rangle, \quad y, z \in \mathcal{N}_P,$$

and

$$\eta_z = \langle f, \phi_z \rangle, \quad u_P = \sum_{z \in \mathcal{N}_P} \xi_z \phi_z, \quad z \in \mathcal{N}_P.$$

We pose the following question: Is the condition number $\kappa = ||A|| ||A^{-1}||$ reasonable?

Theorem 8.2. For the matrix A formulated by (PG),

$$c_1 h_{max}^{-2} \le \kappa \le c_2 \left(\frac{h_{max}}{h_{min}}\right)^n h_{min}^{-2}, \quad c_1 > 0.$$
 (8.7)

Lecture 8

Proof. Since A is symmetric positive definite (consequence of coercivity), we have

$$\lambda_{max} = \max_{\xi} \frac{\xi^T A \xi}{\xi^T \xi}, \quad \lambda_{min} = \min_{\xi} \frac{\xi^T A \xi}{\xi^T \xi}.$$

Have $\|\phi_z\|_{L^2}^2 \leq Ch_{max}^n$ and $\|\phi_z\|_{L^2}^2 \geq Ch_{min}^2$ so by L^2 -stability,

$$Ch_{\min}^{n}\xi^{T}\xi \leq \|v\|_{L^{2}}^{2} \leq C\sum_{z\in\mathcal{N}_{P}}|\xi_{z}|^{2}\|\phi_{z}\|_{L^{2}}^{2} \leq Ch_{\max}^{n}\xi^{T}\xi,$$

Moreover,

$$\xi^T A \xi = \sum_{y, z \in \mathcal{N}_P} \xi_y a(\phi_y, \phi_z) \xi_z = a(v, v) = \|\nabla v\|_{L^2}^2,$$

 \mathbf{SO}

$$\frac{\|\nabla v\|_{L^2}^2}{\|v\|_{L^2}^2} \cdot Ch_{min}^n \le \frac{\xi^T A\xi}{\xi^T \xi} \le \frac{\|\nabla v\|_{L^2}^2}{\|v\|_{L^2}^2} \cdot Ch_{max}^n$$

By Bernstein, $\|\nabla v\|_{L^2}^2 \leq h_{min}^{-2} \|v\|_{L^2}^2$ which makes $\lambda_{max} \leq h_{min}^{-2} h_{max}^n$. By Friedrichs, $\|\nabla v\|_{L^2} \geq C \|v\|_{L^2}$ which makes $\lambda_{min} \geq C h_{min}^n$. We arrive at $\kappa \leq C \left(\frac{h_{max}}{h_{min}}\right)^n h_{min}^{-2}$.

For the lower bound, take $v = \phi_z$, $\|\nabla \phi_z\|_{L^2} \ge Ch^{-2}h^n$. If $n \ge 2$, choose z belonging to the largest τ so that $\|\nabla \phi_z\|_{L^2}^2 \ge Ch_{max}^{n-2}$ so we can conclude

$$\lambda_{max} \ge \|\nabla \phi_z\|_{L^2}^2 \ge Ch_{max}^{n-2}.$$

Take $u \in C_c^{\infty}(\Omega)$ with $u \equiv 1$ on some $\overline{\mathcal{B}} \subset \Omega$ and $v = I_P u$.

$$\|\nabla v\|_{L^2} \le \|\nabla (v-u)\|_{L^2} + \|\nabla u\|_{L^2} \le h_{max}|u|_{W^{2,2}} + |u|_{W^{1,2}} \le C,$$

(observe that $\|\nabla(v-u)\|_{L^2} = |u-I_P u|_{W^{1,2}}$). We see that $\lambda_{min} \leq Ch_{max}^n$ which implies

$$\kappa \ge Ch_{max}^{-2}$$

_	-	

§3 Interpolation of function spaces

Recall the Riesz-Thorin convexity theorem:

Let T be a linear operator such that $T: L^{p_1} \to L^{q_1}$ and $T: L^{p_2} \to L^{q_2}$ are bounded, then $T: L^p \to L^q$ is bounded for

$$\frac{1}{p} = \frac{1-\theta}{p_1} + \frac{\theta}{p_2}, \quad \frac{1}{q} = \frac{1-\theta}{q_1} + \frac{\theta}{q_2}, \quad (0 < \theta < 1).$$

Example 7. Recall $||u * v||_p \leq ||u||_p ||v||_1$, $||u * v||_{\infty} \leq ||u||_p ||v||_q$ where 1/p + 1/q = 1. Define $T_v = u * v$. Then, $T : L^1 \to L^p$ and $T : L^{p'} \to L^{\infty}$ are bounded, with 1/p + 1/p' = 1. All pairs in line \mathcal{L} satisfy boundedness. Hence if

$$\frac{1}{p} - \frac{1}{r} = 1 - \frac{1}{q} \implies \frac{1}{r} + 1 = \frac{1}{p} + \frac{1}{q}$$

 $T: L^q \to L^r$ is bounded, that is, we have the Young inequality

$$||u * v||_r \leq ||u||_p ||v||_q.$$

 \diamond