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1 Introduction

Given a Lorentzian manifold (M, g), it is said to satisfy Einstein’s Field Equa-
tions if

Ric− 1

2
Sg = T (1)

with S the Ricci scalar associated to the metric and T the energy-momentum
tensor, which is given by some physical conditions. Although the development
of the theory and the elements in the equation are based in tensorial analysis
and geometric constructions, the field equations themselves are, after a choice
of coordinates with respect to which calculations can be made, a system of
non-linear second order PDEs.

When we consider the equations as such, the usual questions about initial
conditions and existence and uniqueness of solutions arise. In this case, the
questions are harder because, in principle, the nature of M itself should be
related to the solution of equation 1.

The groundbreaking result in those questions was made by Yvonne Choquet-
Bruhat in [5], who proved local existence and uniqueness for Einstein Field
Equations in the vacuum when initial data was given as (Σ, γ,K), Σ a spacelike
hypersurface of M , γ a Riemannian metric over Σ and K a symmetric bilinear
form over Σ that plays the role of the second fundamental form in the final
solution. The result holds only when γ and K toghether satisfy the so called
constraint equations, a geometric condition between those quantities and T that
emerge from the Gauss-Codazzi equations, which are themselves constraints
that couple the first and second fundamental forms over a hypersurface and the
geometry of the ambient manifold.

Choquet-Bruhat’s result in some sense finds the solution in a manifold that
is locally homeomorphic to Σ× I, I and interval of the real line. Later, Geroch
proved that a globally hyperbolic spacetime (which is the possible development
of a solution to Einstein Field Equations) is indeed topologically equivalent to
Σ× I ([6]), a result that was strengthened by Bernal and Sánchez for a smooth
splitting in [2]. In this setting, a clearer and more meaningful presentation
of Choquet-Bruhat’s result is possible, with the topology of M already well-
established.

In this work we present the necessary geometric background for the existence
and uniqueness result for Einstein’s Field Equations in section 2 followed by
Choquet-Bruhat’s existence result in section 3. Then, in section 4 we present the
conformal method, a technique to look for solutions of the constraint equations
and consequently for candidates to initial data of the Field Equations. Finally,
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in appendix A we hide some gory calculations necessary for the theory of section
3 that are not easy to find.

2 Geometric Setting

We organize this section based on the approach in [1], but inverting the steps
for we judge that is clearer.

2.1 Geometric Constraints: Gauss-Codazzi Equations

In general, if (Mn+1, g) is a (pseudo-)Riemannian1 manifold and Σ is a hyper-
surface with normal vector field n, one can define the second fundamental form,
a symmetric form over Σ, by

K(X,Y ) := g(DXn, Y ), X, Y ∈ X(Σ)

with D the affine connection over M .
Now, D over M induces an affine connection ∇ over Σ. If we denote tensors

with superscript M to correspond to the connection D and with superscript Σ
to correspond to ∇ and R is the (4, 0)-tensor corresponding to the Riemann
curvature tensor, K presents a useful way to relate the RM restricted to TΣ to
RΣ: the Gauss-Codazzi equations. The Gauss equation (tangent part) is:

RM (X,Y, Z,W ) = RΣ(X,Y, Z,W )+K(X,W )K(Y,Z)−K(X,Z)K(Y,W ) (2)

and the Codazzi equation (normal part):

RM (X,Y, n, Z) = ∇X(K(Y,Z))−∇Y (K(X,Z)) (3)

in both cases, X,Y, Z,W ∈ TΣ.
If we choose a local chart around a point p ∈ Σ that is adapted to Σ, in the

sense that over Σ the 0-th coordinate vector is normal to Σ and the others are
tangent to Σ, we can write the two equations in coordinates:

RMijkl = RΣ
ijkl +KilKjk −KikKjl (2)

RMij0k = Kjk;i −Kik;j (3)

with the indices going from 1 to n and ; i corresponding to the covariant deriva-
tive with respective to the connection ∇.

