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Abstract

This is a project paper for Schoen and Yau’s classic proof of the positive
mass theorem for dimension 3.

1 Introduction

Let (M, ḡ) be a space-time, the positive mass theorem states that if M has non-
negative local mass density then the total mass of M as viewed from spatial
infinity(the ADM mass) must be positive unless M is the flat Minkowski space-
time. Mathematically, the theorem can be described as follows: Suppose N ↪→
M is an oriented three dimensional space-like hypersurface in M with induced
metric g and second fundamental form hij . Then the local mass density µ and
current density J i can be expressed as

µ =
1

2
[R−

∑
i,j

hijhij + (
∑
i

hii)
2]

J i =
∑
j

∇j [hij − (
∑
k

hkk)gij ]

where R is the scalar curvature of N . We assume that µ and J i satisfies the
dominant energy condition

µ ≥ (
∑
i

J iJi)
1
2 (1.1)

Furthermore, we assume that g is asymptotically flat, i.e. there exists a com-
pact subset K of N so that N\K consists of finitely number of components
N1, N2, . . . Nr with each Nk diffimorphic to R3 minus a ball(we call each Nk
the end of N). We also assume that g is of C5 and be asymptotically flat
in the sense that each boundary component of N has positive mean curvature
with respect to the outward normal, and each Nk admits a coordinate system
(x1, x2, x3) in which g has the expansion g = gijdx

idxj with gij satisfying

gij = (1 +
Mk

2r
)δij + hij , |hij | ≤

k1
1 + r2

,

|∂hij | ≤
k2

1 + r3
, |∂2hij | ≤

k3
1 + r4

.

(1.2)
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where r = (
∑3
i=1(xi)2)

1
2 and ∂ is the Euclidean gradient

Mk = lim
r→∞

1

16π

∫
Sr

∑
i,j

(∂jgij − ∂igjj)dσi

is the total mass of Nk. Here we only consider the case when
∑
i

hii = 0 in this

project survey, the general case can be reduced to this one (see [7]). First we

note that, in the case
∑
i

hii = 0, the dominant energy condition (1.1) implies

that R ≥ 0. So, we can state the theorem as

Theorem 1.1. Let g be a asymptotically flat metric on an oriented 3-manifold
N . If R ≥ 0 on N , then the total mass of each end is nonnegative. Furthermore,
if in addition hij satisfies

|∂3hij |+ |∂4hij |+ |∂5hij | ≤
k4

1 + r5
(1.3)

for some positive constant k4 on an end Nk and the total mass of Nk is zero,
then g is flat, N is isomorphic to R3 with stand metric.

2 Ideals of Proof

The proof of Theorem 1.1 can be divided into two parts. First, they prove the
nonnegativity of the total mass by contradiction by using the minimal surface
theory. Then they prove the uniqueness of N with an evolution of the me-
tric g. First, suppose some Nk has negative mass Mk < 0, then the proof of
nonnegativity of Mk can be divided into three steps:

• step 1: replace the initial metric g with a conformally equivalent metric g̃
which is still asymptotically flat and satisfies R̃ ≥ 0 on N , R̃ > 0 outside
a compact subset of Nk, and having negative total mass Nk.

• step 2: construct a complete area minimizing surface M properly embed-
ded in N so that S ∩ (N \ Nk) is compact and S ∩ Nk lies between two
parallel Euclidean 2-planes in the 3-space defined by x1, x2, x3.

• step 3: use a result in [2] and the asymptotically flat property to show
that the minimal surface constructed in step 2 does not exist to get a
contradiction.

For the uniqueness of N , suppose Mk = 0 for some k, the proof also consists of
three steps:

• step 1: use the assumption Mk = 0 and R ≥ 0 to show that N is scalar
flat.
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• step 2: define a family of metric g(t) on N by g(t) =

3∑
i,j=1

(gij+tSij)dx
idxj ,

where Sij is the Ricci curvature of g. Use the condition that Mk = 0 and
R ≥ 0 to find a asymptotically flat metric φ4(t)g(t) with mass M(t) =

− 1
32π

∫
N

R(t)φ(t)
√
g(t)dx.

