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Abstract. A proof of the fundamental assumption in General Relativity Theory, namely

the Equivalence Principle, is given from a purely quantum field theoretic perspective.

Indeed, we will observe that this principle is not an independent precept of Nature, but
rather a consequence of a SO(3, 1)-gauge-symmetry for massless spin-two-particles.
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1. Introduction

The experimental results of Eötvös and others [2] show that the inertial mass, mi :=
F/a, for any force F and corresponding acceleration a, is equal to the gravitational mass,
mg := Fg/g. This experimental result is sometimes referred to as the Weak Equivalence
Principle (WEP). The WEP has far reaching physical consequences: it is, really, the fun-
damental assumption of Einstein’s General Theory of Relativity. We do though have to
be careful and limit our discussion to small enough regions in space-time. If the sealed
elevator was sufficiently big, the gravitational field would change from place to place inside
the elevator, which could be measured. We can therefore restate the WEP as the laws of
freely-falling particles are the same in a gravitational field and in a uniformly accelerated
frame, in a small enough region of space-time (as a quantum interaction region!). Motivated
by the equivalence of mass and energy, historically, Einstein postulated an even stronger
statement. He postulated that: at every point in an arbitrary Lorentzian manifold, it is
possible to choose a locally inertial coordinate system, such that (within a sufficiently small
region of that point) the laws of Nature take the same form as in unaccelerated Cartesian
coordinate system. This is known as the Strong Equivalence Principle (SEP). It implies
that at every point in arbitrary strong gravitational field, the laws of Special Relativity
hold locally. It is very difficult to imagine theories which respect the WEP but not the
SEP. In the modern classical picture, the Equivalence Principle implies that the action of
gravity should be attributed to the curvature of space-time: it implies that there is really
no such thing as a globally inertial frame. One massive object in the Universe is enough
to provide a gravitational field, and every frame that we can imagine would be acceler-
ated in this field. There is no such thing as gravitationally neutral object, with respect to
which we can measure the acceleration due to gravity – i.e. gravity is inescapable. Note
that the equivalence of mass and energy implies that this is true for massless particles as well.

In this work, we assume the Schiff’s Conjecture – see [1] for details – to hold. This
conjecture simply suggests that the WEP implies the SEP. Alternatively, this is saying that
WEP implies that it is impossible to disentangle the effects of a gravitational field from
those of being in a uniformly accelerating frame. For this reason, along the next sections,
by Equivalence Principle, we aim to mean Weak Equivalence Principle.

Yet after a century of close scrutiny, the Equivalence Principle has still remained only a
postulate of General Relativity. It cannot be proven from more fundamental principles only
in a General Relativity set up. Some of the better literature on General Relativity have
drawn attention to this fact, and admit that no explanation can be found as to why our Uni-
verse has a deep and mysterious connection between acceleration and gravity [4]. One must
bear in mind that mass is really nothing more than a vast collection of quantum particles,
which interact with each other through forces. Forces are also ultimately the result of quan-
tum particles called bosons, which act like the exchange particles that transmit momentum
from one particle to another. Therefore, it is essential for the Equivalence Principle to be
understood at a quantum particle level in order for a deeper understanding to emerge.

In the following, we will demonstrate that the Equivalence Principle is basically just an
approximation of graviton coupling with arbitrary spin-mass particles in a very soft limit.
This idea was first suggested by Weinberg in [9] and [7].
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2. Quantum Field Theory: The Spirit and the Tools Needed, Nothing More

In the next sections, the notions of helicity, on-shell conditions and gauge will be dis-
cussed. For the love of completeness, a brief introduction for each notion will be given here.
To start, let’s ask what Quantum Field Theory, our playground, really is. That’s a priori
a pretty deep question that would take us a long time to fully answer rigorously. Withal,
roughly, Quantum Field Theory treats particles as excited states – quanta of energy– of their
underlying fields (they are morally just functions depending on space-time), which are, in a
sense, much more fundamental objects than the basic particles. Interactions between par-
ticles are described by interaction terms a Lagrangian involving their corresponding fields.
Each interaction can be visually represented by Feynman diagrams, which are formal com-
putational tools, in the process of relativistic perturbation theory. This is, at least, the
spirit of Quantum Field Theory.

First, we introduce the notion of helicity. Helicity is used in Quantum Mechanics to
express the connection between the direction in which a particle rotates around some axis
through that particle – expressed by the spin quantum number – and the direction of prop-
agation of a particle. In Quantum Mechanics, one can measure the spin of some particle
by using the spin quantum operator Ŝ and the momentum being expressed by some vector
p. Now, to measure the helicity of some particle, just apply a new operator (called the

helicity-operator) onto the particle’s wavefunction – namely ĥ := p · Ŝ/|p|, measuring the

components of the spin operator along the direction of momentum. The operator ĥ is the
scalar product of a vector with an operator. For example, supposing that p is along the
z-axis, then the helicity operator is nothing else then the length of vector p multiplied with
the z-component of the spin operator Ŝ. In other words, this measures the spin along the
z-axis. Positive helicity means that the rotation-axis of the spin is in the same direction as
the direction in which the particle moves. If helicity is negative, it is the other way around.
This discussion is carried in the exact same manner in Quantum Field Theory.