With those two equations it is possible to find an expression for the Einstein
tensor over Σ as a function of K, and thus to relate the matter information
(T ) and the geometric information (metric and second fundamental form) over
Σ. Those will be the constraint equations. To get there we need to use (2)
and (3) to get the Ricci tensor and scalar over Σ. In coordinates, for i, j, k ∈
{1, ..., n}, α, β ∈ {0, 1, ..., n}:

RicMij = (Rαiαj)
M = (R0

i0j)
M + (Rkikj)

Σ +Kk
kKji −Kk

jKik

= (R0
i0j)

M +RicΣij +Kk
kKji −Kk

jKik

RicM0i = (Rαiα0)M =
= (R0

i00)M +Kk
i;k −Kk

k;i

= Kk
i;k −Kk

k;i

1The calculations never involve the signature of g, see section 6.4 in [9].
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thus, if S is the Ricci scalar:

SM = (Ricαα)M = (Ric00)M + (R0i
0i)

M + (Ricii)
Σ +Kk

kK
i
i −Kk

i K
i
k

= (Ric00)M + (R0i
0i)

M + SΣ + (Ki
i )

2 −Kk
i K

i
k

= g0β
(
RicMβ0 + (Riβ0i)

M
)

+ SΣ + (Ki
i )

2 −Kk
i K

i
k

Now, due to our choice of chart, g0i = 0 if i 6= 0 and hence g00g00 = 1. So:

SM = g−1
00

(
RicM00 + (Ri00i)

M
)

+ SΣ + (Ki
i )

2 −Kk
i K

i
k

= 2g−1
00 Ric

M
00 + SΣ + (Ki

i )
2 −Kk

i K
i
k

So, replacing in G = Ric− 1
2Sg:

GM00 = RicM00 − 1
2g00

(
2g−1

00 Ric
M
00 + SΣ + (Ki

i )
2 −Kk

i K
i
k

)
= − 1

2g00(SΣ + (Ki
i )

2 −Kk
i K

i
k)

GM0i = RicM0i − 1
2S

Mg0i

= Kk
i;k −Kk

k;i

This expressions are quite general, but we will be interested particularly in the
case (M, g) is a spacetime and (Σ, γ,K), γ the induced metric by g, is a spacelike
(γ is a Riemannian metric) hypersurface. In that case g00 may be chosen to
be -1 and we demand that the metric satisfy Einstein’s Field Equation G = T .
Also, we define ||K||2γ := Kk

i K
i
k for short and we get the Einstein Constraint

Equations over Σ: {
2GM00 = SΣ + (trγK)2 − ||K||2γ = 2T00

GM0i = Kk
i;k −Kk

k;i = T0i

(4)

The first equation is usually called “Hamiltonian constraint” while the vec-
tor relation given by the second expression is usually called “Momentum con-
straint”.

Notice that the conditions depend only on information of the metric and the
second fundamental form over Σ, not anywhere else in the manifold M .

These equations present a necessary condition, that is a constraint, for an
initial data set (Σ, γ,K, T |Σ) to be a possible initial data set for Einstein’s Field
Equations. Notice that, as for the full equations, the constraints relate matter
and geometry, although only in an n-manifold Σ, not over the full spacetime.
In section 3 we will show a result first presented by Yvonne Choquet-Bruhat2

in [5] that proves that the constraints are also a sufficient condition.

2.2 Geometry of Globally Hyperbolic Spacetimes

Since in the globally hyperbolic case the manifold M can be split as M = Σ×I,
Σ a 3-manifold, I ⊂ R an interval, it can be folliated by spacelike hypersurfaces
diffeomorphic to Σ.

In order to do the calculations for this section, let’s structure that by a
diffeomorphism i : Σ × I → M satisfying i(Σ × {s}) := is(Σ) := Σs is a
spacelike hypersurface of M . Denote ns the unitary future-directed timelike
normal vector field over Σs and γs the Riemannian metric induced on Σs by g.

2As a clarifying note it is useful to say that her surename by the date of the publication of
the original paper was Fourès-Bruhat, which justifies the different name in the bibliography.

3



Now, i is a diffeomorphism, so if we define local coordinates x over U ⊂ Σ,
they can be extended to (x, s) over U × I ⊂M with the identification through
i, as local coordinates on M . Let {∂s, ∂α}α∈{1,2,3} be the associated coordinate
basis. Note that, in this case, ∂s doesn’t have to be timelike, since i is an
arbitrary folliation, but it can be decomposed over Σs as

∂s := Nsns +Xs

with Ns a scalar field and Xs a tangent vector field. In this case Ns is called the
lapse function and Xs the shift vector associated to the folliation. This allows
one to write the metric g with respect to this coordinates as

g = −N2ds⊗ ds+ γij(dx
i +Xids)⊗ (dxj +Xjds). (5)

What will be important in the next section is that if we are given a slice
(Σ, γ), a Riemannian manifold, Ns a one-parameter family of non-vanishing
scalar fields and Xs of vector fields over Σ, one can reverse engineer the previous
reasoning by setting g as in 5 a metric in Σ × I and in that case you get that
the normal field over Σs becomes

ns =
1

Ns
(∂s −Xs)

