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§1 Applications to the Poisson problem

In this section we will apply some of the previous analysis regarding bilinear forms
to the Poisson problem. But first, note the following. Recall the definition of α
in (1.5). If A is invertible, A being the linear operator characterized by a(·, ·),

α = inf
x∈X

(
1

‖x‖
sup
y∈Y

〈Ax, y〉
‖y‖

)
= inf

x∈X

‖Ax‖Y ∗

‖x‖
,

so by a “change of variables”, said definition is equivalent to

α = inf
y∗∈Y ∗

‖y∗‖Y ∗

‖A−1y∗‖X
> 0, (2.1)

which implies that α−1 = ‖A−1‖. Similarly, β−1 = ‖(A∗)−1‖.

Example 2 (Dirichlet). Let X = Y = H1
0 (Ω) with Ω ⊂ Rn is bounded. Define

a(u, v) =

∫
Ω

∇u · ∇v + κ

∫
Ω

uv. (2.2)

Let f ∈ L2(Ω). Then Au = f corresponds to{
−∆u+ κu = f in Ω

u = 0 on ∂Ω.
(2.3)

Indeed, recalling the definition A : H1
0 (Ω)→ H1

0 (Ω), we have (∗) : a(u, v) = 〈f, v〉
for all u, v ∈ H1

0 (Ω). Let v ∈ C1
c (Ω) and assume that u ∈ C2(Ω) ∩ C1(Ω). We

have

a(u, v) =

∫
Ω

∇u · ∇v + κ

∫
Ω

uv = −
∫

Ω

v∆u+ κ

∫
Ω

uv =

∫
Ω

fv ∀v ∈ C1
c (Ω),

by partial integration on
∫

Ω
∇u · ∇v (i.e. Green’s first identity) and noting that

v is compactly supported in Ω. This is extended to v ∈ H1
0 (Ω) via a density

argument which makes the statement (∗) equivalent to −∆u + κu = f on Ω.
Moreover, u ∈ H1

0 (Ω) and by assumption u ∈ C1(Ω), we conclude that u|∂Ω = 0.
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We wish to verify when a(·, ·) is coercive. If κ > 0,

a(u, u) ≥ ‖∇u‖2
L2 + κ‖u‖2

L2 ≥ min{1, κ}‖u‖2
H1

0
.

If κ ≤ 0, we have for u ∈ H1
0 (Ω) the Friedrich inequality ‖u‖L2 ≤ CF‖∇u‖L2

which makes, for any given ε > 0,

a(u, u) ≥ ε‖∇u‖2
L2 + (1− ε)‖∇u‖2

L2 + κ‖u‖2
L2 ≥ ε‖∇u‖2

L2 +

(
1− ε
C2
F

+ κ

)
‖u‖2

L2 .

It follows that a(·, ·) is coercive if |κ| < C−2
F . Moreover, A is invertible if κ is not

an eigenvalue of the Laplacian. We conclude this example by mentioning that
the solution u is smooth in Ω. Moreover, if ∂Ω is sufficiently smooth, then u is
smooth up to the boundary. �

Example 3 (Neumann). Let X = Y = H1(Ω) and let a(·, ·) be as above. Au = f
corresponds to {

−∆u+ κu = f in Ω
∂u
∂ν

= 0 on ∂Ω.
(2.4)

To see this, we first assume that ∂Ω ∈ C1, u ∈ C2(Ω) and v ∈ C1(Ω). By similar
reasoning in the previous example we may write

a(u, v) = −
∫

Ω

v∆u+

∫
∂Ω

v∂νu+ κ

∫
Ω

uv =

∫
Ω

fv ∀v ∈ C1(Ω). (2.5)

Noting that C1(Ω) ⊃ C1
c (Ω), the integral

∫
∂Ω

vanishes and we obtain the PDE

−∆u+κu = f in Ω when v is extended to H1(Ω). Finally, for any v ∈ C1(Ω) we
have

∫
∂Ω
v∂νu = 0 which makes ∂νu = 0 on ∂Ω.

The bilinear form a(·, ·) is coercive if κ > 0. If ∂Ω ∈ C1, then the spectrum is
discrete. �

Remark. If X = Y = H1(Tn) where Tn = Rn/(2πZ)n, then we have the same
set up s the Neumann problem.

§2 Petrov-Galerkin methods

Let X, Y be Banach spaces, let a : X × Y → R be a bounded bilinear form and
let A : X → Y ∗ be an invertible bounded linear map defined by 〈Ax, y〉 = a(x, y)
for all x ∈ X and all y ∈ Y . Let b ∈ Y ∗ and let x0 ∈ X be such that Ax0 = b. We
formulate the Petrov-Galerkin method (PG) in which we seek an approximation

to x0 from a given subspace of X. Take X̂ ⊂ X and Ŷ ⊂ Y to be closed linear
subspaces and suppose that x̂ ∈ X̂ satisfies

a(x̂, y) = b(y) ∀y ∈ Ŷ . (2.6)
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From the assumption Ax0 = b we have a(x0, y) = b(y) for all y ∈ Y which makes

a(x0 − x̂, y) = 0 for all y ∈ Ŷ . Intuitively speaking, if X̂ = Ŷ , x̂ serves as “best

approximation” of x0 in X̂.

