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Abstract. The most basic notions of differential geometry are reviewed.
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1. Topological manifolds

Recall that a topological space is a set X, together with a prescription of which subsets of
X are considered to be open. The collection of all open subsets of X is called the topology
of X. More precisely, a set T of subsets of X is called a topology on X, if it satisfies the
following axioms:

• ∅ ∈ T and X ∈ T (The empty set and the space itself are open).
• If A,B ∈ T then A ∩B ∈ T (Finite intersection of open sets is open).
• If {Aα} ⊂ T then ∪αAα ∈ T (Arbitrary union of open sets is open).

An example is given by Rn with its usual topology, that A ⊂ Rn is open iff for any x ∈ A
there is an open ball B ∋ x such that B ⊂ A. More generally, any metric space (M , ρ)
becomes a topological space, when the open ball Br(x) centred at x ∈ M of radius r > 0 is
defined as Br(x) = {y ∈ M : ρ(x, y) < r}.

A map f : X → Y between topological spaces is called continuous if for any open subset
B ⊂ Y , the preimage f−1(B) = {x ∈ X : f(x) ∈ B} is open. For metric spaces, this
notion reduces to the usual notion of continuity (Exercise). In addition to f : X → Y being
continuous, if the inverse f−1 : Y → X exists and is continuous, then we say that f is a
homeomorphism between X and Y , and that X and Y are homeomorphic to each other.

Definition 1.1. A locally Euclidean space (or an LE-space) is a topological space, which is
locally homeomorphic to Rn. More precisely, a topological spaceM is called an n-dimensional
locally Euclidean space, if for any p ∈ M , there is an open set U ⊂ M containing p, that is
homeomorphic to an open subset V ⊂ Rn. Each such pair (U, ϕ), where ϕ : U → V is a
homeomorphism, is called a chart of M , and a collection {(Uα, ϕα)} of charts satisfying the
(covering) property ∪αUα = M is called an atlas (or an LE-structure) on M . Thus a locally
Euclidean space is a topological space equipped with an LE-structure.
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Remark 1.2. In order to show that a given topological space X is an LE-space, it suffices to
construct an atlas on X. Note that an atlas is not an additional structure on X, but a tool
to reveal a certain property of X. This is akin to producing a nontrivial divisor to show that
an integer m is a composite number.

Remark 1.3. Given an atlas {(Uα, ϕα)} on M , since each ϕα : Uα → Vα ⊂ Rn is a home-
omorphism, Uα is topologically identical to Vα, an open subset of Rn. This gives a way to
understand and work with M locally by using ϕα : Uα → Rn as a coordinate system on Uα.
Hence in a certain sense, an LE-space M itself is nothing more than a prescription of how the
sets Vα ⊂ Rn are glued together.

Simple examples of locally Euclidean spaces are Rn and any open subset of Rn. Recall
that given a topological space X and a subset Y ⊂ X, the subspace topology on Y is defined
by saying that B ⊂ Y is open iff there is an open A ⊂ X such that B = A ∩ Y . With the
subspace topology, any linear (or affine) subspace of Rn is a locally Euclidean space, since it
would be homeomorphic to Rk for some k.

Example 1.4. Let S1 = {(x, y) ∈ R2 : x2+y2 = 1}, and let the maps πi : S
1 → R for i = 1, 2

be defined by π1(x, y) = x and π2(x, y) = y. Define Ui ⊂ S1, i = 1, 2, 3, 4, as

U1 = S1 ∩ {y > 0}, U2 = S1 ∩ {x > 0}, U3 = S1 ∩ {y < 0}, U4 = S1 ∩ {x < 0}. (1)

By construction, these sets are open as subsets of S1, and they cover S1. In order to complete
{Ui} into an atlas, we want to show that each Ui is homeomorphic to an open interval of
R. Since any p ∈ S1 is in some Ui, this would show that S1 is a 1-dimensional topological
manifold. To this end, let the bijections ϕi : Ui → (−1, 1) ⊂ R be given by

ϕ1 = π1|U1 , ϕ2 = π2|U2 , ϕ3 = π1|U3 , ϕ4 = π2|U4 . (2)

These maps are in fact homeomorphisms. We will demonstrate it only for ϕ1. The preimage
of an open set B ⊂ (−1, 1) under ϕ1 is ϕ−1

1 (B) = U1∩ (B×R), which is obviously open in S1.