And then you can write the second fundamental form in those coordinates as:

Kij =
1

2N
(∂sγij − LX(γij))

and if X, N , γij (as functions) and K are prescribed, one can write down the
functions

∂sγij = 2NKij + LX(γij)

3 Well-Posedness of the Initial Value Problem

In this setting we are able to present the proof of existence and uniqueness of
a solution of Einstein’s equation in the vacuum (T = 0) if the initial condition
satisfies the constraint equations. In more precise terms, the result is that there
is a local solution to the following problem:

Theorem 1 (Choquet-Bruhat). There is (M, g) a Lorentzian manifold satisfy-
ing: 

Ric = 0, in M ;

Σ ⊂M is a spacelike hypersurface;

g = γ in TΣ;

K(X,Y ) = g(DXn, Y ),∀Y,X ∈ X(Σ)

with D the Levi-Cività connection in M if K, γ satisfy the constraint equations:{
2GM00 = SΣ + (trγK)2 − ||K||2γ = 0

GM0iM = Kk
i;k −Kk

k;i = 0
.
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The result was proved for the first time in [5] and relies on the local exis-
tence and uniqueness of solutions for the following initial value problem on a
Lorentzian manifold (M, g):

gαβT i1...ik,αβ +Hi1...ik = 0, in M

T i1...ik = T i1...ikinitial, given in Σ;

T i1...ik,0 = ∂T i1...ik , given in Σ

(6)

with Σ a spacelike hypersurface, Hi1...ik a polynomial of the components of
g, g−1, T and their first derivatives.

In fact, most of Choquet-Bruhat’s paper (chapters I-III) is devoted to build-
ing the corresponding theory of existence and uniqueness for hyperbolic PDEs
necessary in the final result for Einstein’s equations. In the following we will
assume that fact as given, and present the final result following the ideas of [1].

The proof of the existence theorem 1 involves a lot of technical unhelpful
manipulations of coordinates that are hidden in appendix A, but in broad strokes
we have the following:

Step 1. If F (g) is a function of the components of g and g−1, but does
not involve any of its derivatives and we define the vector field W such that its
covariant form has components

Wα = −gρλ
(
gλα,ρ −

1

2
gρλ,α

)
+ F (g)

the equation

Ric+
1

2
LW g = 0 (7)

is hyperbolic in the sense that it satisfies the conditions of system 6. Notice that
W is a function of g and if g is a solution to equation 7 for which W vanishes
identically, then the equation becomes

Ric = 0

that is, g is a solution for Einstein’s Field Equations in the vacuum.
Step 2. If W satisfies equation 7, then we can call A := 1

2LW g and we have:
A = −Ric
trgA = −S
Ric− 1

2Sg = −
(
A− 1

2 (trgA)g
)

so, since the Einstein tensor is divergence-free, we have from the last identity
above that

Dµ

(
A− 1

2
(trgA)g

)µν
= 0

and hence W satisfies the hyperbolic equation:

1

2
gµλW ν

,λµ + P (W ) = 0 (8)

with P (W ) a polynomial of the components of W , their first derivatives, which
components involve the components of g and g−1 and their first derivatives and
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such that P (0) = 0. So, if we have an initial condition Wα = Wα
0 = 0 along Σ,

uniqueness gives that W ≡ 0 is the only solution for the initial value problem
given by equation 8 with null initial condition.

Step 3. Given (Σ, γ,K) satisfying the constraint equations for the vacuum,
it is possible to find g|Σ and ∂0g|Σ, such that (N 6= 0 and X ∈ X(Σ) are given
by the choices of g0a according to equation 5):

g Lorentzian metric

gij |Σ = γij

∂0gij |Σ = 2NKij + LX(γij)

W |Σ = 0

W,0|Σ = 0

First, let’s show that we only have to guarantee W |Σ ≡ 0, because then the
constraint condition guarantees that W,0|Σ ≡ 0.

Theorem 2. In the setting of this step, assume g00 6= 0 and g|Σ is such that
W |Σ ≡ 0, then W,0|Σ ≡ 0.