Second, we discuss on-shell conditions. In Special Relativity, energy and momentum are
combined into a single entity — the momentum 4-vector. Changing a reference frame will
mix up the different components of the vector and one should think of these 4 numbers as
one geometric entity. For a particle, these 4 numbers are not independent quantities and
satisfy a constraint: −pµpµ = E2 −p2 = m2. These 4 numbers live on a 2-manifold – a hy-
perbolöıd. This manifold is called a shell for evident graph-looking reasons. Since the shape
of the shell is dictated by the mass, so this surface is called the mass-shell. In Quantum Field
Theory, one formulation of theories is with the path integral [6],[5]. The path integral says
to sum over all possible paths between the beginning and the end of a process. It turns out,
the correct formulation includes including configurations which do not satisfy the mass-shell
constraint. When speaking about the intermediate particles in the process, the particles that
don’t satisfy the mass-shell constraints are said to be off their mass-shell – or simply off-shell.

Third, we describe gauge. To do so, we first define properly what is a gauge symmetry. It
is simply a symmetry transformation of the action that depends nontrivially on the space-
time. It is possible to ask for all physical theories whether such transformations exist or
not. For the case of particle mechanics of finitely many degrees of freedom (where the gauge
symmetry then only depends on time), it is known that the existence of a gauge symmetry
is equivalent to a constraint in the Hamiltonian formulation. Such constraints arise from
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the Legendre transformation of the Lagrangian being noninvertible, therefore the condition

det

(
∂L(q, q̇)

∂q̇∂q̇

)
= 0,

with L being the Lagrangian and q, q̇ the generalized coordinates detects the presence of
gauge symmetries.

Fourth, let’s now see what we mean by gauge theory. A gauge theory is any field the-
ory in physics in which some global, continuous symmetry of the theory is promoted to
a local symmetry. By doing so, a new field is introduced, namely, the gauge field, which
has its own dynamics and couples to the fields (and so to the particles) which have the
symmetry. Those particles are then said to be charged under the gauge field. Hence, when
physicists are talking about a gauge theory, they just mean a theory with a gauge field, such
as Yang-Mills theory [5]. The controversy over whether General Relativity is a gauge theory
or not stems from the fact that the gauge field of General Relativity ”are” the connection
coefficients, which are considered non-dynamical fields derived from the metric (unless you
are using Palatini’s formalism). Maxwellian electrodynamics is the archetypal example of a
Yang-Mills gauge theory with gauge group U(1) – it is in fact some modified version of this
gauge theory that will be our starting point in the next section. See [3] for further details
on gauge symmetries and gauge theories.

Fifth, one essential property of the graviton we shall use below is the value of its spin:
gravitons are spin-two-particles. The reason being that gravitation is described by a metric –
a symmetric (0,2)-tensor field – modulo a general covariance, which gives locally, in the tan-
gent Minkowski space of any point, a spin–two–representation of the Poincaré group modulo
longitudinal directions, which, practically, forces mass zero and helicity two. Gravitational
waves also have to be (classically) long range, which again requires (after quantization)
massless particles. Thus gravitons (although never observed) should be massless spin-two-
particles. Actually, Weinberg proved this results in [8]. Moreover, he proved in the same
paper that canonical minimal self-coupling of a massless spin two field leads classically to
Einstein’s equations for general relativity. In other words, that the existence of massless
spin-two-particle is the necessary and sufficient property a particle physics theory needs to
allow in order for (classical) General Relativity to arise naturally.

Finally, as mentioned above, this discussion will rely on Feynamn’s diagrammatic method.
The reader must understand that the only way to appreciate fully the mathematical nature
of Feynman diagrams, is by taking a course on Quantum Field Theory. In particular, for the
gauge theories we are about to consider, the Faddeev-Popov procedure needs, at least, to
be introduced [6],[5]. This is usually done in the second course on Quantum Field Theory.
Consequently, for the time being, I will take what we call the Feynman rules for gauge
theories in Quantum Field Theory to be our set of ”axioms”, even though they are not
really since they usually strongly rely on the form of the theory under consideration. That
is to say, some, if not a lot, of details from Quantum Field Theory will voluntarily be put
under the rug. The first example we will encounter below is a modified version of the theory
of Quantum Electrodynamics (QED) – call it MQED for modified QED – which will serve
as a warm-up for us before looking at its gravitational analogue. The theory is modified
in the sense that the interaction with the gauge field will either be from a bosonic field, a
fermionic field or both. The ”axioms” of MQED are given in 1.
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Figure 1. The set of axioms for MQED.

