
Lecture 5 Notes on Finite Element Methods

Lecture 5

Polynomial approximation in Sobolev spaces

§1 Piecewise polynomial spaces

We define the spaces of piecewise polynomials with respect to a partition P

Sm,r(P ) = {u ∈ Cr(Ω) : u|τ ∈ S(τ)}. (5.1)

where S(τ) = Pm−1 or S(τ) = Pm−1 × · · · × Pm−1. Here, r denotes the overall
regularity of the basis elements. For example:

• r = −1 corresponds to no condition on regularity; discontinuous piecewise
polynomials.

• r = 0 corresponds to the C 0 Lagrange finite elements.

• r = 1 corresponds to C 1 finite elements.

• r = m− 2 corresponds to splines.

Generally, for (PG) approximations,

‖u− uP‖Wk,p(Ω) ≤ C inf
v∈Sm,r(P )

‖u− v‖Wk,p(Ω). (5.2)

We start with only one element.

§2 Polynomial approximation in Sobolev spaces

Let Ω ⊂ Rn be a (bounded) domain such a triangle, square or tetraherdron.
We recall the multi-index notation: Let α ∈ N0, α = (α1, ..., αn). We have the
following:

• ∂αu = ∂α1
1 ∂α2

2 · · · ∂αnn u, • |α| = α1 + α2 + · · ·+ αn,

• xα = xα1
1 x

α2
2 · · ·xαnn , • α! = α1!α2! · · ·αn!.

Recall the Sobolev norm:

‖u‖Wk,p(Ω) = max
|α|≤k
‖∂αu‖Lp(Ω),

and the semi-norm:
|u|Wk,p(Ω) = max

|α|=k
‖∂αu‖Lp(Ω),
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where
W k,p(Ω) = {u ∈ Lp(Ω) : ‖u‖Wk,p(Ω) <∞} (1 ≤ p ≤ ∞).

Remark. We may adopt the short hand notation ‖ · ‖k,p and | · |k,p.

We have an important density theorem.

Theorem 5.1 (Meyers-Serrin). The set {u ∈ C∞ : ‖u‖k,p < ∞} is dense in
W k,p(Ω).

Recall the Taylor theorem for a function f ∈ Cm[0, t],

f(t) =
m−1∑
k=0

f (k)(s)

k!
tk +

∫ t

0

f (m)(s)

(m− 1)!
(t− s)m−1 ds.

In the multi-dimensional setting, for x, y ∈ Rn, define f(s) = u(y+ s(x− y)) and
obtain

f ′(s) = [(x1 − y1)∂i + · · ·+ (xn − yn)∂n]u(y + s(x− y)).

Successively,

f (k)(s) =
∑
|α|=k

k!

α!
(x− y)α∂αu(y + s(x− y)),

evaluated at s = 1 we obtain the expression

u(x) =
∑
|α|<m

∂αu(y)

α!
(x− y)α +

∫ 1

0

∑
|α|=m

m

α!
(x− y)α(1− s)m−1∂αu(y+ s(x− y)) ds.

(5.3)
We denote the first term in the expression above by Tmy u ∈ Pm−1 and write

E =
∑
|α|=m

m

α!
(x− y)α

∫ 1

0

sm−1∂αu(x+ s(y − x)) ds. (5.4)

Remark. Note that we replaced 1− s by s.

This was all under the assumption that u ∈ Cm(Ω), however, such smoothness
cannot always be assumed in Sobolev spaces. We consider the averaged Taylor
polynomial: Let B = B(0, ρ), let φ0 ∈ C∞c (B1) be positive with

∫
φ0 = 1. Write

φ(x) = ρ−nφ0(x/ρ) so that φ ∈ C∞c (B) and that
∫
φ = 1 as well. Now define

Qmu(x) =

∫
B
Tmy u(x)φ(y) dy. (5.5)

That is, to approximate u(x), we construct a Taylor polynomial, based at y and
averaged over y ∈ B. We have
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Qmu(x) =
∑
|α|<m

1

α!

∫
B1
∂αu(y)(x− y)αφ(y) dy

=
∑

|α|,|β|<m

aα,β

∫
B1
∂αu(y)yα−βφ(y) dy

=
∑

|α|,|β|<m

(−1)|α|aα,βx
β

∫
B1
u(y)∂α

(
yα−βφ(y)

)
dy.

