Lecture 7 Direct and inverse estimates and Mesh refinement

§1 Direct (Jackson) estimates

Let Ω be star-shaped with respect to a ball, $h = \operatorname{diam} \Omega$ and let $u \in W^{m,p}(\Omega)$. We have shown

$$||u - Q_m u||_{L^{\infty}(\Omega)} \le Ch^{m - \frac{n}{p}} |u|_{W^{m,p}(\Omega)}, \quad (m > n, p),$$

and

$$||u - Q_m u||_{W^{k,p}(\Omega)} \le Ch^{m-k} |u|_{W^{m,p}(\Omega)}, \quad (m \ge k \ge 0),$$

where $Q_m u \in \mathbb{P}_{m-1}$ is the averaged Taylor polynomial and $C = C(n, m, \gamma)$, γ being the chunkiness parameter. For the Lagrange finite elements of order d, on a simplex τ ,

$$I_{\tau}v = \sum_{z \in \mathcal{N}_{\tau}} v(z)\phi_z \quad v \in C(\overline{\tau}),$$

We have obtained the estimate

$$||u - I_{\tau}u||_{W^{k,p}(\tau)} \le C\left(h^{d-k}|u|_{d,p} + \dots + h^{m-k}|u|_{m,p}\right) \le Ch^{d-k}||u||_{W^{m,p}(\tau)},$$

where typically $k \leq d \leq m$.

Remark. We would expect $W^{d,p}$ instead of $W^{m,p}$ in the right hand-side of the last estimate above, however, we need m > n/p in order for $I_{\tau}v$ to be well defined. Recall that the argument depended on $\|\phi_z\|_{W^{k,p}(\tau)} \leq Ch^{-k+n/p}$.

For a conforming partition P, we defined $I_P u \in S_P$ by by $(I_P u)|_{\tau} = I_{\tau} u$ for $\tau \in P$, where $S_P = S^d(P)$. In other words,

$$I_P u = \sum_{z \in \mathcal{N}_P} u(z)\phi_z,$$

now with ϕ_z the globally defined nodal basis function. Assume that $S_P \subset W^{k,p}$, i.e k = 0, 1 (we cannot achieve high k since regularity is restricted along interfaces for piecewise polynomials). Then

$$||u - I_P u||_W \le C \left(h^{d-k} |u|_{d,p} + \dots + h^{m-k} |u|_{m,p} \right), \tag{7.1}$$

where $h = \max_{\tau \in P} h_{\tau}$, $h_{\tau} = \operatorname{diam} \tau$ and $C = C(n, m, \gamma)$; $(\gamma = \max_{\tau \in P} \gamma_{\tau})$. Notice that we have to choose γ as such so as to ensure that constant C remains bounded; geometrically, this requires that the collection ${\cal P}$ has no long and thin triangles.

Estimate (7.1) implies for $u \in W^{m,p}$,

$$\inf_{v \in S_P} \|u - v\|_{W^{k,p}(\Omega)} \le Ch^{d-k} \|u\|_{W^{m,p}(\Omega)}, \quad (m > n/p).$$

Remark. This kind of estimate is called a *direct estimate* or *Jackson-type esti*mate.

§2 Mesh refinement

For good accuracy, we want h to be small and γ not be too large. A *refinement* rule is a procedure that transforms a partition P into a new partition P' with smaller h.

Example 5 (*Red refinement, loops, RSS*). Notice that $h \mapsto h/2$ and γ remains constant.

Example 6 (Newest vertex bisection, standard subdivision). Notice that $h \mapsto \lambda h$, with $\lambda < 1$, and γ remains bounded (shape is regular). In order to avoid hanging nodes, initial vertices must be chosen carefully in order to ensure conformity. \diamond

Remark. Note that the first example is necessarily a global procedure whereas the second can perform local refinement.