where m is the mass of the interacting particle, Qe is the charge of the boson/fermion,
Cµν is some tensor for which the form will not be relevant, us, us, vs and vs are vectors with
four entries with helicity index s and the function W will be associated latter in this work
via some function f . The γµ are the generators of the Clifford’s algebra (usually seen when
one studies the Dirac’s Relativistic Theory of Electrons), but it will not play any explicit
role in the analysis. The diagrams under consideration below will always involve terms
like ”usus × (propagators and other stuff)” since there’s always an incoming and outgoing
particle; in particular, usus is a scalar so we will not include their contributions explicitly
in our computations below: they will be hidden in the definition of f . Furthermore, since
the computations we will perform will not involve any loops we can safely set ε→ 0 (we are
not dealing with integration around propagator poles).
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3. Photon’s Coupling: A Warm–Up

We shall investigate the consequences of a SO(3, 1)-gauge-symmetry for the interactions
of a photon with other particles (bosons and/or fermions). In particular, we will show that
in the soft limit – i.e. at low photon energy – a photon can only couple to charges that are
conserved by all scattering processes.

3.1. The Building Block Diagram. The construction of this warm-up goes as follows:
first, we consider the emission of a very soft photon of four-momentum qµ1 by other particles
(massive or not and with spin or not) as depicted in the interaction diagram below

Figure 2. Diagrammatic figure of the photon (blue) emission from the
incoming particle of matter α with momentum pµ and spin s. The emergent
particle β has momentum p′µ and spin s′. The photon’s momentum qµ is
soft and its gauge field Aµ is associated with polarization four-vector ε?µ
depending intrinsically on q.

Without loss of generality, we will assume that the photon helicity is +1. Otherwise, the
same analysis will apply for helicity of −1. Finally, as shown in 2, the initial and final states
of the emitting particle are labelled by the kinematical-spin variables (pµ, s) and (pµ−qµ, s′),
respectively, by conservation of momentum.

Remark 3.1. The latter process cannot happen for finite nonzero qµ if all particles are on-
shell. Indeed, because qµqµ = −m2

γ = 0, this implies p′µp′µ = −m2−2pµqµ 6= −m2 implying
that the resulting particle is not on-shell in general, which contradicts our assumption.
Hence, the time transnational symmetry of our space-time and the on-shell conditions make
this process nonphysical by its own – i.e. it can only be a part of the diagrams of the form
of 3 (a) or (b),

Figure 3. Examples of physical diagrams.

1By very soft we mean that the emitted photon has momentum satisfying qµ → 0, such that if, in any

latter computations, we expand in terms of its four-momenta we only keep the term at linear order.
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depending of what kind of theory we are sitting in. Therefore, diagram 2, really, is just
a building block of our proof and should not be considered as an actual process one could
observe in Nature. �

Even though it is not physical, the fact that this process is central in our proof demands
us to look at the amplitude for it to happen2. In the very soft limit, by conservation of
momentum, the initial and final momenta coincide such that we have

Mµ =Mµ(p, p′, s, s′) =Mµ(p, s, s′).

From here, there are two distinct cases to take into account:

Case 1: If the incoming particle is spinless (e.g. a scalar particle), the amplitude is only
a function of momentum

Mµ =Mµ(pµ).

Hence, for some function F : R3,1 → C such that ξµ 7→ F (ξµ) is a Lorentz scalar, we have

Mµ = F (pµ)pµ.

If the initial particle is on-shell, then p2 = −m2, where m is the mass of the scattered
particle. Thus, we might define that F (pµ) = g(−m2), such that g : R → R – i.e. the
target of this function is a number independent of the kinematics. In a physics mindset,
one could simply think of F (pµ) as the charge of the particle under consideration, modulo
some constant. Hence, based on the MQED axioms 1, the amplitude is given by

M(0,0,1)
tree = g(−m2)pµε?µ(qµ),

in the soft limit. Note that the label (0, 0, 1) identifies, respectively, that the emitting parti-
cle has spin zero, as well as the emerging particle and that the emitted boson has spin one.
For completeness, one can show, deriving the Feynman rules carefully from scratch, that
g(−m2) = 2i(2π)4e. Nonetheless, this is not important here – i.e. one could keep g(−m2)
in the expression without changing the conclusion we’ll get.

Case 2: In the case where the incoming (emitting) particle has a spin different from zero,
the amplitude Mµ might be more complicated. A priori, it is obscure whether or not the
four-vector Mµ is just in the pµ direction. In other words, if new kinds of four-vectors can
be constructed using the nonzero spin variables. However, based on the following postulate
(that we will fully justify in the next section) this turns out to not be the case.

Postulate 3.2. Even for particles with spin, the amplitude for the emission of a very soft
photon does not depend on the original particle’s spin s and on the emergent particle’s spin
s′. Furthermore, the process has nonvanishing amplitude only if the final spin state s′ is the
same as the initial spin state – i.e. s = s′. �

In particular, this postulate implies that the form of the amplitude for the elementary
process described above takes the form

(3.1) M(s,s′,1)
tree = 2i(2π)4epµε?µ(qµ)δss′ .

2The word ”happen” makes sense at any energy scale only in view of Optical Theorem. See [6] for a very

good discussion on the subject.
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3.2. The Generic Scattering Process. The two cases we just treated are the essence of
the analysis for the generic scattering process Λ→ Λ′, 4 (a).