• step 3: show that M ′(0) = 1
32π

∫
N

‖Ric‖2dx = 0 to prove that Ric ≡ 0.

Since dimN=3, this implies that g is the Euclidean metric.

3 None-negativity of Mk

• Step1 Suppose that x1, x2, x3 are asymptotically flat coordinates descri-

bing Nk on R3 \Bσ0
(0) ,where Bσ0

(0) = {x ∈ R3||x| = (

3∑
i=1

(xi)2)
1
2 < σ0}.

Let ∆ be the Laplacian operator on Nk. We use the assumption Mk < 0
to construct the conformal metric g̃ as needed. First, let us calculate the
asymptotically expansion of ∆ 1

r on R3 \Bσ0(0). By (1.2), we know

√
g = det

1
2 (gij) = (1 +

6Mk

r
+O(r−2))

1
2 = 1 +

3Mk

r
+O(r−2)

gij = (1− Mk

2r
)4δij +O(r−2) = 1− 2Mk

r
δij +O(r−2)

So we have

∆
1

r
=

1
√
g

3∑
i,j=1

∂

∂xi
(
√
ggij

∂( 1
r )

∂xj
)

= (1− 3Mk

r
+O(r−2))

3∑
i,j=1

∂

∂xi
[(1 +

3Mk

r
+O(r−2))((1− 2Mk

r
)δij +O(r−2))(−x

j

r3
)]

=

3∑
i=1

∂

∂xi
((−2Mk

r
+

3Mk

r
)(−x

j

r3
)) +O(r−5) (since

3∑
i=1

∂

∂xi
(
xi

r3
) = 0)

=
Mk

r4
+O(r−5)

(3.1)
Since Mk < 0, so there exists a number σ > σ0 such that ∆ 1

r < 0 for
r > σ. Using this fact, we can construct a metric whose scalar curvature
is strictly positive outside a compact set on Nk. In fact, let t0 = −Mk

8σ0
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and let ζ(t) be a C5 function which satisfies

ζ(t) =

{
t t ≤ t0
3t0
2 t > 2t0

ζ ′(t) ≥ 0, ζ ′′(t) ≤ 0, for t ∈ (0,+∞)

(3.2)

Define a C5 function ϕ(x) : N → R such that

ϕ =

{
1 + 3t0

2 on N \Nk
1 + ζ(−Mk

4r ) on R3 \Bσ0(0) = Nk.

Due to (3.1) and (3.2), we have

∆ϕ ≤ 0 on N,

∆ϕ < 0 for r > 2σ.
(3.3)

Then the function ϕ will give us the conformal metric needed. In fact,
define g̃ = ϕ4g. Then

– g̃ is asymptotically flat on N since it is a multiple on N \Nk since it
is a constant multiple of g on them and it is asymptotically flat on
Nk since

g̃ij = (1− Mk

4r
)4(1 +

Mk

2r
)4δij +O(r−2)

= (1 +
Mk

4r
)4δij +O(r−2)

on Nk when r is large

– Nk has new mass M̃k = Mk

2 < 0;

– R̃ ≥ 0 on N and R̃ > 0 for r > 2σ on Nk (recall R̃ = ϕ−5[−8∆ϕ +
Rϕ], see page 156 of [5]).

So we can always assume R ≥ 0 on N and R > 0 outside a compact set
of Nk by replacing R by R̃.

• Step2 We construct a complete minimal surface S properly embedded in
N so that S ∩ (N \Nk) is compact and S ∩Nk lies between two parallel
Euclidean 2-planes in the 3-space defined by x1, x2, x3.

