
Lecture 7 Notes on Finite Element Methods

Lecture 7
Direct and inverse estimates and Mesh

refinement

§1 Direct (Jackson) estimates

Let Ω be star-shaped with respect to a ball, h = diamΩ and let u ∈ Wm,p(Ω).
We have shown

�u−Qmu�L∞(Ω) ≤ Chm−n
p |u|Wm,p(Ω), (m > n, p),

and
�u−Qmu�Wk,p(Ω) ≤ Chm−k|u|Wm,p(Ω), (m ≥ k ≥ 0),

where Qmu ∈ Pm−1 is the averaged Taylor polynomial and C = C(n,m, γ), γ
being the chunkiness parameter. For the Lagrange finite elements of order d, on
a simplex τ ,

Iτv =
�

z∈Nτ

v(z)φz v ∈ C(τ),

We have obtained the estimate

�u− Iτu�Wk,p(τ) ≤ C
�
hd−k|u|d,p + · · ·+ hm−k|u|m,p

�
≤ Chd−k�u�Wm,p(τ),

where typically k ≤ d ≤ m.

Remark. We would expect W d,p instead of Wm,p in the right hand-side of the
last estimate above, however, we need m > n/p in order for Iτv to be well defined.
Recall that the argument depended on �φz�Wk,p(τ) ≤ Ch−k+n/p.

For a conforming partition P , we defined IPu ∈ SP by by (IPu)|τ = Iτu for
τ ∈ P , where SP = Sd(P ). In other words,

IPu =
�

z∈NP

u(z)φz,

now with φz the globally defined nodal basis function. Assume that SP ⊂ W k,p,
i.e k = 0, 1 (we cannot achieve high k since regularity is restricted along interfaces
for piecewise polynomials). Then

�u− IPu�W ≤ C
�
hd−k|u|d,p + · · ·+ hm−k|u|m,p

�
, (7.1)

where h = maxτ∈P hτ , hτ = diam τ and C = C(n,m, γ); (γ = maxτ∈P γτ ).
Notice that we have to choose γ as such so as to ensure that constant C remains
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bounded; geometrically, this requires that the collection P has no long and thin
triangles.

Estimate (7.1) implies for u ∈ Wm,p,

inf
v∈SP

�u− v�Wk,p(Ω) ≤ Chd−k�u�Wm,p(Ω), (m > n/p).

Remark. This kind of estimate is called a direct estimate or Jackson-type esti-
mate.

§2 Mesh refinement

For good accuracy, we want h to be small and γ not be too large. A refinement
rule is a procedure that transforms a partition P into a new partition P � with
smaller h.
Example 5 (Red refinement, loops, RSS). Notice that h �→ h/2 and γ remains
constant. �
Example 6 (Newest vertex bisection, standard subdivision). Notice that h �→ λh,
with λ < 1, and γ remains bounded (shape is regular). In order to avoid hanging
nodes, initial vertices must be chosen carefully in order to ensure conformity. �

Remark. Note that the first example is necessarily a global procedure whereas
the second can perform local refinement.

A model for (uniform) refinement algorithm runs as follows:

§3 Inverse (Bernstein) estimates

Because SP is finite-dimensional, For v ∈ SP , we have �v�k,p ≤ C�v�m,p. We
want to keep track of the dependence of constant C on h. Recall that τ = A(σ),
where σ is the standard simplex and A : σ → τ is an affine bijection.

Let �v = v ◦ A and consider the following technical lemma.

Lemma 7.1. Let A be a matrix of constant coefficients, let v : Rn → R and let
x ∈ Rn. Then

∇(v ◦ A) = AT (∇v) ◦ A.

Proof. We are interested in the derivatives of v ◦ A. We may write

∂j(v ◦ A)(x) = ∂jv(Ax) =
n�

k=1

∂v

∂yk

∂yk
∂xj

, y = Ax.
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For k = 1, ..., n,
∂yk
∂xj

= ∂j(Ax)k =
n�

i=1

Aki∂jxi = Akj,

meanwhile
∂v
∂yk

= ∂kv ◦ A. Summing up,

∂j(v ◦ A) =
n�

k=1

(∂kv ◦ A)Akj =
�
AT∇v ◦ A

�
j
,

corresponding to the jth entry of said gradient vector.