Figure 4. (a) The general scattering process under consideration. (b) The
same process emitting one soft photon. (c) The same process with one leg
emitting a soft photon. Note that m 6= n in general.

Remark 3.3. The blobs present in 4 (a), (b) and (c) represent the full scattering amplitude
– i.e. the sum of all Feynman diagrams with initial state Λ and final state Λ′. �

In what follows, we shall adopt the notationMΛΛ′ in order identify the scattering ampli-
tude depicted in 4 (a). To ensure the generality of the construction, the diagram correspond-
ing to the emission of a very soft photon with momentum qµ will be the one illustrated in
4 (b). To compute the amplitude related to this diagram, Feynman’s perturbative method
encourages us to consider all the diagrams that makes up the original diagram with am-
plitude MΛΛ′ and attach the photon line to all possible particle lines, external as well as
internal.

For reasons that will become clear soon, we will first focus on the diagrammatic contri-
butions for which the photon line is attached to an external line 4 (c). It is easy to write
down the corresponding amplitude, M, for this process; we only need to multiply the am-

plitude for the elementary process M(s,s′,1)
tree by the propagator connecting it to the rest of

the Λ→ Λ′ process, which itself contributes to the amplitude by an overall factor ofMΛΛ′ –
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i.e. using on-shell conditions and the fact the photon can be taken to be a massless particle

M1 =MΛΛ′
−i

(2π)4

1

(p1 − q)2 −m2
1

M(s1,s
′
1,1)

tree (e1, p
µ
1 )

=MΛΛ′
2e1p

µ
1ε
?
µ(qµ)

(p1 − q)2 −m2
1

δs1s′1

= −MΛΛ′
e1p

µ
1ε
?
µ(qµ)

p1 · q
δs1s′1 ,

where m1 and e1 are the emitting particle’s mass and charge respectively and where p1 · q
means that we are taking the Minkowskian-dot-product of the two four-vectors – i.e. p1 ·q :=
pµ1 qµ, unless specified otherwise. One must note that we get a similar contribution if the
photon is initially attached to a different external leg. Indeed, if we attach it to any the
ith-incoming external one, we just make the identification 1 → i 3 to pass from M1 to
Mi, while, if we attach the photon to an outgoing external leg, we still just make a similar
identification up to the minor modification pµ1 → −p

′µ
j

4. We pick an overall minus sign

because initial momentum for the outgoing particle (the one appearing in the propagator)
is p′µj + qµ and not pµi − qµ as it was the case for the incoming particle. This invites us to
define the following function of k

ηk :=

{
+1 if photon couples with the kth outgoing particle,

−1 if photon couples with the kth incoming particle,

enabling us to to write down an abstract expression for the full amplitude of the Λ → Λ′

process, namely

M =MΛΛ′

∑
k

ηkekp
µ
k

pk · q
ε?µ(qµ)δsks′k + (internal photon coupling contributions).

The latter contributions from the internal pieces are not singular in the soft-limit qµ → 0.
Indeed, since virtual particles (particles arising from internal interactions) are by definition
off-shell (they do not need to satisfy any specific equations of motion); the propagator is not
of the form pk ·q and, consequently, does not diverge as it did for the external couplings. This
means that dominant terms are those coming from external propagators and not from the
internal propagators. Hence, in the soft-limit, we will only consider the singular part coming
from the on-shell propagators (external couplings) and ignore the finite part coming from
the off-shell propagators. This is not an approximation, if one wonders. At the tree-level,
the coupling constant at linear order multiplies the finite internal contributions. However,
since we are using perturbative methods, this constant must go to zero, making this finite
part (formally) vanish. Finally, we write

(3.2) M =MΛΛ′

∑
k

ηkekp
µ
k

pk · q
ε?µ(qµ)δsks′k , (as qµ → 0).

Remark 3.4. We will discuss at the end of this section why we didn’t takeMΛΛ′ to depend
on k. This is not totally obvious and deserves its own section. �

3Where i runs from 1 to n, where n is the number of incoming particles.
4Where j runs from 1 to m, where m is the number of outgoing particles.
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3.3. Gauge Invariance. We appeal to the SO(3, 1)-gauge-symmetry in order to make use
of the redundancy of the emitted photon with its polarization four-vector; indeed, under
(the Lorentz invariant) Lorenz gauge, εµ(q) and εµ(q) + `qµ, for any ` ∈ C,5 describe the
same photon state in the sense that they share the same amplitude. Consequently, the fact
that

Mµε?µ(qµ) =Mµ(ε?µ(qµ) + `qµ),

implies the gauge fixing

Mµqµ = 0.

In particular, it follows from this that

0 =Mµqµ =MΛΛ′

∑
k

ηkek
pk · q

pµkqµ

=MΛΛ′

∑
k

ηkek.

Since R is a field, we either conclude that MΛΛ′ = 0 or
∑
k ηkek = 0. It is easy to see that

the first option is absurd; indeed, if MΛΛ′ = 0, no scattering process is happening and so
this whole discussion has no purpose. Hence, the latter option must be the good one. That
is to say ∑

Incoming

ek =
∑

Outgoing

ek.