First note that for σ > 2σ0, let Cσ be the circle of radius σ lying in the
x1− x2 plane with center origin. From the theory of minimal surface (see
chapter 4-6 in [1]), there is a smooth imbedded oriented area minimal
surface Sσ among all competing surfaces regardless of topological type
having boundary curve Cσ. Our plan is to prove some compactness result
for the set A = {Sσ|σ > 2σ0} and extract a sequence σi → ∞ such that
Sσi converges to the required surface S.
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– Claim1: there exists a compact set K0 ⊂ N so that

Sσ ∩ (N \Nk) ⊂ K0 for every σ > 2σ0. (3.4)

To prove this claim, we need first the lemma(see [8])

Lemma 3.1. Let E be a convex set bounded by bounded convex sur-
face H, suppose an P is an interior point of a connected minimal
surface S ⊂ E and is contained in H, then all of S is a subset of H.

We use this lemma to prove claim1: Let Nk′ be any other end with
an asymptotically flat coordinate system y1, y2, y3 associating Nk′

with R3 \ Bτ0 . In this coordinate system, the metric g has the form
g = g′ijdy

idyj with g′ij satisfying (1.2) . We calculate the Laplacian

of |y|2. By (1.2)

∆|y|2 = g′
ij∇ij |y|2

= (δij +O(|y|−1))(
∂2|y|2

∂yiyj
− (∇ ∂

∂yi

∂

∂yj
)(|y|2))

= (δij +O(|y|−1))(2δij − (Γkij
∂|y|2

∂yk
))

= 6 +O(|y|−1)

So there exists some τ1 > τ0 such that |y|2 is convex for |y| > τ1.
Now fix a σ1 > 2σ0 and choose τ > τ1 such that Sσ1 ∩Nk′ ⊂ Bτ (0).
Since ∂Sσ = Cσ is contained in Nk which does not intersect Nk′ , we
know from Lemma 3.1 that Sσ ∩Nk′ will never contact ∂Bτ (0), thus
is whole contained in Bτ (0) for any σ > 2σ0. Since k′ is arbitrary,
we have established claim1.

– Claim 2: the height of Sσ is bounded, i.e. there exists a number
h > 0 such that

Sσ ∩Nk ⊂ Eh for every σ > 2σ0 (3.5)

where Eh = {x ∈ R3||x3| < h}.
Proof of claim2: We calculate the asymptotic behavior of Laplacian
on Sσ∩Nk of x3 and use maximum principle to estimate x3. Suppose
x3 attains its maximum h̄ on Sσ ∩ Nk at x0 ∈ Sσ. If h̄ ≤ σ0, then
we are done. Now suppose h̄ > σ0. The tangent space of Sσ at x0 is
spanned by ∂

∂x1 (x0), ∂
∂x2 (x0). Extend ∂

∂x1 (x0), ∂
∂x2 (x0) to be a frame

field {v1, v2} of TSσ near x0. Let ḡ and ∇̄ be the induced metric and
connection on Sσ respectively. Since

∇̄vivj = (∇vivj)> = ∇vivj − g(∇vivj , ν)ν

∇̄ijx3 = vivj(x
3)− (∇̄vivj)(x3)

= vivj(x
3)− (∇vivj)(x3) + (g(∇vivj , ν)ν)(x3)

= ∇ijx3 + (g(∇vivj , ν)ν)(x3) (atx0)

= ∇ijx3 + (bijν)(x3) (atx0)
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where ν is the unit normal vector field of Sσ, bij is the second fun-
damental form of Sσ. From (1.2), we know

∇ijx3 =
∂x3

∂xixj
− (∇xixj)(x3)

= −Γ3
ij

=
Mkx

j

r3
δi3 +

Mkx
i

r3
δj3 −

Mkx
3

r3
δij +O(

1

r3
)

(3.6)

Since Sσ is a minimal surface, we have

ḡijbij = 0 (3.7)

Thus, we get

∆̄x3 = ḡij∇̄ijx3 = −2Mkh̄

r3
+O(

1

r3
) (3.8)

Since Mk < 0, we have ∆̄x3 > 0 at x0 for h̄ sufficiently large which
contradicts the fact that x0 is a maximum point of x3. Similar argu-
ment gives an estimate of the minimum of x3 on Sσ ∩Nk.