Proof. If W ≡ 0, (DaW )b = W b
,a, for the other terms vanish, so, by equation 7

we have:

Ricαβ +
1

2

(
gβµW

µ
,α + gαµW

µ
,β

)
= 0

Now, if W ≡ 0 along Σ, since the spatial coordinates are tangent to Σ, Wα
,i ≡ 0

for any i 6= 0, so the only non-trivial components of the Ricci tensor along Σ
are: {

Ric0α = − 1
2

(
gαµW

µ
,0

)
, α 6= 0

Ric00 = −
(
g0µW

µ
,0

)
, α = 0

Also
Ricαα = − 1

2

(
Wα
,α +Wα

,α

)
= −W 0

,0

Finally, by the constraint equations, G0
α = 0. But

G0
α = Ric0α − 1

2 (Ricαα)g0
α

= g0µRicµα + 1
2W

0
,0δ

0
α

If α 6= 0:

0 = G0
α = −1

2
g00gανW

ν
,0

and
0 = G0

0 = g0µRic0µ + 1
2W

0
,0

= − 1
2g

00g0νW
ν
,0 − 1

2g
0µgµνW

ν
,0 + 1

2W
0
,0

= − 1
2g

00g0νW
ν
,0 − 1

2δ
0
νW

ν
,0 + 1

2W
0
,0

= − 1
2g

00g0νW
ν
,0

So, if g00 6= 0 we the following system for the components W ν
,0:

0 = gανW
ν
,0

Multiplying by the inverse of g in both sides we get that all time derivatives of
the components of W vanish identically.
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So the only thing we need to do is to be able to solve the system Wα = 0,∀α
by choosing the components of g and ∂0g along Σ in a way that agrees with the
initial condition on γ and K.

Notice that there is no restriction to the choice of ∂0g0α along Σ, so it is a
matter of solving the system of n+ 1 equations

0 = −gρλ
(
gλα,ρ −

1

2
gρλ,α

)
+ F (g)

for (g0α, g0α,0). Given the high degree of underdetermination of the system, one
can choose g|Σ freely (only assuming g00 6= 0) and then solve the resulting linear
system above with F (g) ≡ 0 to get:{

g0i,0 = 1
g00

(
1
2g
ρλgρλ,i −

∑
ρ2+λ2 6=0 g

ρλgλi,ρ

)
, i 6= 0

g00,0 = − 2
g00

∑
ρ2+λ2 6=0 g

ρλ
(
gλα,ρ − 1

2gρλ,α
)

then W vanishes identically over Σ and we get the existence result for Einstein’s
Field Equations as a consequence.

In the same work Choquet-Bruhat proves a uniqueness result for the theorem
in a similar way, but in the sense that if there is a metric g̃ that also solves the
initial value problem for the same initial data on Σ, there is an isometric change
of variables on M that is the identity over Σ taking one solution to the other.

Another question related to this problem is that of maximality of the solu-
tion. Indeed, there is a maximal solution for each initial value problem (in the
sense that other solutions may be isometrically imbedded inside the larger one)
as was proved in [3].

Finally, the result concerns only the vacuum case of the field equations. In
order to be able to answer the question in the presence of matter, one needs a
model for the tensor T , and then the question of existence depends also on the
mathematical conditions that determine the energy momentum tensor, being
impossible to answer in general. A good point to start covering that direction
of the existence theory for the field equations with matter is by looking at the
references given in section 2.4 of [12].

Example (Minkowski space)

Let’s see how those considerations play out in the case of the flat Minkowski
metric in R4. In that case we can adopt as initial condition (Σ, γ) = (R3, η),
where η is the Euclidean metric in R3. In that case SΣ ≡ 0, the musical
isomorphisms are trivial and the covariant derivative is the normal derivative
on the space. In the vacuum case the constraint equations for K become:{

(Kk
k )2 −Ki

jK
j
i = 0

Kk
i,k −Kk

k,i = 0

if we assume, for example, that the mean curvature of R3 in our problem is
constant and equal to 0, we will get

∑
i,j(K

i
j)

2 = 0, soK ≡ 0 and, by uniqueness,
the only solution to Einstein’s equation is Minkowski space.

Now, if we follow the steps of the proof of Choquet-Bruhat’s theorem for the
initial data (γ = η,K = 0), we have to choose a Lorentzian metric gαβ over Σ
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such that gij = δij and ∂0gαβ satisfying{
∂0gij = LX(gij)

gρλ
(
gλα,ρ − 1

2gρλ,α
)

= 0

But for any constant vector field X, since γij is constant over g, LXγij = 0
and we can take ∂0g ≡ 0 over Σ. Assuming X constant amounts to assuming
all the coefficients gαβ constant, acording to expression 5 for the metric g in a
neighborhood of Σ. Summing up, we can solve the initial value problem

Ric = 0, in M ;

gαβ ≡ const., on Σ;

∂0gαβ ≡ 0, on Σ

the solution to this initial value problem is, as we know, Minkowski space with
metric gαβ constant and equal to the values at Σ. The different possible choices
of g0α are different choices of charts that folliate R4 with copies of Σ along more
or less tilted lines parallel to X +N∂t with N =

√
−g00, Xi = g0i.