In order to obtain estimates on |∇v| and |∇�v|, (notice that ∇v ◦ A ∈ Rn
),

|∇�v| ≤ �A�|∇v| and |∇v| ≤ �A−1�|∇�v|.

To bound the norms of A and its inverse, look at the behaviour of A. A : σ → τ
is affine, meaning, A sends edges to edges, so the maximum scaling A performs

here is determined by the vertex of σ whose image under A is the longest vertex

belonging to τ . In precise,

�A� ≤ diam τ

C
= and �A−1� ≤ C

γτ · diam τ
.

Remark. Here, C = 1 since the vertices of a standard simplex is always 1.

Hence we have �A� ≤ chτ and �A−1� ≤ C(γτ )h−1
τ . We have |Dkv| ≤ Ch−k

τ |Dk�v|
and |Dk�v| ≤ Chk

τ |Dkv|. Note also that

�

τ

v = |detA|
�

σ

�v, |detA| = cVol τ ∼ hn
τ .

Remark. The constant c corresponds to the number of standard simplices re-

quired to form an n-dimensional cube; i.e. c = n!.

Let p, q ≥ 1 and let k ≥ m. For v ∈ Pd−1, evidently

|v|pWk,p ≤ �Dkv�pLp ≤ Chn
τh

−kp
τ �Dkv�pLp(σ),

because |Dkv| ≤ Ch−k
τ |Dk�v|. Moreover,

�Dk�v�Lp(σ) ≤ C(p, q, σ)�Dk�v�Lq(σ),

since � · �Lp � � · �Lq with p, q ≥ 1 over Pd−1 (recall dimPd−1 < ∞). Similarly,

�·�Wk−m,q � �·�Lq , so we may write �Dk−mDm�v�Lq(σ) ≤ C(q, k−m, σ)�Dm�v�Lq(σ).

Summing up,

|v|pWk,p(τ) ≤ Chn−kp
τ �Dm�v�pLq(σ) ≤ Chn−kp

�
h−n+mq
τ

�

τ

|Dmv|q
�p/q

,
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where the last inequality follows from |Dk�v| ≤ Chk
τ |Dkv|. The constants depend

only on γ, σ, p, q,m and k. We conclude that

|v|Wk,p(τ) ≤ Ch
n
p−

n
q +m−k|v|Wm,q(τ), (7.2)

for some positive constant C depending on γ.

We wish to make estimate (7.2) global. Let v ∈ L∞
(Ω) such that v|τ ∈ Pd−1; we

do not presume global continuity. For p = ∞ with k ≥ m− n
q ,

|v|Wk,∞(Ω) ≤ max
τ∈P

Ch
m−n

q −k
τ |v|Wm,q(τ) ≤ Ch

m−n
q −k

min

��

τ∈P

|v|qWm,q(τ)

�1/q

,

so if p ≥ q with k = m, from (7.2) we obtain

��

τ∈P

|v|pWk,p(τ)

�1/p

≤ Ch
n
p−

n
q

min

��

τ∈P

|v|pWk,q(τ)

�1/p

≤ Ch
n
p−

n
q

min

��

τ∈P

|v|qWk,q(τ)

�1/q

.

In particular, for k = m = 0, we obtain the estimate

�v�Lp(Ω) ≤ Ch
n
p−

n
q

min �v�Lq(Ω), (1 ≤ q ≤ p ≤ ∞). (7.3)

Again, for the case p < q with k ≥ m, there exists a real positive number r
satisfying 1/p = 1/r + 1/q and

��

τ∈P

|v|pWk,p(τ)

�1/p

≤ Chm−k
min

��

τ∈P

h
(
n
p−

n
q )p

τ |v|pWm,q(τ)

�1/p

≤ Chm−k
min

��

τ∈P

h
(
n
p−

n
q )r

τ

�1/r��

τ∈P

|v|qWk,q(τ)

�1/q

,

where the second inequality is true due to Holder. Notice that the quantity

�

τ∈P

h
(
n
p−

n
q )r

τ =

�

τ∈P

hn
τ ≤ cVolΩ.

Remark. If SP ⊂ W k,p
(Ω) ∩Wm,q

(Ω) then,

��

τ∈P

|v|pWk,p(τ)

�1/p

≡ |v|Wk,p(Ω), v ∈ SP .
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