From (3.4) and (3.5) and regularity theory for minimal surface, we can find
a sequence σi →∞ so that Sσi → S, an imbedded C2 surface, uniformly in
C2 norm on compact subset of N . Moreover, we know S ∩ (N \Nk) ⊂ K0

is compact and S ∩ Nk ⊂ Eh which is the region between two parallel
plane in R3.

• Step3 Use asymptotically flat property and the condition on scalar cur-

vature to derive a contradiction. We estimate

∫
S

K, where K is the Gauss

curvature of S.

Let e1, e2, e3 be a local orthonormal vector field on N . Let Kij the secti-
onal curvature of the section spanned by ei, ej . Choose e1, e2, e3 so that
e1, e2 is tangent to S and e3 = ν normal to S. Let b be the second fun-
damental form of S, i.e. bij = g(∇eiν, ej). Then the condition that S is a
minimal surface is

Trace(b) = b11 + b22 = 0 (3.9)

The seond variation inequality for S to be area minimizing is∫
S

f [∆f + (Ric(ν) + ‖A‖2)f ] ≤ 0 (3.10)

for any C2 function f with compact support on S, where ‖A‖2 =

2∑
i,j=1

b2ij

is the length of the second fundamental form of S. Integration by parts,
we get ∫

S

(Ric(ν) + ‖A‖2)f2 ≤
∫
S

‖∇f‖2 (3.11)
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for any C2 function f with compact support on S (by approximation
argument, (3.11) holds for any Lipschitz function f with compact support
on S).From Gaussian equation and (3.9), we know

K = K12 + b11b22 − b212

= R−K13 −K23 −
1

2
‖A‖2

= R−Ric(ν)− 1

2
‖A‖2

(3.12)

Substitute this into (3.10), we get∫
S

(R−K +
1

2
‖A‖2)f2 ≤

∫
S

‖∇f‖2 (3.13)

Now, choose a suitable cutoff function for f to get our needed estimates.
For σ > σ0 define exhaustion sets S(σ) = [S ∩ (N \Nk)]∪ [S ∩Bσ(0)] and
cutoff functions ϕ

ϕ =


1 on S(σ)

log σ
2

r

log σ on S(σ2) \ S(σ)

0 outside S(σ2).

Let g be a Lipschitz funtion on S satisfying |g| ≤ 1 and g = 1 outside a
compact set of S (Here, we only use the case when g ≡ 1, while for the
steps we omitted, the general g is used). Setting f = ϕg in (3.11) and
applying the Cauchy-Schwarz inequality yields∫

S

(Ric(ν) + ‖A‖2)ϕ2g2 ≤
∫
S

‖ϕ∇g + g∇ϕ‖2

≤ 2

∫
S

ϕ2‖∇g‖2 +

∫
S

g2‖∇ϕ‖2

≤ 2

∫
S

ϕ2‖∇g‖2 +
2

(log σ)2

∫
S(σ2)\S(σ)

‖∇r‖2

r2

Due to the asymptotically flat property (1.2), there is a constant C1 with
‖∇r‖2 ≤ C1. Thus the above inequality implies that∫

S(σ2)

‖A‖2g2 ≤ 2

∫
S

‖∇g‖2 +
2C1

(log σ)2

∫
S(σ2)\S(σ)

1

r2
+

∫
S

‖Ric‖g2 (3.14)

Now we estimate the second and third term on the right hand side.