Hence ϕ1 is continuous. To show that ϕ−1
1 : (−1, 1) → U1 is continuous, let A ⊂ U1 be such

that A = U1 ∩D, where D ⊂ R2 is an open disk. Then A can be described as the arc of U1

bounded by two points (x1, y1) ∈ U1 and (x2, y2) ∈ U1, without including the endpoints. Now
it is clear that either ϕ1(A) = (x1, x2) or ϕ1(A) = (x2, x1), and since any open set O ⊂ U1

can be written as the union of such open arcs, we conclude that ϕ1(O) is open in (−1, 1), and
thus ϕ−1

1 : (−1, 1) → U1 is continuous. We conclude that {(Ui, ϕi) : i = 1, 2, 3, 4} is an atlas
on S1, and hence S1 is a 1-dimensional LE-space.

Example 1.5. In the preceding example, the locally Euclidean space S1 was realized as a
subset of R2. Here we will construct it without reference to any ambient space. We define
S̃1 = [0, 1) as a set, and introduce a topology on it by saying that A ⊂ S̃1 is open iff it is
the union of sets of the form either (a, b) or [0, a) ∪ (b, 1), with 0 < a < b < 1. Intuitively
speaking, we “identify” the endpoints of the interval [0, 1]. The same effect can be achieved

by letting S̃1 = [0, 1]/∼, where ∼ is the equivalence relation defined on [0, 1] by x ∼ y iff

x = y or x, y ∈ {0, 1}, and by equipping S̃1 with the quotient topology. The latter means that

A ⊂ S̃1 is open iff the preimage of A under the map x 7→ [x], that sends x to the equivalence

class containing it, is open in [0, 1]. Finally, to show that S̃1 is homeomorphic to S1, we define

the bijection f : S̃1 → S1 by f(t) = (cos 2πt, sin 2πt). The topology on S1 is generated by the
open arcs, that are exactly the images under f of sets of the form either (a, b) or [0, a)∪ (b, 1),
and therefore f is a homeomorphism.

Example 1.6. If we wanted to show directly that S̃1 as in the preceding example is an
LE-space, an LE-structure on S̃1 can be introduced as follows. Let U1 = (0, 1) and U2 =
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[0, 12) ∪ (12 , 1), which are both open in S̃1. Define the maps ϕ1 : U1 → V1 = (0, 1) by

ϕ1(x) = x, and ϕ2 : U2 → V2 = (12 ,
3
2) by

ϕ2(x) =

{
x+ 1 for 0 ≤ x < 1

2 ,

x for 1
2 < x < 1.

(3)

These maps are clearly homeomorphisms, and so {(U1, ϕ1), (U2, ϕ2)} is an atlas on S̃1. Both

coordinate maps ϕ1 and ϕ2 are defined on U1 ∩ U2 = S̃1 \ {0, 12}, meaning that the points in
U1∩U2 will have coordinate representations in both V1 and V2. The two different coordinates
of such points are related by the so-called transition maps

ϕ12 = ϕ1 ◦ ϕ−1
2 : ϕ2(U1 ∩ U2) → ϕ1(U1 ∩ U2), (4)

and ϕ21 = ϕ2 ◦ ϕ−1
1 = ϕ−1

12 . We can explicitly compute

ϕ1(U1 ∩ U2) = (0, 12) ∪ (12 , 1), ϕ2(U1 ∩ U2) = (12 , 1) ∪ (1, 32),

ϕ12(t) =

{
t for 1

2 < t < 1,

t− 1 for 0 < t < 1
2 .

(5)

Now, the point we wanted to make is that S̃1 is completely determined by V1, V2, and the
transition maps. To see this, define the equivalence relation ∼ on the disjoint union V1⊔V2 by
V1 ∋ t1 ∼ t2 ∈ V2 iff t1 = ϕ12(t2). Then S̃

1 is homeomorphic to V1 ⊔ V2/∼. Basically, V1 and

V2 are the coordinate systems or the pieces of R to be used in the construction of S̃1, and the
transition maps specify how the pieces are glued together. What this construction allows for,
as opposed to, e.g., identifying the endpoints of the interval [0, 1] as in the preceding example,
is that the “overlapping” regions are “wider,” and therefore, as we will see, information such
as how to differentiate functions can be exchanged between V1 and V2.

Now we make a new definition to rule out some pathological examples of LE-spaces.

Definition 1.7. A topological manifold is a locally Euclidean space, that is Hausdorff and
second countable.

