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Abstract

In this report, we will give a brief sketch of Witten’s proof of the Positive
Energy Theorem by following [PT82] and [Wit81, section 3].

1 Introduction

In order to state the Positive Energy Theorem, we need to set up the follows, given
a 4-manifold N with a Lorentzian metric g of signature (−,+,+,+) and a symmetric
energy-momentum tensor field Tab satisfying the Einstein field equation:

Rab −
1

2
gabR = 8πGTab (1.1)

where G is the gravitational constant, and Rab is the Ricci tensor and R is the scalar
curvature. Also equivalently we have the following,

Rab = 8πG(Tab −
1

2
gabT ) (1.2)

where T is the trace of Tab.
Also there is a complete oriented spacelike hypersurface M ⊂ N of dimension 3 sat-
isfying the following conditions, M is asymptotically flat, i.e., there is a compact set
K ⊂ M such that M −K is a finite disjoint union of subsets M1, ..., Mk ⊂ M which are
called the "ends" of M . And each Mi is diffeomorphic to the complement of a con-
tractible compact subset in R3, and the metric of Mi under these diffeomorphism are
of the form:

gi j = (δi j +ai j )d xi d x j
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with respect to the standard coordinates {x1, x2, x3} on R3, and let r =
√

x2
1 +x2

2 +x2
3.

where the symmetric tensor ai j satisfies

ai j =O(
1

r
), ∂k ai j =O(

1

r 2
) and ∂k∂l =O(

1

r 3
)

Also we need to impose some conditions on the asymptotic behaviour of the second
fundamental form hi j of M in N ,

hi j =O(
1

r 2
), ∂k hi j =O(

1

r 3
)

Also to get the positive energy theorem, we need to impose the so called dominant
energy condition on the energy-momentum tensor Tab, which can be stated as:
for each timelike va, we have that T ab va vb ≥ 0 and T ab va is non-spacelike. An equiv-
alent statement can be written as follows: for any orthonormal basis, we have that

T 00 ≥ |T ab |, ∀a,b

Hence
T 00 ≥ (−T0i T 0i )

1
2

where i runs from 1 to 3 and a,b run from 0 to 3.
Also the total energy and the total momentum can be defined as [PT82, 1.1]:

El = lim
R→∞

1

16πG

∫
SR,l

(∂ j gi j −∂i g j j )dΩi (1.3)

Plk = lim
R→∞

1

8πG

∫
SR,l

(hi k −δi k h j j )dΩi (1.4)

where SR,l are spheres of radius R in Ml ⊂R3.

Remark. Note, we need ∂k gi j =O( 1
r 2 ),hi j =O( 1

r 2 ) to make the above integral converge,
and this is exactly part of the requirements in the definition of asymptotically flat
space.

Theorem 1.1 (Positive Energy Theorem). Under the above setting, and the above
notation, one have

El −|Pl | ≥ 0

where |P| =
√

Pi l P j lδi j , on each end Ml , if El = 0, for some end Ml then M has only one
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end and the Ricci tensor of N along M vanishes.

Remark. The total mass of an end Ml is

ml =
√

E 2
l −Pi l P j lδi j

Therefore the theorem above means that ml ≥ 0 for any l .

2 Spinors and Dirac Operators

To present Witten’s proof of theorem 1.1, we shall recall some basic definitions and
properties of spinors and Dirac operators in this section. For detail discussion on
spin structure and Dirac operators, please refer to [JJ08, section 2.6, 4.3].
First we need to introduce the concept of Clifford algebra,

Definition 2.1 (Clifford Algebra). Let V is a n-dimensional R-space, and let q be
a quadratic form on V . And let T(V ) be the tensor algebra generated by V , and let
I (V ) be the two-sided algebra generated by elements of the form

v ⊗ v +q(v)

Then the Clifford algebra over V is defined to be T(V )/I (V ) and we shall denote as
C l (V ).

