MATH 599 PROBLEM SET 3

DUE WEDNESDAY MARCH 15

In this problem set, we will study when geodesics maximize the proper time among timelike curves connecting a hypersurface and a point. Let M be a Lorentzian manifold (of dimension n), and let $\phi : H \to M$ be a spacelike hypersurface (of dimension n-1) embedded into M. We will identify $\phi(H) \subset M$ with H. Then $\mathfrak{X}(\phi)^{\top}$ can be identified with $\mathfrak{X}(H)$, and we have the (pointwise) orthogonal decomposition

$$\mathfrak{X}(\phi) = \mathfrak{X}(\phi)^\top \oplus \mathfrak{X}(\phi)^\perp = \mathfrak{X}(H) \oplus \mathfrak{X}(\phi)^\perp,$$

where $\mathfrak{X}(\phi)^{\perp}$ is the space of vector fields along ϕ that are pointwise orthogonal to H. We denote by $P^{\perp} : \mathfrak{X}(\phi) \to \mathfrak{X}(\phi)^{\perp}$ the orthogonal projection onto $\mathfrak{X}(\phi)^{\perp}$. Thus, if $N \in T_p M$ is a nonzero vector at $p \in H$ satisfying $N \perp H$, then

$$(P^{\perp}X)_p = \frac{\langle X, N \rangle_p}{\langle N, N \rangle_p} N \quad \text{for} \quad X \in \mathfrak{X}(\phi).$$

Suppose that $q \in M \setminus H$, and consider the set C(H,q) of all timelike curves joining Hand q. Given a curve $\gamma \in C(H,q)$, a smooth map $\omega : (-\varepsilon, \varepsilon) \times [a,b] \to M$ is called a deformation of γ , if $\omega(0,\cdot) = \gamma$, $\omega(\cdot,a) \in H$, $\omega(\cdot,b) = q$, and each "longitudinal" curve $\gamma_s = \omega(s,\cdot)$ is timelike. We set $X = \omega_* \partial_s \in \mathfrak{X}(\omega)$ and $T = \omega_* \partial_t \in \mathfrak{X}(\omega)$, where s and t are the Cartesian coordinates in the rectangle $(-\varepsilon,\varepsilon) \times [a,b]$. Note that X(s,b) = 0and $X(s,a) \in T_{\omega(s,a)}H$ for all s. We will also use X and T to denote the variation field $X|_{s=0} \in \mathfrak{X}(\gamma)$ and the velocity field $T|_{s=0} \in \mathfrak{X}(\gamma)$, respectively. Hopefully it will not lead to confusion. Recall that the proper time of γ_s is given by

$$\tau(s) = \tau(\gamma_s) = \int_a^b |T| dt = \int_a^b \sqrt{-\langle T, T \rangle} dt.$$

- 1) Compute the first variation $\tau'(s)$, and show that it depends only on the variation field X and the velocity field T along γ . Assuming that γ is parameterized by proper time as |T| = 1, show that $\tau'(0) = 0$ for all variation fields X with X(b) = 0 if and only if γ is a geodesic and $T(a) \perp H$.
- 2) We define the second fundamental form $\mathbb{I}: \mathfrak{X}(H) \times \mathfrak{X}(H) \to \mathfrak{X}(\phi)^{\perp}$ of H by

$$\mathbb{I}(X,Y) = P^{\perp} \nabla_X Y.$$

It is clear that II is bilinear. Prove the following, and conclude in particular that the second fundamental form is tensorial in each of its arguments.

- (a) $\langle II(X,Y),N\rangle = -\langle \nabla_X N,Y\rangle$ for $N \in \mathfrak{X}(\phi)^{\perp}$. (b) II(X,Y) = II(Y,X).
- 3) Let $\gamma : [a, b] \to M$ be a timelike geodesic with $\gamma(a) = p \in H$, $\gamma(b) = q \in M \setminus H$, and $T(a) \perp H$. Such a geodesic will be called a timelike geodesic normal to H. For any deformation of γ , show that

$$\tau''(0) = I(X, X) - \langle \nabla_T X, X \rangle_p,$$

Date: Winter 2017.

where I is the index form as defined in class. Show also that the following hold. (a) X(b) = 0.

(b) $X(a) \perp T(a)$, that is, $X(a) \in T_pH$.

(c) $\langle \nabla_T X, V \rangle_p = -\langle II(X, V), T \rangle_p$ for all $V \in T_p H$.

We call any $X \in \mathfrak{X}(\gamma)$ satisfying these 3 conditions an *H*-proper variation. Moreover, we say that q is conjugate to H along γ if there exists a nontrivial Jacobi field along γ that is also an *H*-proper variation.

4) Consider a timelike geodesic γ normal to H. Let

$$I_H(X,Y) = I(X,Y) - \langle \nabla_T X, Y \rangle_p$$
 for $X, Y \in \mathfrak{X}(\gamma)$,

and prove the following.

(a) For H-proper variations X and Y, we have

$$I_H(X^{\perp}, Y^{\perp}) = I_H(X, Y) = I(X, Y) + \langle \mathbb{I}(X, Y), T \rangle_p,$$

where $X \mapsto X^{\perp}$ is the orthogonal projection onto $\mathfrak{X}(\gamma)^{\perp}$.

- (b) If *H* has no conjugate point along γ on (a, b], then $I_H(X, X) < 0$ for any nonzero *H*-proper variation *X* in $\mathfrak{X}(\gamma)^{\perp}$.
- 5) In the same setting, prove that if H has a conjugate point along γ at the parameter value $c \in (a, b)$, there exists an H-proper variation X in $\mathfrak{X}(\gamma)^{\perp}$ such that $I_H(X, X) > 0$.
- 6) Show that if γ is a timelike geodesic normal to H, and if X is an H-proper variation, then there is a deformation of γ with its variation field equal to X.