Remark 1.8. An alternative, more relaxed definition can be obtained by replacing the second
countability condition with paracompactness. However, the difference is rather artificial, in
that a paracompact Hausdorff LE-space is not second countable if and only if it has uncount-
ably many connected components. In particular, each connected component of a paracompact
Hausdorff LE-space is a topological manifold in the sense of Definition 1.7.

Recall that a topological space X is Hausdorff if for any x, y ∈ X with x ̸= y, there exist
disjoint open sets U ∋ x and V ∋ y. In other words, in a Hausdorff space, points can be
separated by open sets. On the other hand, a topological space X is second countable if there
exists a countable collection B of open subsets of X, such that every open subset O ⊂ X
can be written as O = ∪A∈AA for some A ⊂ B. A basic example of a second countable
space is Rn, since we can take B in this case to be the collection of open balls with rational
radii and centres at points with rational coordinates. Thus the second countability condition
prevents topological manifolds from being “as large as uncountably many Rn’s.” An example
of a non-second-countable LE-space would be the long line.

Example 1.9. We have seen that open subsets of Rn, linear subspaces of Rn, and the circle
S1 are LE-spaces. Since each of these examples can be considered as a topological subspace
of Rn, and as such inherits the Hausdorff and second countability properties of Rn, they are
actually topological manifolds.
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Example 1.10. The Hausdorffness condition is very reasonable and covers most LE-spaces
that come up in practice, but one does not need to look far in order to find a non-Hausdorff
LE-space. In the xy-plane, consider the dynamical system{

x′ = 0,

y′ = |x|+ |y|.
(6)

All solution curves have x(t) = c = const. For c = 0, we have 3 curves: y(t) = 0, y(t) = et,

and y(t) = −e−t. For each c ̸= 0, we have the single solution curve y(t) = |c| sgn(t)(e|t| − 1).
Let us define an equivalence relation on R2 by p ∼ q iff p ∈ R2 and q ∈ R2 are on the
same solution curve, and let X = R2/∼, that is, X is the space of solution curves. We
can introduce an LE-structure on X with the help of the atlas {(Ui, ϕi) : i = 0,±1}, where
Ui = {[(x, i)] : x ∈ R} and ϕi([(x, i)]) = x, where [(x, i)] is the solution curve containing the
point (x, i).

Exercise 1.1. In a metric space X with metric ρ, we define the ball centered at x ∈ X, of
radius r, to be the set Br(x) ≡ B(x, r) = {y ∈ X : ρ(x, y) < r}. A subset S ⊂ X is called
open if for any x ∈ S, there is ε > 0 such that Bε(x) ⊂ S. Show that the collection of all
open sets of X forms a topology on X.

Exercise 1.2. We say that a sequence {xn} ⊂ X converges to x ∈ X, and write xn → x, if
for any open U ⊂ X with U ∋ x, there is an index m such that xn ∈ U for all n > m. A
subset B ⊂ X is said to be closed if {xn} ⊂ B and xn → x ∈ X imply that x ∈ B. Show that
B ⊂ X is closed if and only if its complement X \B is open.

Exercise 1.3. Let f : X → Y be a map between two metric spaces. Show that the following
are equivalent.

(a) f is continuous.
(b) Whenever U ⊂ Y is open, its preimage f−1(U) = {x ∈ X : f(x) ∈ U} is open.
(c) The preimage of any closed U ⊂ Y is closed.

Exercise 1.4. Show that every LE-space has the following properties.

(a) It is first countable and satisfies the separation axiom T1.
(b) Its connected components are LE-spaces.
(c) It is connected if and only if it is path-connected.

Exercise 1.5. Show that every topological manifold is separable, σ-compact, Lindelöf, and
paracompact.

Exercise 1.6. Let Ω ⊂ Rn be open, and let f : Ω → R be a continuous function. Show that
the graph Γ = {(x, f(x)) : x ∈ Ω}, as a subset of Rn+1, is a topological manifold.

Exercise 1.7. Show that Sn−1 = {x ∈ Rn : x21 + . . . + x2n = 1} is a compact topological
manifold. Show that any atlas on Sn−1 must include at least two charts.

2. Differentiable manifolds

Since a topological manifold M is also a topological space, the notions of continuous func-
tions f : M → R and continuous maps f : M → X (for a topological space X) are well
defined. Given a continuous function f :M → R and any chart (U, ϕ) of M , the composition
f ◦ϕ−1 is a function on ϕ(U) ⊂ Rn, and thus we can check if f ◦ϕ is differentiable. However, if
we want to use these compositions to introduce a notion of differentiable or smooth functions
on M , then we are forced to work with only a subset of all possible charts (or atlases) on M ,
because one function can be differentiable in one chart but not differentiable in another, de-
pending on the peculiarities of the coordinate systems. In order to have a consistent definition
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of differentiability, we need to work with an atlas whose transition maps are differentiable.
These considerations lead to the following definition.