Let ψα,β = ∂α
(
yα−βφ(y)

)
.

Definition 5.2. Ω is called star-shaped with respect to B if for all x belonging
to Ω, there exists a point y ∈ B such that the straight segment [x, y] ⊂ Ω.

We have the following lemma:

Lemma 5.3. Suppose now that Ω is star-shaped with respect to B. Then the
polynomial Qmu ∈ Pm−1 with degree less than or equal to m− 1 and

‖Qmu‖Wk,p(Ω) ≤ C‖u‖L1(B). (5.6)

In other words, Qm : L1(B)→ W k,p(Ω) is bounded.

Proof. Notice that |Qmu|Wm,p = 0 and

‖Qmu‖Wk,∞(Ω) ≤ C
∑

|α|,|β|<m

‖xβ‖Wk,|α|(Ω)‖u‖L1(B)‖ψα,β‖L∞(B).

Now we direct our focus to the error term u−Qmu.

Rmu(x) = u(x)−Qm(x) =

∫
B

∫ 1

0

∑
|α|=m

m

α!
(x−y)αsm−1∂αu(x+s(y−x))φ(y) dsdy,
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take z = x+ s(y − x), have z−x
s

= y − x which makes dz = sn dy and

A =

{
(z, s) = 0 < s ≤ 1 :

∣∣∣∣x+
z − x
s

∣∣∣∣ < ρ

}
. (5.7)

Here, (x− y)α = s−|α|(x− z)α, so we have

Rmu(x) =
∑
|α|=m

m

α!

∫
A

(x− z)αs−n−1∂αu(z)φ

(
x+

z − x
s

)
dsdz

=
∑
|α|=m

m

α!

∫
Cx

(x− z)α∂αu(z)K(z, x) dz,

where we wrote

K(z, x) =

∫ 1

0

1A(z, s)s−n−1φ

(
x+

z − x
s

)
ds.

For (z, s) ∈ A, |z−x|
s

< |x|+ ρ implies s > |z−x|
|x|+ρ = t, which makes

|K(z, x)| ≤
(∫ 1

t

s−n−1 ds

)
‖φ‖L∞(B) =

t−n − 1

n
‖ϕ‖L∞(B) ≤ Cρ−n

(
|x|+ ρ

|z − x|

)n
,

since ‖ρ‖L∞ ≤ cρ−n. We have

|K(z, x)| ≤ C(n, φ)

(
1 +
|x|
ρ

)
|z − x|−n,

and |x|
ρ
≤ diam Ω

ρ
= γ, where γ is referred to as Chunkiness paramater. We have

|Rmu(x)| ≤ C(m,n, γ)

∫
Cx

|x− z|m−ngm(z) dz, (5.8)

where gm(z) = max|α|−m |∂αu(z)|. Define now

Im,h(x) = 1{|x|<h}|x|m−n, h = diam Ω, (5.9)

where |x|m−n is said to be the Riesz potential. We claim that

|Rmu(x)| ≤ C(Im,h ∗ gm)(x), (5.10)

Indeed, from (5.8)

|Rmu(x)| ≤ C

∫
Cx

|x− z|m−n1{|x−z|≤h}gm(z) dz

≤ C

∫
Rn
Im,h(x− z)gm(z) dz,
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where gm is extended by 0 outside of Ω. Recall now by Holder that ‖u ∗ v‖∞ ≤
‖u‖p‖v‖q,

‖Rmu‖L∞ ≤ C‖Im,h‖Lq‖gm‖Lp ≤ C‖Im,h‖Lq |u|Wm,p(Ω),

but since ‖Im,h‖L∞ ≤ hm−n for m ≥ n,∫
|x|<h

|x|q(m−n) dx ≤ C

∫ h

0

rq(m−n)rn−1 dr ≤ Chq(m−n)+n,

if we require that q(m− n) + n > −1 or ,m > n(1− 1
q
) = n

p
,

‖Im,h‖Lq ≤ Chm−n/p, (5.11)

we may conclude that

‖Rmu‖L∞ ≤ Chm−n/p|u|Wm,p(Ω), m >
n

p
, (5.12)

and if p = 1, then all the above holds even for m = n.
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