In the opposite direction, if we want (R3, η) to have a prescribed constant
mean curvatura τ inside an Einsteinian spacetimeM , for example, we can choose

K =
τ

3
dxi ⊗ dxi +

τ√
3

(
dx1 ⊗ dx2 + dx2 ⊗ dx1

)
and then (

Kk
k

)2
= Ki

jK
j
i = τ2

and the pair (η,K) satisfies the constraint equations, so there should be a space-
time M such that (Σ, η,K) is a hypersurface of M satisfying Einstein’s equations
“bent” with constant mean curvature τ .

4 Conformal Method

Since the constraint equations are a necessary and sufficient condition for initial
data for Einstein’s Field Equations, an interesting question becomes how to find
(γ,K) over Σ satisfying the constraint equations. One prolific way to solve this
problem is the conformal method.

The geometric idea behind the method is very simple. First, one fixes an

arbitrary Riemannian metric h over Σ. Then, one assumes γ = u
4

n−2h, n the
dimension of Σ3, is a metric conformal to h over Σ and look at the resulting
system of PDEs for u obtained by plugging this form of γ in the constraint
equations. We will present the calculations involved in the following as presented
in section 1.3 of [7].

First, let’s assume T is given as the energy-momentum tensor of a scalar
field ψ : M → R, given by

Tij = ∂iψ∂jψ −
1

2
gαβ∂αψ∂βψgij − V (ψ)gij

3In this section the theory can be easily developed without assuming the spacetime is 3+1-
dimensional. To get results for the usual theory of General Relativity, simply assume n = 3
throughout.
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with V (ψ) a scalar potential. Now, calling π := ∂0ψ, γipγjsKpjKis := ||K||2γ ,
the constraint equations become:{

SΣ
γ + (trγK)2 − ||K||2γ = 2π2 − gαβ∂αψ∂βψg00 − 2V (ψ)g00

Kk
i;k −Kk

k;i = π∂iψ − 1
2g
αβ∂αψ∂βψg0i − V (ψ)g0i

(9)

Now we want to turn that into an equation only over Σ, so we will assume we
are in a coordinate chart in which we can write

g = −dt2 + γ

with γ a Riemannian metric over Σ as before. Then the equation becomes (since
g00 = −1, g0i = 0):{

SΣ
γ + (trγK)2 − ||K||2γ = π2 + γkl∂kψ∂lψ + 2V (ψ)

Kk
i;k −Kk

k;i = π∂iψ
(10)

Now we apply the conformal method. Assume ψ, π scalar fields, h a Riemannian
metric and K a symmetric bilinear form are all given over Σ and consider

γ = u
4

n−2h satisfies equation 10. To get an equation for u we must see how each
component of the equation changes under conformal transformations:

From the theory related to the Yamabe problem (see for example section 1.1
of [7]), we get that

SΣ
γ = u−

n+2
n−2

(
4(n− 1)

n− 2
∆hu+ SΣ

h u

)
Also

γij = u
4

n−2hij ⇐⇒ γij = u−
4

n−2hij

So
γkl∂kψ∂lψ = u−

4
n−2

(
hkl∂kψ∂lψ

)
and

||K||2γ = Ki
jK

j
i = γipγjkKjpKik = u−

4
n−2u−

4
n−2hiphjkKjpKik = u−

8
n−2 ||K||2h

So we can already write the Hamiltonian constraint:

u−
n+2
n−2

(
4(n−1)
n−2 ∆hu+ SΣ

h u
)

= π2 +
(
u−

4
n−2

(
hkl∂kψ∂lψ

))
+ 2V (ψ)

+u−
8

n−2 ||K||2h − (trγK)2

Notice we didn’t write the change of trγK := τ , the mean curvature of Σ in M .
The reason is that we are going to consider that as an initial condition of our
final system.