Definition 2.1. Given a topological manifold M and an integer 0 ≤ k ≤ ∞, an atlas of M
whose transition maps are C k is called a C k structure on M . That is, a C k structure on M is
an atlas {(Uα, ϕα)} of M , such that ϕα ◦ ϕ−1

β : ϕβ(Uα ∩ Uβ) → ϕα(Uα ∩ Uβ) is a C kmap for

all α and β. Then a C kmanifold is a topological manifold equipped with a C k structure. In
case k = ∞, instead of the symbol C∞ we typically use the word smooth. Smooth manifolds
are often called simply manifolds.

If M is a C kmanifold, and if f : M → R is such that f ◦ ϕ−1 : ϕ(U) ⊂ Rn → R is C k for
some chart (U, ϕ) from the C k structure of M , then (f ◦ψ−1)|ψ(W∩U) is also C k for any chart

(W,ψ) from the C k structure, because (f ◦ψ−1)|ψ(W∩U) = (f ◦ϕ−1)|ϕ(W∩U)◦(ϕ◦ψ−1)|ψ(W∩U).

Thus the notion of C k functions makes sense on a C kmanifold. More generally, we can define
C kmaps between C kmanifolds, as follows.

Definition 2.2. A map f :M → N between two C kmanifolds is called a C kmap if the map
ψ|f(U) ◦ f |U ◦ ϕ−1 : ϕ(U) → ψ(W ) is a C kmap whenever (U, ϕ) and (W,ψ) are charts of M

and N , respectively, withW ∩f(U) ̸= ∅. If in addition, f−1 : N →M exists and is a C kmap,
then f is called a C k-diffeomorphism, andM is said to be C k-diffeomorphic to N . For k = ∞,
we omit the symbol C∞, and simply talk about diffeomorphisms and diffeomorphic manifolds.

Some remarks and examples are in order.

Remark 2.3. Note that a C 0manifold is simply a topological manifold, and a C kmanifold
is also a C ℓmanifold for each ℓ < k.

Remark 2.4. By replacing the symbol C k by “real analytic” or C ω in the preceding defini-
tions, we get the definitions of real analytic (or C ω) manifolds and maps.

Remark 2.5. Let M be a C k manifold, and let {(Uα, ϕα)} be its C k structure. Suppose
that (U, ϕ) is an additional chart on M such that the transition maps ϕ ◦ ϕ−1

α and ϕα ◦ ϕ−1

are C k for all α. Then the new atlas {(Uα, ϕα)} ∪ {(U, ϕ)} is also a C k structure on M ,
and replacing the old atlas by the new atlas does not change the class of C k functions on
M , and the classes of C kmaps to- and from M , given any fixed C kmanifold as the domain
or the target. Therefore we should consider these two atlases as equivalent C k structures.
More formally, a chart (U, ϕ) is called C k-compatible with a given C k structure A if the union
A ∪ {(U, ϕ)} is also a C k structure. Furthermore, two C k structures are called C k-equivalent
or C k-compatible, if their union is also a C k structure. Then we redefine a C k structure to be
a C k-equivalence class of atlases. The same effect can be obtained by defining a C k structure
as the maximal atlas that is C k-compatible to a given one, i.e., as the atlas consisting of all
charts that are C k-compatible with a given atlas. In practice, all this basically means that we
still describe a C k structure by a particular atlas, but implicitly assume that we are including
all possible charts that are C k-compatible with that atlas.

Example 2.6. The natural equivalence relation between C kmanifolds is of course given by
C k-diffeomorphisms. If no relevant additional structure is present, two C kmanifolds that are
C k-diffeomorphic to each other must be considered identical. This notion of diffeomorphism
equivalence is more relaxed than the C k-equivalence between atlases. As an example, take
M = R with the smooth structure induced by the chart ϕ(x) = x, and N = R with the
smooth structure induced by the chart ψ(x) = 3

√
x. Of course, M is simply R with its usual

smooth structure. Thinking of M and N as identical topological manifolds, the charts (ϕ,M)
and (ψ,M) are not even C 1-compatible, because the transition map (ψ ◦ ϕ−1)(t) = 3