Remark. The multiplication rule in C l (V ) is given by

v ∗w +w ∗ v =−2q(v, w), ∀ v, w ∈V

Remark. Note in this paper, we may take q to be the Minkowski metric on R3,1 and
the Riemannian metric on 3-dimensional spaces. Note that in the case when q is
the Minkowski metric, the spin group Spi n(3,1) is exactly the group SL(2,C).

Then let V be a 2-dimensional vector space over C, then naturally SL(2,C) acts on
V . Note V has a invariant symplectic ω which can be viewed as an isomorphism
V →V ∗. And R3,1 can be viewed as a subspace of V ⊗ V̄ by the isomorphism

x = (−x0, x1, x2, x3) 7→ Ax :=
[

x0 +x1 x2 + i x3

x2 − i x3 x0 −x1

]

3



Note that
−det(Ax) =−x2

0 +x2
1 +x2

2 +x2
3

which is the Minkowski norm of x.
Then the Dirac spinor space can be viewed as S = V̄ ⊕V ∗, where R3,1 acts on S as
follows

x ∗ (ξ,η) = (xη, xσξ)

where (ξ,η) ∈ S = V̄ ⊕V ∗ and xσ : V̄ →V ∗ is the σ-adjoint of x : V ∗ → V̄ since x ∈V ⊗ V̄ .
Note that for any (ξ,η) ∈ S, x ∈R3,1,

x ∗ y ∗ (ξ,η) = x ∗ (yη, yσξ)

= (x yσξ, xσyη)

Therefore

x ∗x ∗ (ξ,η) = (xxσξ, xσxη)

Note that xσx is a scalar since

σ(ξ, xxσξ) =σ(xσξ, xσξ) = 0 ∀ ξ ∈V ∗

Hence xσx = aI2, and note that
a2 = (detx)2

Therefore we can get that
x ∗x =−‖x‖2 =det(x)

Which is exactly the multiplication rule of the Clifford algebra generated by R3,1.

Now we need to lift those structures to vector bundles. Note that we only need to
consider spinor bundles over the spacelike hypersurface M in Witten’s proof, then
we can consider the principal SO(3), then we can lift the principal SO(3) bundle to
a principal Spi n(3) bundle, then we can consider the associated vector bundle with
fibre S = V̄ ⊕V ∗, where Spi n(3) acts on S by the composition:

Spi n(3) ∼= SU (2) ,→ SL(2,C)
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for more detailed discussion of spin structure on a Riemannian manifold, please
refer to [JJ08, section 2.6].
We will now give a explicit description of the induced connection on the resulting
bundle S. Note that any connection on the principal SO(3) bundle of M can bewritten
as

d + A

with A ∈ so(n), while note that A ∈ so(n) ∈ spin(n). Therefore d + A induced a connec-
tion on the principal bundle Spi n(3), hence descends to a connection on the bundle S.
And in fact, if A is given by the matrix Ωi j in a local orthonormal coordinate chart,
we can write A = ∑

i< j ωi j e i ∧ e j where {e i } are the coframe of the local coordinate
chart, then by [JJ08, 4.4.5, section 4.4], then the corresponding local expression for
the induces connection on S is given by [Chr10, 3.1.24, 3.1.27]

X ∗ϕ− 1

4

∑
i , j
ωi j (X )e i ∗e j ∗ϕ ∀ϕ ∈ Γ(S), ∀X ∈ Γ(T M) (2.1)

And the curvature of the above connection can be given as:

DX DY ψ−DY DXψ−D[X ,Y ]ψ= −1

4
Ωi j (X ,Y )e i ∗e jψ

Also S admits an inner product 〈,〉which is preserved by the action of e i and compat-
ible with the induced connection with the action of e i , i = 1,2,3 are all anti-hermitian
and e0 hermitian by [JJ08, Corollary 2.6.3].
Now let D be the connection on N , and let ∇ be the Riemannian connection on M ,
then we can define the Dirac operator as:

6 ∂ψ=
3∑

i=1
e i ∗Diψ ∀ψ ∈ Γ(S)

where {e i } is an orthonormal coframe of M , and the ∗ denote the Clifford multipli-
cation.
One of the key ingredient of the Witten’s proof is the so called Weitzenböck formula
of the Dirac operator we defined above,
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Lemma 2.1.