With that assumption, the momentum constraint becomes

Kk
i;k = π∂iψ + τ;i = π∂iψ + ∂iτ

To get the momentum constraint we will have to find the relation between
the Christoffel symbols Γ̃kij associated to γ and the Γkij , Christoffel symbols
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associated to h:

Γ̃kij = 1
2γ

kp(γip,j + γjp,i − γij,p)
= 1

2u
− 4

n−2hkp((u
4

n−2hip),j + (u
4

n−2hjp),i − (u
4

n−2hij),p)
= 1

2h
kp(hip,j + hjp,i − hij,p)

+ 1
2u
− 4

n−2hkp
(
u

4
n−2

,j hip + u
4

n−2

,i hjp − u
4

n−2
,p hij

)
= Γkij + 4u−1

2(n−2)

(
u,jδ

k
i + u,iδ

k
j − hkpu,phij

)
= Γkij + 2u−1

(n−2)

(
u,jδ

k
i + u,iδ

k
j

)
− 2u−1

(n−2)h
kpu,phij

So

(Kk
i;k)γ = γkpKip;k

= γkp
(
Kip,k − Γ̃skiKsp − Γ̃skpKis

)
= u−

4
n−2hkp

(
(Kip;k)h − 2u−1

(n−2)Ksp (u,kδ
s
i + u,iδ

s
k)

+ 2u−1

(n−2)h
slu,lhikKsp − 2u−1

(n−2)Kis

(
u,kδ

s
p + u,pδ

s
k

)
+ 2u−1

(n−2)h
slu,lhkpKis

)
= u−

4
n−2 (Kk

i;k)h − 2u
− 2+n

n−2

(n−2) Kk
i u,k − 2u

− 2+n
n−2

(n−2)

(
Kk
k

)
h
u,i

+ 2u
− 2+n

n−2

(n−2) u,lδ
p
iK

l
p − 2u

− 2+n
n−2

(n−2) Kk
i u,k − 2u

− 2+n
n−2

(n−2) Kp
i u,p

+ 2u
− 2+n

n−2

(n−2) hkku,lK
l
i

= u−
4

n−2 (Kk
i;k)h + (n− 2) 2u

− 2+n
n−2

(n−2) Kk
i u,k − 2u

− 2+n
n−2

(n−2)

(
Kk
k

)
h
u,i

= u−
4

n−2 (Kk
i;k)h + 2u−

2+n
n−2Kk

i u,k − 2u−1

(n−2)τu,i

Again, we want to treat τ as a given function, although it is a quantity of the
target manifold.

Now, in order to get a nicer expression for Kk
i;k, let’s split K into a trace-free

and an expansion part with respect to γ in the following way

Kij = u−2Pij +
τ

n
γij ⇐⇒ P ij = u2

(
Ki
j −

τ

n
u

4
n−2 δij

)
where u−2P is trace-free with respect to γ.

Then, taking the divergence with respect to h we have

(
Kk
i;k

)
h

=
(

(u−2P )ki;k

)
h

+

((
τu

4
n−2

n h

)k
i;k

)
h

= u−2
(
P ki;k

)
h

+
(
u−2

)
,k
P ki +

(
τu

4
n−2

n

)
,i

= u−2
(
P ki;k

)
h
− 2u−3u,kP

k
i +

τ,i
n u

4
n−2 + 4

n(n−2)τu,iu
4

n−2−1

so

u−
4

n−2

(
Kk
i;k

)
h

= u−
2n

n−2

(
P ki;k

)
h
− 2u−

2+n
n−2−2u,kP

k
i

+
τ,i
n + 4

n(n−2)τu,iu
−1

10



Replacing in the expression for the left hand side of the momentum constraint:(
Kk
i;k

)
γ

= u−
2n

n−2

(
P ki;k

)
h
− 2u−

2+n
n−2−2u,ku

2
(
Kk
i − τ

nu
4

n−2 δki

)
+
τ,i
n + 4

n(n−2)τu,iu
−1 + 2u−

2+n
n−2Kk

i u,k − 2u−1

(n−2)τu,i

= u−
2n

n−2

(
P ki;k

)
h

+ τu−1u,i
2
n +

τ,i
n + 4

n(n−2)τu,iu
−1 − 2

(n−2)u
−1τu,i

= u−
2n

n−2

(
P ki;k

)
h

+
τ,i
n

with the magic cancelations justifying the choices of the exponents. Finally,
replacing on the expression of the momentum constraint we get

u−
2n

n−2
(
P ki;k

)
h

= π∂iψ +
(n− 1)

n
∂iτ

or, equivalently (
P ki;k

)
h

= u
2n

n−2

(
π∂iψ +

(n− 1)

n
∂iτ

)
Notice that, by now, we have replaced the initial condition K by its trace-free
part u−2P and its trace τ . It can be proved that only the divergent-free portion
of P is relevant. Indeed, write

P = σ +H

with σ trace-free, divergent-free. Then the divergence of P is the divergence of
H.