In more informal language, this is saying that the charge is conserved trough processes emit-
ting soft-photon, establishing what we wanted to show.

3.4. Some Justifications on the Assumptions Made: Part I. As a closure for this
section, we will motivate Postulate 3.2. To do so, we look at the most general form the
building block diagram amplitude can take, namely

M(s,s′,1)
tree =Mµ

tree(p, s, s′)ε?µ(qµ).

We shall now go through the same computation we did above for the amplitude of Λ→ Λ′+γ
process and analyse the changes that would occur if we were to use the previous fully general
vertex amplitude. Considering this general vertex, we have essentially two new things to
worry about: (i) the vertex amplitude is obviously different, (ii) a priori, the emergent
particle from the vertex carries an arbitrary spin state s′i or s′j over which we now have to

sum. For simplicity, let’s first suppose that the photon couples with the particle (pµ1 , s1,m1).
The amplitude related to this Λ→ Λ′ + γ process is simply

MΛ→Λ′+γ =
∑
s′1

MΛΛ′(s′1, ...)
Mµ

tree(p1, s1, s
′
1)

−2p1 · q
ε?µ(qµ),

such that, for the same reason as we already encountered, the amplitude for the whole
process – the sum of all possible Feynman diagrams modulo the internal couplings – is

M =
∑
k

∑
s′k

MΛΛ′(..., s′k, ...)
ηkMµ

tree(pk, sk, s
′
k)

−2pk · q
ε?µ(qµ).

5Under the Lorenz gauge, the gauge field transformation Aµ → Aµ + ∂µΘ reduces to the harmonic
equation ∂2Θ = 0. In the soft limit, for any ` ∈ C, Θ = ` exp(iq · x) is a solution. In terms of the

polarization ε?µ = Aµ exp(−iq · x), this yields to ε?µ → ε?µ + `qµ.
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As above, imposing the SO(3.1)-gauge-symmetry yields to∑
k

∑
s′k

MΛΛ′(..., s′k, ...)
ηkMµ

tree(pk, sk, s
′
k)

−2pk · q
qµ = 0.

We notice that the latter expression needs to vanish for all light-like four-momenta qµ, qµ

being the photon four-momentum. But by the gauge-redundancy, it must also vanish for an
arbitrary four-vector qµ – not necessarily just light-like. This is only possible if the direction
of each individual Mµ

tree(pk, sk, s
′
k) is along pµk . Indeed, for any given external particle

labelled by k, we can choose (go in a frame where) the four-vector qµ to be orthogonal to
pµk , but not necessarily orthogonal to the other external four-momenta. Consequently, the

kth term in the sum is divergent unless

Mµ
tree(pk, sk, s

′
k)qµ = 0⇔ qµp

µ
k = 0.

In this manner, the sum argument is finite for each k and the sums can eventually converge to
zero. If we write the tree-level amplitude in terms of the charge function ek := ek(pk, sk, s

′
k),

we find

(3.3)
∑
k

∑
s′k

MΛΛ′(..., s′k, ...)ηkek(pk, sk, s
′
k) = 0,

which holds for all processes Λ → Λ′ + soft–γ. Now, the new thing with this equation,
as opposed to the equation for the amplitude in the last section, is that, together with
the constraint on the way the photon couples to other particles, we are also constraining
the amplitude for the original process Λ → Λ′ since it depends on s′k. In particular, this
constraint is such that it depends on the way the photon couples to other particles – i.e. on
the charge functions. Although, at least at lowest order in perturbation theory, causality
imposes that the original process Λ→ Λ′ knows nothing about the photon and its couplings
and the only constraint it satisfies is four-momentum conservation. Thus, there is no way of
satisfying (3.3) unless ek(pk, sk, s

′
k) = ek(pk)δsk,s′k

6. This allows us to erase the sum over
the spin

(3.4)
∑
k

MΛΛ′(..., sk, ...)ηkek(pk, sk) =MΛΛ′

∑
k

ηkek(pk, sk) = 0.

This simply means that for any process with non-vanishing amplitude, the momentum and
the spin is conserved by the charge after soft-emission. There is one final trick we can use
to close this discussion. Indeed, if the process Λ → Λ′ has a non-vanishing amplitude – as
it needs to –, the same process where we change, say the value of the spin s1 to S1, and let
everything else unchanged in (3.4), we pass from

(3.5) − e1(p1, s1) +
∑
k>1

ηkek(pk, sk) = 0,

to

(3.6) − e1(p1, S1) +
∑
k>1

ηkek(pk, sk) = 0.

In particular, we can set (3.5) and (3.6) equal to each other and we immediately see that

e1(p1, s1) = e1(p1, S1).