First note that
Area(S(σ)) ≤ C2σ

2 (3.15)

for some constant C2 independent of σ > σ0. To see this, note if S has
transverse intersection with ∂Bσ(0) then this intersection is a union of
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oriented C2 Jordan curves on ∂Bσ(0) which bounds S(σ). Since these cur-
ves also bound a domain Ω ⊂ ∂Bσ(0), so by the area minimizing property
of S we have

Area(S(σ)) ≤ Area(Ω) ≤ Area(∂Bσ(0))

Since (1.2) implies that dVg is uniformly equivalently to the volume ele-
ment in Euclidean metric on R3 \ Bσ0(0), there exists some constant C2

such that
Area(∂Bσ(0) ≤ C2σ

2

from which we get (3.15) when S ∩ ∂Bσ(0) is transverse. Since this is
true for σ outside a set of measure zero, (3.15) follows for any σ > σ0
by approximation. We can use (3.15) to estimate the second and third
integrals in (3.14). For a > 2, by integrating by parts, we have∫
S

1

1 + ra
=

∫
S(σ0

)

1

1 + ra
+

∫ +∞

σ0

(
d

dt

∫
S(σt)

1

1 + ra
)dt

≤ Area(S(σ0)) +

∫ +∞

σ0

1

1 + ta
(
d

dt
Area(S(t)))dt

= Area(S(σ0)) +
1

1 + ta
Area(S(t))|+∞σ0

+

∫ +∞

σ0

ata−1

(1 + ta)2
Area(S(t))dt

≤ C2σ
2
0 +

∫ +∞

σ0

aC2t
a+1

(1 + ta)2
dt

< +∞
(3.16)

By (1.2), we have Ric(ν) = O( 1
r3 ), thus from the above results, we know∫

S

‖Ric‖g2 ≤
∫
S

‖Ric‖ ≤ +∞ (3.17)

Similarly, by integrating by parts we get∫
S(σ2)\S(σ)

1

r2
≤ 2C2 log

σ2

σ
+ C3 (3.18)

for some positive constant C3 independent of σ. Thus, combine (3.14),
(3.17), (3.18) and let σ →∞, we get∫

S

‖A‖2g2 ≤ 2

∫
S

‖∇g‖2 +

∫
S

‖Ric‖g2 < +∞ (3.19)

for any Lipschitz g with |g| ≤ 1 and g ≡ 1 outside a compact set of S.

Take g ≡ 1 on S, we get

∫
S

‖A‖2 < +∞.
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On the other hand, from (3.12), we know |K| ≤ |R|+ |Ric|+ 1
2‖A‖

2. Since
|R| and |Ric| is of O( 1

r3 ) by (1.2). We know from (3.16) that∫
S

|K| < +∞ (3.20)

Moreover, by taking f = ϕ in (3.13) and using dominate convergence
theorem and (3.18), we get∫

S(σ)

(R−K +
1

2
‖A‖2) +

∫
S(σ2)\S(σ)

(R−K +
1

2
‖A‖2)

log2 σ2

r

log2 σ

≤ 1

log2 σ

∫
S(σ2)\S(σ)

‖∇r‖2

r2

≤ C2

log2 σ

∫
S(σ2)\S(σ)

1

r2

Letting σ → +∞ and use dominate convergence theorem and (3.18), we
get ∫

S

(R−K +
1

2
‖A‖2) ≤ 0

Since R ≥ 0 and R > 0 outside a compact subset of S, we conclude∫
S

K > 0 (3.21)

On the other hand, the Cohn-Vossen inequality says that

∫
S

K < 2, where

χ(S) is the Euler characteristic of S. This together with (3.21) shows that
S is topologically R2. From this and (3.20), the result in [2] says that S is
conformally equivalent to the complex plane, i.e. there exists a conformal
diffeomorphism F : C → S. Then by using the Gauss-Bonnet theorem
with boundary and estimating the boundary terms, we can prove that∫

S

K ≤ 0 (3.22)

which contradicts to (3.21). Thus, we have Mk ≥ 0. This completes the
first part of Theorem 1.1.