Now, let’s introduce the conformal Killing operator for X ∈ X(Σ):

(LhX)ij = (∇jX)i + (∇iX)j −
2

n
∇kXkhij

and the conformal Laplacian operator:

(∆h,conf.X)i = ∇k(LhX)ki

Then it is known that the equation

(∆h,conf.X) = Y

can be solved if Y is orthogonal to all the solutions Z to LhZ = 0, called
conformal Killing fields. On the other hand, it can also be proven that the
vector equivalent to the divergence of P (that is, equivalent to the divergence
of H) is indeed orthogonal to all conformal Killing fields, so there is X ∈ X(Σ)
such that Lh(X) = H.

We finally find our desired form of the momentum constraint:

(∆h,conf.X) = u
2n

n−2

(
π∂iψ +

(n− 1)

n
∂iτ

)
which has a solution as soon as the vector with coordinates π∂iψ + (n−1)

n ∂iτ is
orthogonal to all conformal Killing fields.
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So in the end we get a system of PDEs giving the conformal form of the
constraint equations. As a last resort to decoupling the system we define the

artificial variable π̃ = u
2n

n−2π and the system becomes:
u−

n+2
n−2

(
4(n−1)
n−2 ∆hu+ SΣ

h u
)

= u−
4

n−2
((
hkl∂kψ∂lψ

)
+ π̃2

)
+ 2V (ψ)

+u−
8

n−2 ||K||2h − τ2

(∆h,conf.X)i = π̃∂iψ + u
2n

n−2
(n−1)
n ∂iτ

(11)

with K = u−2(σ + LhX) + τ
nu

4
n−2h.

The initial data for the system is (h, σ, ψ, π̃, τ, V ), all defined over Σ, and it
should be solved for X and u. If u is found we get our metric γ satisfying the
constraint equations along with K.

If τ is constant, the system can be decoupled and the Hamiltonian constraint
becomes an elliptic PDE called Lichnerowicz equation. There is a wide range of
results concerning the existence of positive solutions to the equation in a variety
of settings, usually under some conditions on the initial data, for example on
compact manifolds ([8]), on compact manifolds with boundary ([10]), among
others. There are also some results on existence and stability of the whole
system, such as for assymptotically flat manifolds ([4]) as well as stability results
such as ([11]).

Example (Minkowski space) - Second version

Let’s use the conformal method to try to find a metric γ that is conformally
flat in R3, that is h = η is the Euclidean metric, and that is a possible initial
condition for the Einstein equations in the vacuum case, that is V = ψ = π̃ ≡ 0,

with constant mean curvature τ . Say γ = u
4

n−2 η. In this case the momentum
constraint becomes:

(∆η,conf.X)i = 0 ⇐⇒ ∂k(LηX)ki = 0

which has a trivial solution LηX = 0. Now, this can be solved, for example
X ≡ 0 is a trivial solution, but all the information we need to find u is LηX,
since:

K = u−2P +
τ

3
u

4
n−2 η = u−2(σ + LηX) +

τ

3
u

4
n−2 η

and we can write the Hamiltonian constraint, since Sη ≡ 0,∆η = ∆:

8∆u = u−3
∣∣∣∣∣∣u−2σ +

τ

3
η
∣∣∣∣∣∣2
η
− u5τ2

Notice that σ is still to be prescribed. For example, even if we make τ = 0, in
which case K = u−2σ is trace-free, the solutions to

8∆u = u−7σijσ
j
i

are not constants if σ 6= 0, which does NOT contradict what we discussed in the
last example because the metric that must satisfy the constraint equations is
not h, but γ. Indeed, that shows that if the second fundamental form is trace-
free but non-zero, the Euclidean metric (which would correspond to a constant
solution u ≡ C), but some deformation of it.
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On the other hand, if σ = 0, τ = 0 the solutions are harmonic functions, but
we are looking for strictly positive solutions u > 0, since the conformal factor
should not vanish, so the only harmonic solutions bounded from below in the
entire R3 are constant functions. That is more or less a converse to what we
discussed in the previous example: if K ≡ 0, SΣ ≡ 0, so the only conformally
flat Riemannian metric with zero mean curvature over R3 is the constant metric.

Another thing we can assume is that K is shear-free, that is σ ≡ 0. In that
case the Lichnerowicz equation becomes

8∆u = τ2

(
u−3

9
− u5

)
which solution gives conformally flat metrics with constant mean curvature τ
inside their respective spacetime solutions to Einstein Field Equations.

A Appendix: Calculations for Theorem 1

In this section we present the technical manipulations behind the steps of the
proof of theorem 1 in section 3.