6This could also have been seen by carefully listing all the possible (pµ, s, s′)-variables dependence for

the amplitude in this limit and see that the only nonvanishing possibility is M∼ s · s′ ∼ δss′ .
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However, there’s nothing particular about i = 1. That is, we see that the more general
statement

ei(pi, si) = ei(pi, Si),

is equally true. This is nothing but the manifestation of the fact that the charge of the
emitting particle cannot depend on its initial and final spin-states. Since the charge is by
definition a scalar quantity, it has no explicit dependence on the four-vector momentum and
we can write

ek(pk, sk) ≡ ek.
This completes the motivation of the postulate and, thereupon, the proof.
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4. Graviton’s Coupling: A Proof of the Equivalence Principle

In this section, with minor modifications to the previous analysis, we will apply the same
reasoning to the soft emission of a graviton, the gravity boson. The main difference is that
the constraint will be, somehow, much stronger. The set of Feynman rules (our ”axioms”)
for gravity follows the form of the one discussed for MQED, but where one-index structures
are promoted to two indices structures. This generalization pursues from the development of
Linearized General Relativity (see chapter 18 of [4] for instance): in particular,Mµ →Mµν ,
Aµ → hµν and ε?µ → ε?µν . The discussion we are about to start will treat the amplitudes
abstractly, so we shall not care about anything more than its gravitational coupling depen-
dency and its tensorial structure.

4.1. The Principle of Equivalence. Let α denotes the incoming particle flavor and let β
denotes the outgoing particle flavour. We will consider the emission of a very soft graviton7,
as depicted in 5.

Figure 5. Analogue of 2 but where the emitted particle is now a graviton (green).

Same remarks than in the last section apply to this diagram. In addition, as argued
above, since the amplitude is by definition a Lorentz scalar and since the graviton is a
spin-two-particle, we have

M =Mµνε?µν(qµ),

where ε?µν(qµ) is the polarization tensor for the outgoing graviton and the tensor amplitude
Mµν depends on the kinematical variables of the other particles interacting, namely vari-
ables in the set {pµ, s, pµ − qµ, s′}. In the very soft limit qµ → 0, the dependence reduces
to

Mµν =Mµν(p, s, s′).

Now, as in the photon case, if the emitting particle is spinless, then Mµν can only depend
on symmetric combinations of the four-momentum pµ matching the indices of the amplitude
tensor. The only such possibility is clearly

Mµν = pµpνF (pρ)

= pµpνg(−m2),

where in the last line we used the on-shell condition at the vertex. Again, F (pρ) is a constant
which only depends on the particle species, but not on its momentum-spin state. For latter

7Note that this interaction is allowed at lowest order expansion of the Einstein-Hilbert action. See the

example coming next page.
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convenience, we relabel F (pρ) = 2i(2π)4f(−m2). Hence, in the soft limit, if the emitting
particle is spinless, we have

(4.1) M(0,0,2)
tree = 2i(2π)4f(−m2)pµpνε?µν(qµ).

Remark 4.1. We can work out a particular example showing that (4.1) is indeed the form
one should expect for graviton emission. For the love of simplicity, this example treats a
scalar field φ with spin s = 0 and mass m coupled with gravity. The action for gravity and
minimally coupled scalar φ in General Relativity is

S = Sgravity + Smatter

=
1

16πG

∫
d4ξ
√
−ggµνRµν +

∫
d4ξ
√
−g
(
−1

2
gµν∂µφ∂νφ−

1

2
m2φ2

)
.

One gets nontrivial contributions to the amplitude of 5 only from interactions that involve
two φ-fields (the incoming and the outgoing ones) and one hµν (to create the outgoing
graviton). These only can come from the matter action, which in a soft/weak–field–limit is
expanded to the linear power in hµν ,

Smatter[φ, gµν → ηµν + hµν ] = Smatter[φ, ηµν ] +

∫
d4ξ

δSφ
δgµν(ξ)

∣∣∣∣
ηµν

hµν(ξ) +O((ηµνh
µν)2)

≡ Sflat
matter +

1

2

∫
d4ξhµνT

µν
flat +O(h2),

where the stress-energy tensor is easily seen to be given, in the flat background, by

Tµνflat = ∂µφ∂νφ− 1

2
((∂φ)2 +m2φ2).

In the limit where qµ → 0, we know that this four-quantity won’t appear in the expression
of the amplitude. Furthermore, the derivatives hitting the scalar field will take down a
four-momentum ±ipβ from the φ-plane-wave expansion. Moreover, since the stress-energy
tensor is symmetric, for some constant θ, the amplitude for 5 reads as

M = i(2π)4 1

2
[2(ip(µ)(−ipν))]ε?µν(qµ) + θηµνε?µν(qµ).

However, we know from Linearized General Relativity that hµν is traceless and so is the
polarization. The last term then vanishes. As desired, we recover the form of (4.1) with
gravitational coupling f(−m2) = 1/2. �

For the case where the spin of the emitting particle is not zero, the amplitude tensor can
depend on the spin variables s and s′ and its tensorial structure needs not just to rely on
pµpν , but perhaps on some kind of spin tensor Σµν too. Again, like in the photon case, we
will postulate that, in the soft limit, Mµν has no spin dependence and that this amplitude
tensor is nonvanishing only if the initial spin is the same as the final one. In this respect,
we have

(4.2) M(s,s′,2)
tree = 2i(2π)4f(pµ)pµpνε?µν(qµ)δss′ , qµ → 0.