A model for (uniform) refinement algorithm runs as follows:

§3 Inverse (Bernstein) estimates

Because S_P is finite-dimensional, For $v \in S_P$, we have $||v||_{k,p} \leq C ||v||_{m,p}$. We want to keep track of the dependence of constant C on h. Recall that $\tau = A(\sigma)$, where σ is the standard simplex and $A : \sigma \to \tau$ is an affine bijection.

Let $\hat{v} = v \circ A$ and consider the following technical lemma.

Lemma 7.1. Let A be a matrix of constant coefficients, let $v : \mathbb{R}^n \to \mathbb{R}$ and let $x \in \mathbb{R}^n$. Then

$$\nabla(v \circ A) = A^T(\nabla v) \circ A.$$

Proof. We are interested in the derivatives of $v \circ A$. We may write

$$\partial_j (v \circ A)(x) = \partial_j v(Ax) = \sum_{k=1}^n \frac{\partial v}{\partial y_k} \frac{\partial y_k}{\partial x_j}, \quad y = Ax.$$

Lecture 7

For k = 1, ..., n,

$$\frac{\partial y_k}{\partial x_j} = \partial_j (Ax)_k = \sum_{i=1}^n A_{ki} \partial_j x_i = A_{kj},$$

meanwhile $\frac{\partial v}{\partial y_k} = \partial_k v \circ A$. Summing up,

$$\partial_j (v \circ A) = \sum_{k=1}^n (\partial_k v \circ A) A_{kj} = \left(A^T \nabla v \circ A \right)_j,$$

corresponding to the *j*th entry of said gradient vector.

In order to obtain estimates on $|\nabla v|$ and $|\nabla \hat{v}|$, (notice that $\nabla v \circ A \in \mathbb{R}^n$),

$$|\nabla \widehat{v}| \le ||A|| |\nabla v|$$
 and $|\nabla v| \le ||A^{-1}|| |\nabla \widehat{v}|$.

To bound the norms of A and its inverse, look at the behaviour of A. $A : \sigma \to \tau$ is affine, meaning, A sends edges to edges, so the maximum scaling A performs here is determined by the vertex of σ whose image under A is the longest vertex belonging to τ . In precise,

$$||A|| \le \frac{\operatorname{diam} \tau}{C} =$$
 and $||A^{-1}|| \le \frac{C}{\gamma_{\tau} \cdot \operatorname{diam} \tau}$

Remark. Here, C = 1 since the vertices of a standard simplex is always 1.

Hence we have $||A|| \leq ch_{\tau}$ and $||A^{-1}|| \leq C(\gamma_{\tau})h_{\tau}^{-1}$. We have $|D^{k}v| \leq Ch_{\tau}^{-k}|D^{k}\hat{v}|$ and $|D^{k}\hat{v}| \leq Ch_{\tau}^{k}|D^{k}v|$. Note also that

$$\int_{\tau} v = |\det A| \int_{\sigma} \widehat{v}, \quad |\det A| = c \operatorname{Vol} \tau \sim h_{\tau}^{n}.$$

Remark. The constant c corresponds to the number of standard simplices required to form an n-dimensional cube; i.e. c = n!.

Let $p, q \ge 1$ and let $k \ge m$. For $v \in \mathbb{P}_{d-1}$, evidently

$$|v|_{W^{k,p}}^{p} \leq \|D^{k}v\|_{L^{p}}^{p} \leq Ch_{\tau}^{n}h_{\tau}^{-kp}\|D^{k}v\|_{L^{p}}^{p}(\sigma),$$

because $|D^k v| \leq C h_{\tau}^{-k} |D^k \hat{v}|$. Moreover,

$$\|D^k \widehat{v}\|_{L^p(\sigma)} \le C(p, q, \sigma) \|D^k \widehat{v}\|_{L^q(\sigma)},$$

since $\|\cdot\|_{L^p} \simeq \|\cdot\|_{L^q}$ with $p, q \ge 1$ over \mathbb{P}_{d-1} (recall dim $\mathbb{P}_{d-1} < \infty$). Similarly, $\|\cdot\|_{W^{k-m,q}} \simeq \|\cdot\|_{L^q}$, so we may write $\|D^{k-m}D^m\hat{v}\|_{L^q(\sigma)} \le C(q,k-m,\sigma)\|D^m\hat{v}\|_{L^q(\sigma)}$. Summing up,