6 ∂2 =−Di Di + 1

4
(R +2R00 +2R0 j e0e j )−hi j e i e0D j (2.2)

where R is the scalar curvature of N and Ri j is the component of the Ricci tensor of
N .

Proof. First let p ∈ M be an arbitrary point, consider a small neighbourhoodU ⊂ M of
p, and let {e0,e1,e2,e3} be an orthonormal basis of Tp N with e0 time-like and normal
to M .
Thenwe can parallel transport {e1,e2,e3} to get an orthonormal frame field of Γ(T M ,U )

with ∇i (e j )|p = 0 for any i , j . Also we can extend {e1,e2,e3} to an orthonormal frame
field of N with D0ei |p = 0.
Then let hi j = 〈Di e0,e j 〉 be the 2nd fundamental form, hence−hi j e0 = (Di e j )p , (Di e0)p =
−hi j e j .
Hence,

6 ∂2 = e i ∗Di (e j ∗D j ) = e i ∗e j Di D j +e i ∗ (Di e j )D j

= e i ∗e i Di Di + 1

2

∑
i 6= j

e i ∗e j (Di D j −D j Di )+e i ∗ (Di e j )D j

=−Di Di + 1

2

∑
i 6= j

e i ∗e j ∗ (Di D j −D j Di )−hi j e i ∗e0 ∗D j

Note that the middle term can be expressed by curvature term, from now, we will
always let Greek indices runs from 0 to 3 and Lain indices runs from 1 to 3

1

2

∑
i 6= j

e i ∗e j (Di D j −D j Di ) = 1

8

∑
α,β

∑
i , j

Rαβi j e i ∗e j ∗eα∗eβ

Then by the calculation in [JJ08, theorem 4.4.1], we can get

1

2

∑
i 6= j

e i ∗e j (Di D j −D j Di ) = 1

4
(R +2R00 +2R0 j e0 ∗e j )

Therefore we can get the following

6 ∂2 =−Di Di + 1

4
(R +2R00 +2R0 j e0 ∗e j )−hi j e i ∗e0D j
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Remark. Note that

R00 − 1

2
g00R = 8πGT00

R0 j = 1

2
g0 j R +8πGT0 j

Therefore
6 ∂2 =−Di Di +4πG(T00 +T0 j e0 ∗e i )−hi j e i ∗e0D j

Then let R = (R+2R00+2R0 j e0∗e j ) ∈End(S), and act on ∀ψ ∈ Γ(S) and then take inner
product, we have

〈ψ, 6 ∂2ψ〉 =−〈ψ,Di Diψ〉+ 1

4
〈ψ,Rψ〉−〈ψ,hi j e i ∗e0D jψ〉 (2.3)

Then note by 2.1
Di =∇i − 1

2
hi j e j ∗e0

And in order to evaluate the integral of 2.3 on M , we need the following to perform
integration by parts.

d(<φ,Diψ> ιeiµ) = (〈Di + 1

2
hi j e j ∗e0φ,Diψ〉+〈φ,Di Diψ+ 1

2
hi j e j ∗e0Diψ〉 )ιeiµ (2.4)

= (〈Diφ,Diψ〉+〈φ,Di Diψ〉+〈φ,hi j e j ∗e0Diψ〉)µ (2.5)

where µ= e1∧e2∧e3 is the volume form on M and ιeiµ denote the contraction of µ by
ei .
Now note that

(−〈ψ,Di Diψ〉+ 1

4
〈ψ,R ∗ψ〉−〈ψ,hi j e i ∗e0D jψ〉)µ= 〈Diψ,Diψ〉µ+1

4
〈ψ,Rψ〉µ

−d(<ψ,Diψ> ιeiµ)

And in Witten’s proof, we only need to consider spinor fields ψ along M satisfying
6 ∂ψ = 0, then we can get the the following integral form of the Weitzenböck for-
mula, ∫

M
〈Dψ,Dψ〉+〈ψ,

1

4
R ∗ψ〉 =

∫
∂M

〈ψ,Diψ〉ιeiµ (2.6)
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3 Proof of Positive Theorem