Obviously, we will discuss the validity of these assumptions (postulate) in the closure of this
section.

Now, we will follow precisely the same steps than in the last section: we first consider a
generic scattering process Λ→ Λ′, as depicted in 6 (a)
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Figure 6. Analogues of 4 but where the emitted particle is a graviton.

and the same process where a soft graviton is emitted 6 (b). The amplitude for the latter
process is the sum over all diagrams that make up the former where we also attached a
graviton line in all possible places. The only ingredient which differs from the photon case is
our new vertex 5, for which the contribution is mathematically given by (4.2). In particular,
all the propagators are the same as for the last section and for qµ → 0 we can, obviously,
still ignore diagrams where we attach the graviton to an internal particle line. Consequently,
in a similar fashion, we just need to compute 6 (c). The sum still runs over all external legs
and the function ηk is defined exactly in the same way as before. Moreover, the fk(−m2

k)’s
are the individual gravitational coupling constants which may, in principle, depend on the
species of the particles interacting.

The same SO(3, 1)-gauge-symmetry than in the previous section, it still manifests itself
from the gauge transformation8

ε?µν → ε?µν + 2q(µΘν),

for every constant four-vector Θν . Since this transformation is one from a state to itself we
must have

MΛΛ′

∑
k

ηkfk(−m2
k)pνkΘν = 0, ∀ Θν ⇒MΛΛ′

∑
k

ηkfk(−m2
k)pνk = 0,

8Under the Lorenz gauge ∂µhµν = 0, the Green’s function method applied to the linearized Einstein’s
equations yields to the harmonic equation ∂2hµν = 0, which admits plane-wave solution hµν = ε?µν exp(iq·x),

where ε?µν is the gravitational wave polarization. Consequently, the Lorentz-gauge-symmetry hµν → hµν +

2∂(µΘν), for any Θν , now reads as ε?µν → ε?µν + 2q(µΘν).
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implying that we either haveMΛΛ′ = 0 or
∑
k ηkfk(−m2

k)pµk = 0, because R is an algebraic
field. As before, the first possibility is absurd physically. This yields to the conclusion

FµI :=
∑

Incoming

fk(−m2
k)pµk =

∑
Outgoing

fk(−m2
k)pµk =: FµO.

However, the only such four-vector quantity depending on the four-momenta that is con-
served by all nontrivial scattering processes – meaning that, at least, all individual momenta
change – is the total four-momentum.

Remark 4.2. A good way to see this is the only possible conclusion one can make is by looking
at the special case where m = n = 2 in the Center-Of-Mass-frame (COM-frame). Indeed, in
this frame, by definition, the conservation of momentum indicates that p1+p2 = p′

1+p′
2 = 0.

The conservation of Fµ, on the other hand, indicates that f1p1 + f2p2 = f1p
′
1 + f2p

′
2.

Combining these two equations gives (f1 − f2)(p1 − p′
1) = 0. But the scattering process is

assumed to be nontrivial so p1 − p′
1 6= 0. This implies that f1 = f2. �

Therefore, we observe that this imposes the new and really strong condition on the way
gravity can couple

FµI,O = fPµTot,

or, in a more explicit expression,

(4.3) fk(−m2
k) = f, ∀ k.

The punchline we get from (4.3) is that all the particles must share the same gravitational
coupling. This is nothing but the Equivalence Principle: at low energies, gravity couples
to all form of matter with the same strength, regardless of their mass and spin. In other
words, we can say that gravitational interactions are insensitive to the particle species they
are coupling to. Especially, at our energy scale, this shows that there’s nothing special about
the gravitational mass as defined in the introduction section – i.e. at energy scales where
the quantum nature of gravity is not effective, we do not need to adapt our definition of
mass.

4.1.1. Some General Remarks on Last Subsections. The proof of the Equivalence Principle
we did in the last subsection was completely general. Indeed, the particles under considera-
tion may be massless and carry arbitrary spin. We concluded from this that the Equivalence
Principle was basically just a theorem in Quantum Field Theory. Also, something that de-
serves to be noted is that the soft coupling to another graviton must be the same as for other
particles – low energy gravitational interactions cannot distinguish between any matter and
gravity itself. Curious!

4.2. Some Justifications on the Assumptions Made: Part II.

4.2.1. Some Caveats? Before going into the justification of the postulate, we should point
out a possible caveat in our previous reasoning. Suppose that particle species can be divided
into two (or more) subgroups Q and P that do not interact with each other as pictured in
7. That is, particles belonging to one subgroup have nontrivial interactions within the same
subgroup only. In any scattering process we can decompose the initial and the final overall
states as Λ = ΛQ+ΛP and Λ′ = Λ′

Q+Λ′
P . The scattering amplitude then splits in a similar
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Figure 7. Separable interactions.

manner as in 7 and besides total four-momentum conservation, we also have that the total
four momentum within each subset is conserved – i.e.