$$|v|_{W^{k,p}(\tau)}^{p} \leq Ch_{\tau}^{n-kp} ||D^{m}\widehat{v}||_{L^{q}(\sigma)}^{p} \leq Ch^{n-kp} \left(h_{\tau}^{-n+mq} \int_{\tau} |D^{m}v|^{q}\right)^{p/q},$$

where the last inequality follows from $|D^k \hat{v}| \leq C h_{\tau}^k |D^k v|$. The constants depend only on γ , σ , p, q, m and k. We conclude that

$$|v|_{W^{k,p}(\tau)} \le Ch^{\frac{n}{p} - \frac{n}{q} + m - k} |v|_{W^{m,q}(\tau)},$$
(7.2)

for some positive constant C depending on γ .

We wish to make estimate (7.2) global. Let $v \in L^{\infty}(\Omega)$ such that $v|_{\tau} \in \mathbb{P}_{d-1}$; we do not presume global continuity. For $p = \infty$ with $k \ge m - \frac{n}{q}$,

$$|v|_{W^{k,\infty}(\Omega)} \le \max_{\tau \in P} Ch_{\tau}^{m-\frac{n}{q}-k} |v|_{W^{m,q}(\tau)} \le Ch_{min}^{m-\frac{n}{q}-k} \left(\sum_{\tau \in P} |v|_{W^{m,q}(\tau)}^{q}\right)^{1/q},$$

so if $p \ge q$ with k = m, from (7.2) we obtain

$$\left(\sum_{\tau \in P} |v|_{W^{k,p}(\tau)}^{p}\right)^{1/p} \le Ch_{min}^{\frac{n}{p} - \frac{n}{q}} \left(\sum_{\tau \in P} |v|_{W^{k,q}(\tau)}^{p}\right)^{1/p} \le Ch_{min}^{\frac{n}{p} - \frac{n}{q}} \left(\sum_{\tau \in P} |v|_{W^{k,q}(\tau)}^{q}\right)^{1/q}.$$

In particular, for k = m = 0, we obtain the estimate

$$\|v\|_{L^{p}(\Omega)} \le Ch_{\min}^{\frac{n}{p} - \frac{n}{q}} \|v\|_{L^{q}(\Omega)}, \quad (1 \le q \le p \le \infty).$$
(7.3)

Again, for the case p < q with $k \geq m,$ there exists a real positive number r satisfying 1/p = 1/r + 1/q and

$$\left(\sum_{\tau\in P} |v|_{W^{k,p}(\tau)}^p\right)^{1/p} \le Ch_{min}^{m-k} \left(\sum_{\tau\in P} h_{\tau}^{\left(\frac{n}{p}-\frac{n}{q}\right)p} |v|_{W^{m,q}(\tau)}^p\right)^{1/p}$$
$$\le Ch_{min}^{m-k} \left(\sum_{\tau\in P} h_{\tau}^{\left(\frac{n}{p}-\frac{n}{q}\right)r}\right)^{1/r} \left(\sum_{\tau\in P} |v|_{W^{k,q}(\tau)}^q\right)^{1/q},$$

where the second inequality is true due to Holder. Notice that the quantity

$$\sum_{\tau \in P} h_{\tau}^{\left(\frac{n}{p} - \frac{n}{q}\right)r} = \sum_{\tau \in P} h_{\tau}^{n} \le c \operatorname{Vol} \Omega.$$

Remark. If $S_P \subset W^{k,p}(\Omega) \cap W^{m,q}(\Omega)$ then,

$$\left(\sum_{\tau\in P} |v|_{W^{k,p}(\tau)}^p\right)^{1/p} \equiv |v|_{W^{k,p}(\Omega)}, \quad v\in S_P.$$