4 Uniqueness of N

We now begin to prove the uniqueness part of Theorem1. Suppose (1.3) is
satisfied and Mk = 0 for some end Nk. Then by the Corollary 3.1 of [6], we
know any asymptotically flat metric satisfying Mk = 0, R ≥ 0 must have R ≡ 0
on N . Define a family of metric

g(t) =

3∑
i,j=1

(gij + tSij)dx
idxj , t ∈ (−ε,+ε)
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where Sij is the Ricci curvature of g. Then g(0) = g and g(t) is asymptotically
flat for t small since g satisfies (1.3). Let R(t) be the scalar curvature of g(t),
so that R(0) = R ≡ 0. Differentiae R(t) at t = 0, we get(see p228 of [4])

R′(0) =
dR(t)

dt
|t=0 = −∆R +∇i∇jSij − ‖Ric‖2 (4.1)

where Ric = (Sij) is the Ricci tensor, ∆ is the Laplacian operator on N ,
∇i∇jSij is the sum of second covariant derivative of Sij , ‖Ric‖2 = SijSij .
Since R ≡ 0, we have ∆R ≡ 0 and by contracting the Bianchi identity twice,
we get ∇i∇jSij = 2∆R = 0. Thus, we have

R′(0) = −‖Ric‖2 (4.2)

Since R(0) ≡ 0, we know from 1.3 that for t sufficiently small, we have

1

8

∫
N

(R(t)−)
3
2 ))

2
3 ≤ ε0

for some ε0 > 0 constant independent of t for small t, whereR(t)− =max{−R(t), 0}
is the negative part of R(t). Thus, from Lemma 3.3 of [6], we can find a function
ϕt so that the metric ϕ4

t g(t) is asymptotically flat and scalar flat, the mass M(t)
of this metric is

M(t) = − 1

32π

∫
N

R(t)ϕ(t)
√
g(t)dx (4.3)

where
√
g(t)dx =

√
det(gij(t))dx is the volume elemnet of g(t). Due to (1.2)

(1.3), we can use the estimate of Lemma3.2 of [6] to show that M(t) is diffe-
rentiable at t = 0 and we can differentiate it under the integral sign in (4.3) so
that

M ′(0) = − 1

32π

∫
N

R(0)(ϕ(t)
√
g(t))′dx− 1

32π

∫
N

R′(0)ϕ(0)
√
g(0)dx

Since R(0) = R ≡ 0 and ϕ0 ≡ 1 (since by Lemma 3.3 of [6] that by ϕ0 is
unique). We may use (4.2) to conclude that

M ′(0) =
1

32π

∫
N

‖Ric‖2dV0 (4.4)

If Ric is not identically zero, (4.4) implies that M ′(0) > 0. Hence M(t0) < 0
for t0 < 0 close to 0. However, since by construction of ϕt, the metric ϕ4

t0g(t0)
is asymptotically flat, scalar flat and this implies that M(t0) ≥ 0 by the first
part of Theorem1. This contradiction shows that Ric ≡ 0 and this implies that
g is flat since dimN=3. This completes the second part of Theorem 1.1.
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Vol. 1981/1982, pp. 315–330, Astérisque, 92–93, Soc. Math. France, Paris,
1982.

[4] Kazdan, Jerry L.; Warner, F. W. A direct approach to the determination of
Gaussian and scalar curvature functions. Invent. Math. 28 (1975), 227–230.

[5] Petersen, Peter Riemannian geometry. Third edition. Graduate Texts in
Mathematics, 171. Springer, Cham, 2016.

[6] Schoen, Richard; Yau, Shing Tung On the proof of the positive mass con-
jecture in general relativity. Comm. Math. Phys. 65 (1979), no. 1, 45–76.

[7] Schoen, Richard; Yau, Shing Tung Proof of the positive mass theorem. II.
Comm. Math. Phys. 79 (1981), no. 2, 231–260.

[8] Wang, Chao The Proof of the Positive Mass Theorem using Minimal sur-
faces. online notes.

11