PµΛQ = PµΛ′
Q

and PµΛP = PµΛ′
P
.

As a consequence, we can split the four-vector introduced in the last subsection, namely
Fµ, as Fµ = FµP +FµQ and each of the two contributions must be separately conserved. This
means that

FµP = fPP
µ
tot,P and FµQ = fQP

µ
tot,Q.

Phrased differently, this is saying that subsystems of the Universe that do not interact with
each other can have different gravitational coupling constants. However (!), if bothMΛQΛ′

Q

and MΛPΛ′
P

are nonzero, that is, if they both have a chance to happen, then subgroups do

interact with gravity (they either have mass or energy...) and therefore they are interacting
with each other, at least, in diagrams like 8 in which the momenta pµQ and pµP are no more
separately conserved. Hence, this means that we are back to the case where f = fP = fQ.

Figure 8. The two subgroups interact gravitationally together.

There is one other possibility for a caveat. It happens if one of the two subgroups, say
P , does not interact with gravity at all. In such a case, one would have fP = 0. This means
that we have to decide to which subgroup gravitons themselves belong to. But, the isolated
subset Lno gravity ⊂ L of our theory is irrelevant to our gravitational analysis. Therefore,
we can safely ignore such exotic subgroups, non-interacting gravitationally.

4.2.2. Justifications. We are about to justify the postulate in an analogous way we proceeded
for the photon. The most generic elementary vertex amplitude is, still in the soft limit, given
by

M =Mµν(p, s, s′)ε?µν(qρ).
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Then, the amplitude for a process like 6 (c), ignoring the contributions coming from attach-
ing the graviton to internal particles line, is

M =
∑
k

∑
s′k

MΛΛ′(..., s′k, ...)
ηkMµν

tree(pk, sk, s
′
k)

−2pk · q
ε?µν(qµ),

where we recall that MΛΛ′(..., s′k, ...) is the amplitude for the original Λ→ Λ′ process with
the kth-spin replaced by s′k, k being the label used to identify the external leg interacting
by itself with gravity. Again, invoking the SO(3, 1)-gauge-symmetry, we must have

(4.4)
∑
k

∑
s′k

MΛΛ′(..., s′k, ...)
ηkMµν

tree(pk, sk, s
′
k)

pk · q
qµΘν = 0 : Θν ∈ R3,1, nontrivial.

Recall that the amplitude is a Lorentz scalar, so it is the same in any inertial frame imag-
inable. Extrapolating (4.4) to generic momenta qµ (not necessarily null: qµq

µ 6= 0) for any
given k, we can boost such that qµ is orthogonal to pµk and not orthogonal to the other

momenta. The kth denominator consequently vanishes and the resulting divergence can
only be canceled if the kth numerator also vanishes – i.e. if

(4.5) Mµν
tree(pk, sk, s

′
k)qµ = 0, ∀ qµ : q · pk = 0.

The reason motivating this trick is that, in the boosted frame, we easily see that (4.5) can
cancel exactly the diverging denominator only if the amplitude tensor takes the form

Mµν
tree(pk, sk, s

′
k) = pµkp

ν
kfk(pµk , sk, s

′
k),

carrying the desired tensorial structure. Consequently, we are left with∑
k

∑
s′k

MΛΛ′(..., s′k, ...)ηkfk(pk, sk, s
′
k)pνk = 0.

This equation rather than constraining only the graviton couplings imposes a linear relation
between different scattering amplitude in the original system – before taking into account
gravity. A relation that eventually depends on how the various particles are going to couple
with gravity. At least, at lowest order in the gravitational coupling, this makes no causal
sense; the value of MΛΛ′(..., s′k, ...) for different k changes9 depending on how gravity will
couple. Again, the only mathematical way out of this, is that the gravitational couplings
are diagonal in the spin-space – i.e. fk(pµk , sk, s

′
k) = fk(pµk , sk)δsk,s′k . In particular, this fixes

s′k for each k. Therefore, we are getting an overall MΛΛ′ out of the sum over the external
particles and we are left with

MΛΛ′

∑
k

ηkfk(pk, sk)pνk = 0,

stressing out that either the original amplitude MΛΛ′ is vanishing or the four-vector∑
k

fk(pk, sk)pνk,

9For example, take k 6= k′ to label two distinct outgoing particles. Then, MΛΛ′ (..., s′k, ...) 6=
MΛΛ′ (..., s′

k′ , ...). But the Λ→ Λ′ process is in the past light cones of these two events and so the value of
MΛΛ′ must be independent of how gravity couples with the two external legs. Otherwise, we reach a clear

causal inconsistency.
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has to be conserved in the process. The first option being nonphysical and having already
argued that the only physical quantity that can be associated with the momentum four-
vector is the total four-momentum, we get back (4.3) and so the conclusion following from
it: the Einstein’s Equivalence Principle.

Remark 4.3. Following the idea we developed in the closure section for the soft photon
emission – explicitly, by sending si → Si and comparing the resulting equations –, one can
show that the gravitational couplings are also independent of the incoming particle spin. �

This completes the proof.
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