In a coordinate chart we have that:

Ricαβ = Γρβα,ρ − Γρρβ,α + ΓρρλΓλαβ − ΓραλΓλρβ
= 1

2g
ρµ (gβµ,αρ + gαµ,βρ − gαβ,ρµ)

− 1
2g
ρµ (gρµ,βα + gβµ,ρα − gρβ,µα)

+ 1
2g
ρµ
,ρ (gβµ,α + gαµ,β − gαβ,µ)

− 1
2g
ρµ
,α (gρµ,β + gβµ,ρ − gρβ,µ)

+ΓρρλΓλαβ − ΓραλΓλρβ

If we group all the terms involving zeroth and first derivatives of the metric only
in Lαβ we get:

Ricαβ = − 1
2g
ρµgαβ,ρµ + 1

2g
ρµ (gαµ,βρ − gρµ,βα + gρβ,µα) + Lαβ

so, to prove that equation 7 is indeed hyperbolic we only have to prove that

1

2
(LW g)αβ = −1

2
gρµ (gαµ,βρ − gρµ,βα + gρβ,µα) +Hαβ

with Hαβ a polynomial depending only on the components of g and g−1 as well
as in their first derivatives. In that case we will have that equation 7 becomes:

Ric+
1

2
LW g = −1

2
gρµgαβ,ρµ +Hαβ + Lαβ = 0

Indeed
1

2
(LW g)αβ =

1

2
(gβµ(DαW )µ + gαµ(DβW )µ)

and {
(DαW )µ = Wµ

,α + ΓµανW
ν

Wµ = gµνWν = −gµνgρλ
(
gλν,ρ − 1

2gρλ,ν
)

+ gµνF (g)
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so the terms in (LW g)αβ that do not involve derivatives of W and that involve

F (g) do not have second order derivatives, let’s group those into H̃αβ . Then

1
2 (LW g)αβ = − 1

2

(
gβµ

(
gµνgρλ

(
gλν,ρ − 1

2gρλ,ν
))
,α

)
− 1

2

(
gαµ

(
gµνgρλ

(
gλν,ρ − 1

2gρλ,ν
))
,β

)
+H̃αβ

but gβµg
µν = δνβ . Also, the two terms of the type

gβµ(gµνgρλ),α

(
gλν,ρ −

1

2
gρλ,ν

)
do not involve second derivatives of the metric, so they can be grouped with
H̃αβ in a term Hαβ that only involve lower order terms. Then:

1
2 (LW g)αβ = − 1

2g
ρλ
(
gλβ,ρα − 1

2gρλ,βα
)
− 1

2g
ρλ
(
gλα,βρ − 1

2gρλ,αβ
)

+Hαβ

= − 1
2g
ρλ (gλβ,ρα + gλα,ρβ − gρλ,αβ) +Hαβ

Renaming the indices λ→ ρ and ρ→ µ in the first and third factors and λ→ µ
in the second we get the expected expression.

∗

We have {
A = 1

2LW g
Dµ

(
A− 1

2 (trgA)g
)µν

= 0

Since (LW g)αβ = (DαW )β + (DβW )α:
Aµν = 1

2

(
gµλ(W ν

,λ + ΓνλρW
ρ) + gνλ(Wµ

,λ + ΓµλρW
ρ)
)

(DµA)
µν

= Aµν,µ + ΓµµλA
λν + ΓνµλA

µλ(
Dµ(Aλλg)

)µν
= Aλλ,µg

µν +Aλλg
µν
,µ + ΓµµρA

λ
λg
ρν + ΓνµρA

λ
λg
µρ

Aλλ =
(
Wλ
,λ + ΓλλρW

ρ
)

So, since Aµν is a polynomial on the components of W and their first derivatives
which coefficients themselves are polynomials on the components of g, g−1 and
their first derivatives and that vanishes at W ≡ 0, we can write

Dµ

(
A− 1

2
(trgA)g

)µν
= Aµν,µ −

1

2
Aλλ,µg

µν + P̃ (W )

with P̃ a polynomial satisfying said conditions. Also, when we do take the
derivatives of A we can reduce the expression to

Dµ

(
A− 1

2
(trgA)g

)µν
=

1

2
gµλW ν

,λµ +
1

2
gνλWµ

,λµ −
1

2
gµνWλ

,λµ + P (W )

with P satisfying the same properties as P̃ . If in the third factor we rename the
indices λ→ µ, µ→ λ we see that it cancels the second factor and we finally get

Dµ

(
A− 1

2
(trgA)g

)µν
=

1

2
gµλW ν

,λµ + P (W ) = 0

as desired.
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