Suppose now that the inf-sup condition holds in the subspaces. Then

α̂ = inf
x∈X̂

sup
y∈Ŷ

a(x, y)

‖x‖‖y‖
> 0.

Then for all x ∈ X̂,

‖x0 − x̂‖ ≤ ‖x0 − x‖ + ‖x− x̂‖

≤ ‖x0 − x‖ + α̂−1 sup
y∈Ŷ

a(x− x̂, y)

‖y‖

= ‖x0 − x‖ + α̂−1 sup
y∈Ŷ

a(x− x0, y)

‖y‖

≤ (1 + α̂−1‖a‖)‖x0 − x‖,

where the second inequality holds because for any x ∈ X̂

α̂ ≤ sup
y∈Y ∗

a(x− x̂, y)

‖x− x̂‖‖y‖
⇐⇒ ‖x− x̂‖ ≤ α̂−1 sup

y∈Y ∗

a(x− x̂, y)

‖y‖
,

whereas the equality holds because

a(x− x̂, y) = a(x− x0 + x0 − x̂, y) = a(x− x0, y).

We have the following lemma:

Lemma 2.1 (Cea’s lemma). Under the hypotheses made above,

‖x0 − x̂‖ ≤ (1 + α̂‖a‖) inf
x∈X̂
‖x0 − x‖. (2.7)

2.1 Operator point of view

Let V be a linear space, V̂ ⊂ V be a linear subspace. Let JV : V̂ → V denote an
extension operator. We have

Ŷ Y R
JY b

b ◦ JY
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Notice that the composition b ◦ JY : Ŷ → R agrees with b on Ŷ and is equal to
J∗Y b. Now let J∗Y : Ŷ → Ŷ ∗ and define Â : X̂ → Ŷ ∗ by

〈Âx, y〉 = a(x, y) ∀x ∈ X̂, ∀y ∈ Ŷ . (2.8)

From

X Y ∗

X̂ Ŷ ∗

A

J∗Y

Â

JX

we see that Â = J∗YAJX and the statement Âx̂ = J∗Y b is equivalent to (2.6) i.e.

the Petrov-Galerkin method; have x̂ = Â−1J∗YAx0 as the solution obtained by

(PG). Moreover, if x ∈ X̂,

Âx = J∗YAJXx = J∗YAx ⇐⇒ x = Â−1J∗YAx.

The last relation together with the previous expression of x̂ in terms of x0, we
have for any x ∈ X̂

‖x0 − x̂‖ = ‖x0 − x+ Â−1J∗YAx− x̂‖ ≤ ‖x0 − x‖ + ‖Â−1J∗YAx‖‖x− x0‖,

which again implies the conclusion of Cea’s lemma;

‖x0 − x̂‖ ≤ (1 + ‖Â−1‖‖A‖) inf
x∈X̂
‖x0 − x‖. (2.9)

2.2 Application to Hilbert spaces

Suppose that X̂ = span{φj}j∈J and Ŷ = span{ψk}k∈K with |J |, |K| < ∞, we

may write u ∈ X̂ and v ∈ Ŷ as u =
∑

j∈J ujφj and v =
∑

k∈K vkψk so that

a(u, v) =
∑
j,k

ujvka(φj, ψk) and b(v) =
∑
k∈K

vkb(ψk).

In particular, the (PG) method suggests approximate solution u ∈ X̂ satisfying

a(u, v) = b(v) for all v ∈ Ŷ can now be viewed as a seeking solution u whose
coefficients satisfy

∑
j∈J uja(φj, ψk) = b(ψk) for all k ∈ K. Therefore, by defining

Ajk = a(φj, ψk) and bk = b(ψk) for j ∈ J, k ∈ K, (2.10)

the Petrov-Galerkin method is equivalent to solving the linear system Au = b.

Remark. In bk, we typically have
∫

Ω
fψk. In practice, this integral is usually

computed by means of Gaussian quadratures.
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Example 4. Consider −u′′ + u = f on the torus T = (0, 2π). We have

a(u, v) =

∫ 2π

0

u′v′ + uv,

with X̂ = Ŷ = span{1, sinx, cosx, ..., sinNx, cosNx}. Due to orthogonality, the
stiffness matrix A is diagonal therefore (PG) solution u is given by

uk =
1

(k2 + 1)π

∫ 2π

0

fψk,

which is essentially the Nth truncation of the Fourier series of the true solution
u.

�
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