Note that if we consider the special case, where 6 ∂ψ= 0 along M , then the left hand
side of 2.6 is non-negative, since

<ψ,
1

4
R ∗ψ>= 4πG〈ψ, (T00 +T0i e0e i )ψ〉

and the matrix T00 +∑
j T0 j e0 ∗e j is a semi-positive definition matrix, the hermitian

matrix ∑
j T0 j e0 ∗ e j has eigenvalues equal to plus or minus the magnitude of the

momentum flux, so the eigenvalues of T00 +∑
j T0 j e0 ∗ e j are all nonnegative by the

dominant energy condition, [Wit81].
And if ψ is asymptotically constant in a proper way, then the right hand side of
2.6 depends only on hi j and gi j , and Witten noticed that the only invariant of the
O( 1

r ) part of gi j and hi j are the total energy and momentum defined in the first
section [Wit81], therefore the integral on the right hand side of 2.6 must contain
information of E and P and direct calculation shows that the integral is actually the
energy-momentum integral.
In conclusion, [PT82] gave the following theorem,

Theorem 3.1. [PT82, theorem 4.1] Let {ψ0l }k
l=1 be constant spinors defined in the

asymptotic ends {Ml }k
l=1, then there exists a unique, smooth spinor ψ on M that sat-

isfies:

1. 6 ∂ψ= 0

2.
lim

r→∞r |ψ−ψ0l | = 0

in each end Ml .

3.

4πG
k∑

l=1
(El 〈ψ0l ,ψ0l 〉+〈ψ0l ,Plk d x0 ∗d xk ∗ψ0l 〉) =

∫
∂M

〈ψ,Diψ〉ιeiµ (3.1)

=
∫

M
(〈Dψ,Dψ〉+〈ψ,

1

4
R ∗ψ〉)µ≥ 0 (3.2)

where {xα} are basis of R3,1.
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Proof. To keep the simplicity of this report,we will not present the proof the state-
ment (1), (2), but actually the existence of the prescribed spinor fields is an important
step of the proof, and we can see that the statement (3) of this theorem is crucial.
In the rest of this report, we will show that the statement (3) holds following the
calculation in [PT82, section 4].
Write ψ =ψ0 +ψ1, where ψ0 is the given constant spinor defined in the asymptotic
ends.
Then note that

∇iψ=∇iψ+e i∗ 6 ∂ψ= (δi j +e i ∗e j∗)∇ jψ= 1

2
[e i ,e j ]∗∇ jψ

where [e i ,e j ] = e i ∗e j −e j ∗e i , then we have the following∫
∂M

〈ψ,Diψ〉ιeiµ= 1

2

∫
M

d(〈ψ0, [e i ,e j ]∗D jψ0〉ιeiµ)+ 1

2

∫
M

dη

where
η= (〈ψ1, [e i ,e j ]∗D jψ〉+〈ψ0, [e i ,e j ]∗D jψ1〉)ιeiµ)

before the calculation of the integral, we need the following estimate of the integral
of the ψ1 part, which is integration of the O( 1

r 3 ) part of ψ,and this goes to 0 under the
asymptotic hypothesis, for the detailed proof, the readers may refer to the original
paper [PT82, section 4]

Lemma 3.2. ∫
M

dη= 0

Then we have that∫
M

(〈Dψ,Dψ〉+〈ψ,
1

4
R ∗ψ〉)µ= 1

2
lim

r→∞
∑

l

∫
∂Ml

〈ψ0, [e i ,e j ]∗D jψ0〉ιeiµ

Then note that the ends Ml are all diffeomorphic to R3 −Kl where Kl are compact
sets, then we can pull back the connection to R3 −Kl for each l , then we have the
following:

D jψ0 =∇ jψ0 − 1

2
h j i d xi ∗d x0ψ0 =−1

4
Γl

j k d xk ∗d x lψ0 − 1

2
h j k d xk ∗d x0 ∗ψ0

where Γk
j l is the connection on Ml with respect to the coordinate chart {x1, x2, x3}.
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Then by the hypothesis, we have the following since we only need to calculate the
O( 1

r 2 ) part of the integrand, and |d xi −e i | =O( 1
r ) and integral of this part will go to 0

when r →∞

1

2

∫
∂Ml

〈ψ0, [e i ,e j ]∗D jψ0〉ιeiµ= 1

2

∫
〈ψ0, [d xi ,d x j ]∗D jψ0〉ιd xiµ

And we have that

〈ψ0, [d xi ,d x j ]∗ (
−1

4
Γl

j k d xk ∗d x l ∗ψ0−1

2
h j k d xk ∗d x0 ∗ψ0)〉 =−1

4
〈ψ0, [d xi ,d x j ]∗Γl

j k d xk ∗d x l ∗ψ0〉

− 1

2
〈ψ0,h j k [d xi ,d x j ]∗d xk ∗d x0 ∗ψ0〉

= 1

4
〈ψ0, (∂ j gi j −∂i g j j )ψ0〉

+ 1

2
〈ψ0, (hi k −δi k h j j )∗d x0 ∗d xk ∗ψ0)〉

Therefore we finished the proof.

To prove the rigidity part of theorem 1.1, we need the following lemma,

Lemma 3.3. [PT82, Lemma 4.3] Suppose that ψ and {ψi } are smooth spinor fields
along M with Dψ= 0 and Dψi = 0 for any i , then

1. If limx→∞ψ(x) = 0, where this limit is taken along some path in one asymptotic
end Ml , then ψ= 0.

2. if {ψi } are linearly independent in some end Ml , then they are linearly indepen-
dent everywhere on M .

Proof. 1. Let |ψ| = 〈ψ,ψ〉, then we have that following:

d |ψ|2 = 〈−hi j e j ∗e0 ∗ψ,ψ〉

Then we have that
2|ψ||d |ψ| ≤ |hi j ||ψ|2

Note that |hi j | =O( 1
r 2 ) by the asymptotic assumption of M , then

|d ln |ψ|| ≤ C

r 2
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for some constant C on the complement of the zero set of ψ.

Then by integrating, we have that

|ψ(x)| ≥ |ψ(x0)|exp(C (
1

|x| −
1

|x0|
))

And passing to the limit, we get that

0 ≥ |ψ(x0)|

Therefore ψ(x0) = 0 for any x0 ∈ M .

2. Suppose that there are constants ci , such that ψ = ∑
i ciψi , vanishes at some

point x1 ∈ M , note that ∇ψ= 0, and note that

|ψ(x1)| ≥ |ψ(x0)|exp(C (
1

|x| −
1

|x0|
))

Therefore contradicts with the hypothesis.

Now we end this report by taking the proof of Positive theorem from [PT82, section
4]

Proof of theorem1.1. 1. Let Pi ,l i = 1,2,3 be the components of the total mo-
mentum of the end Ml ⊂R3, let {ψl }k

l=1 be constant spinor fields on the asymp-
totic ends with ψl = 0 on each ends except M1, and ψ1 is an eigen-spinor of
Pi 1d xi ∗d x0 with eigenvalue −|P |, then the theorem gives a harmonic spinor ψ
which is asymptotically {ψl }, then by the theorem 3.1, we have that El ≥ |Pl |.

2. Now suppose that the energy of Ml is 0, then choose a basis of constant spinors
{ψα} of constant spinors, and and let ψα

l = ψα on M1 and 0 for all other ends
Ml . Then let φα be the solutions constructed in theorem 3.1, note that the
boundary term vanishes hence Dφα = 0 and φα → 0 uniformly on each end
except M1, which contradicts with the lemma 3.3a, unless M1 is the only end
of M .

And note that {ψα} are linearly independent on M1, they are linearly indepen-
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dent everywhere by lemma 3.3, moreover, Dψa = 0, so we have

Rαβi j = 0

Therefore Tαβ = 0 by the dominant energy condition, therefore we know that
all component of the energy momentum tensor vanishes. Thus N is flat along
M .
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