Lecture 7 Notes on Finite Element Methods

Lecture 7
Direct and inverse estimates and Mesh
refinement

§1 Direct (Jackson) estimates

Let Q be star-shaped with respect to a ball, h = diam Q and let u € W™P(Q).
We have shown

v — Qmul[L=@) < Chm7%|u|Wmap(Q), (m > n,p),
and
[u — Qmullwrs@) < CR™ *lulwme@y, (m >k >0),

where Q,,u € P,,_; is the averaged Taylor polynomial and C' = C(n,m,7), v
being the chunkiness parameter. For the Lagrange finite elements of order d, on
a simplex 7,

L= w(z)¢. veCH),

2EN;

We have obtained the estimate
[ — Lullwesy < C (R ulap + -+ + 2" Ffulmyp) < CRFuflwms o),

where typically £ < d < m.

Remark. We would expect W% instead of W™ in the right hand-side of the
last estimate above, however, we need m > n/p in order for I, v to be well defined.
Recall that the argument depended on ||¢. ||wrr(ry < Ch=F/P.

For a conforming partition P, we defined Ipu € Sp by by (Ipu)|, = Lu for
7 € P, where Sp = S%(P). In other words,

Ipu = Z u(2)o.,

ZGNP

now with ¢, the globally defined nodal basis function. Assume that Sp C WP,
i.e k= 0,1 (we cannot achieve high k since regularity is restricted along interfaces
for piecewise polynomials). Then

lu— Ipullw < C (R ulap + -+ h"ulng) (7.1)

where h = max,cph,, h, = diam7 and C = C(n,m,v); (y = max,cpvy,).
Notice that we have to choose ~ as such so as to ensure that constant C' remains
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bounded; geometrically, this requires that the collection P has no long and thin
triangles.

Estimate ([7.1)) implies for u € WP,

Ulenf |u—v|lwro) < CRFullwms), (m > n/p).
Remark. This kind of estimate is called a direct estimate or Jackson-type esti-
mate.

82 Mesh refinement

For good accuracy, we want h to be small and v not be too large. A refinement
rule is a procedure that transforms a partition P into a new partition P’ with
smaller h.

Example 5 (Red refinement, loops, RSS). Notice that h — h/2 and 7 remains
constant. <
Example 6 (Newest vertex bisection, standard subdivision). Notice that h — Ah,
with A < 1, and y remains bounded (shape is regular). In order to avoid hanging
nodes, initial vertices must be chosen carefully in order to ensure conformity. <

Remark. Note that the first example is necessarily a global procedure whereas
the second can perform local refinement.

A model for (uniform) refinement algorithm runs as follows:

§3 Inverse (Bernstein) estimates

Because Sp is finite-dimensional, For v € Sp, we have ||v|x, < Cllv|[mp. We
want to keep track of the dependence of constant C' on h. Recall that 7 = A(0),
where o is the standard simplex and A : ¢ — 7 is an affine bijection.

Let ¥ = v o A and consider the following technical lemma.

Lemma 7.1. Let A be a matriz of constant coefficients, let v : R™ — R and let
x € R™. Then
V(voA) = AT(Vv) o A.

Proof. We are interested in the derivatives of v o A. We may write

ov 8yk

= Ax.
oY 8% v

0;(vo A)(z) = 0ju(Ax) Z
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For k=1,...,n,
Oy R _
8J(Ax)k == ZAkzasz == Akj;
i=1

85(,’]'
. ov _ .
meanwhile B = Opv o A. Summing up,

dj(vo A) = i(@kv 0 A)Ay; = (A"Vvo A)

k=1

j Y
corresponding to the jth entry of said gradient vector. O]

In order to obtain estimates on |Vu| and |V, (notice that Voo A € R™),
Vo] < J|A|||V] and  |Vo] < ||A7H||V7).

To bound the norms of A and its inverse, look at the behaviour of A. A:0 — 7
is affine, meaning, A sends edges to edges, so the maximum scaling A performs
here is determined by the vertex of ¢ whose image under A is the longest vertex
belonging to 7. In precise,

C

Y - diam 7

diam 7

4 < ST = and A7) <

Remark. Here, C' = 1 since the vertices of a standard simplex is always 1.

Hence we have ||A|| < ch, and ||[A7Y|| < C(v,)h;t. We have |D*v| < Ch k| D*?|
and |D*9] < Ch%|DFv|. Note also that

/v = |det A| /@, |det A| = ¢ VolT ~ h”.

Remark. The constant ¢ corresponds to the number of standard simplices re-
quired to form an n-dimensional cube; i.e. ¢ = n!.

Let p,q > 1 and let kK > m. For v € Py, evidently
[0l < 1Dl < ChERZM|| DRV, (o),
because |D*v| < Ch7*|D*5]. Moreover,
||DkaHLP(U) S C(p7 q, O-)HDki}\HLq(a)y

since || - |zp > || - ||ze with p,q > 1 over P, (recall dimPy_; < o0). Similarly,
|- lwr=ma 2 ||| £a, SO Wwe may write | D¥"D™|| 1oy < C(g, k—m, 0)|| D™ D|| La(o)-
Summing up,

lv

p
Wk.p(r Li(o

p/q
) < CRM|ID™B), ) < CRMM (h;"+mq / |DmU|Q) :
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where the last inequality follows from |D*p| < Ch¥|D¥v|. The constants depend
only on v, o,p,q,m and k. We conclude that

olwre < Che ™ " Folma, (7.2)

for some positive constant C' depending on 7.

We wish to make estimate (7.2) global. Let v € L*>(£2) such that v|, € Py_1; we

do not presume global continuity. For p = oo with k > m — g,

1/q
m—2—k m—2—k
‘Ulwk"x’(Q) < IPea]-?’i ChT ! |U‘Wm’q(7') < Chminq <Z |IU|§1/VW"7(T)) ’

TeP

so if p > ¢ with k = m, from ((7.2) we obtain

1/p o 1/p n 1/q
(Z |U|€Vk,p(7—)) < Chr’;mn <Z |U|€Vk7q(7—)> < Chrfun (Z ‘U Wk.a T)) .

TEP TEP TEP
In particular, for £ = m = 0, we obtain the estimate
lollzr@y < O lollzo@y, (1< g <p < oo). (7.3)

Again, for the case p < ¢ with k& > m, there exists a real positive number r
satisfying 1/p = 1/r + 1/q and

1/p i n_ n 1/p
(Z |U Wkp ) < Ch;nmm (Z h‘ ’U|Wm q(q—))

TeP TeP
(ﬂ—ﬂ)r 1/r 1/q
<ot (L) (Sl )
TeP TeP

where the second inequality is true due to Holder. Notice that the quantity

SR S < evolo

TEP TeEP

Remark. 1f Sp C WHP(Q) N W™1(Q)) then,

1/p
(Z ’U‘gvk,p(.r)) = ’U’ka(g), v € Sp.

TeEP
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