√
t is

not differentiable at t = 0. So the maximal atlas containing (ϕ,M) is different from the one
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containing (ψ,M), meaning that M and N are different manifolds, even though they are
identical as topological manifolds. However, the map F : M → N defined by F (x) = x3 is
a diffeomorphism, since (ψ ◦ F ◦ ϕ−1)(t) = t and (ϕ ◦ F−1 ◦ ψ−1)(t) = t. Thus the smooth
structure of N can be described by saying that g : N → R is smooth if and only if g ◦ F
is smooth on M . For instance, g(x) = 3

√
x is smooth on N . It might give the impression

that N has a large supply of smooth functions as compared to M , but it is not true. The
smooth functions on N are simply the usual smooth functions “twisted” by the map F , and
the smooth structures of M and of N are identical up to a diffeomorphism.

Remark 2.7. The following questions are fundamental.

• Given a C kmanifoldM , is there a C ℓ structure onM with ℓ > k that is C k-equivalent
to the existing C k structure?

• If the preceding question has an affirmative answer, is the C ℓ structure unique (up to
C ℓ-diffeomorphisms)?

For 1 ≤ k < ℓ ≤ ∞, both questions were answered in the affirmative by Whitney (1936).
Moreover, he showed that different C k structures give rise to different C ℓ structures. So the
questions reduce to the case k = 0 and ℓ = ∞. For dimensions n = 1, 2, 3, every topological
manifold admits a unique smooth structure (Radó 1925, Moise 1952). On the other hand, by
the works of many mathematicians including Milnor, Kervaire, Kirby, Siebenmann, Freedman,
and Donaldson, accomplished during the period 1950’s to 1980’s, it is known that both answers
are negative for n ≥ 4 and k = 0. Namely, for each n ≥ 4, there exists an n-dimensional
topological manifold which does not admit any smooth structure, and there exists an n-
dimensional topological manifold which admit more than one smooth structures that are not
diffeomorphic to each other.

The following is a very useful criterion to recognize if the zero set of a function is a manifold.
We invite the reader to prove it by using the implicit function theorem, and also to look up
on the more general constant rank theorem.

Theorem 2.8 (Preimage theorem). Let A ⊂ Rn be an open set, and let ϕ : A → Rℓ be a
C k function, with 1 ≤ k ≤ ∞. Suppose that for each x ∈ A satisfying ϕ(x) = 0, the map
Dϕ(x) : Rn → Rℓ is surjective. Then the setM = {x ∈ A : ϕ(x) = 0} is an (n−ℓ)-dimensional
C kmanifold.

If ℓ = 1 in the preceding theorem, then Dϕ(x) is a 1× n matrix, and surjectivity of Dϕ(x)
simply means that Dϕ(x) has a nonzero entry. This special case is important enough to
deserve a separate display.

Corollary 2.9 (Level surface theorem). Let A ⊂ Rn be an open set, and let ϕ : A → R be a
C k function, with 1 ≤ k ≤ ∞. Suppose that Dϕ(x) ̸= 0 whenever x ∈ A satisfies ϕ(x) = 0.
Then the set M = {x ∈ A : ϕ(x) = 0} is a C k hypersurface in Rn.

Example 2.10 (Generalized sphere). Let a ∈ Rn be a nonzero vector, and let

M = {x ∈ Rn : a1x
2
1 + a2x

2
2 + . . .+ anx

2
n = 1}. (7)

We would like to show that M is a hypersurface. Thus we let

ϕ(x) = a1x
2
1 + a2x

2
2 + . . .+ anx

2
n − 1, (8)

so that M = {ϕ = 0}, and compute

Dϕ(x) = (2a1x1, 2a2x2, . . . , 2anxn). (9)

Since a is a nonzero vector, Dϕ(x) = 0 if and only if x = 0. We know that 0 ̸∈ M , because
ϕ(0) = −1, and hence Dϕ(x) ̸= 0 for all x ∈M . Then the level surface theorem implies that
M is a smooth hypersurface in Rn.
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Example 2.11 (Orthogonal group). Consider the set

M = {X ∈ Rn×n : XTX = I}, (10)

which is called the group of orthogonal matrices. This can be written as the zero set of
ϕ : Rn×n → Rn×n, which is given by

ϕ(X) = XTX − I. (11)

Although ϕ sends n × n matrices to n × n matrices, the output ϕ(X) has fewer than n2

independent components, because ϕ(X) is always a symmetric matrix. Thus we think of ϕ as
a mapping ϕ : RN → Rk, with N = n2 and k = 1

2n(n+ 1). In view of Theorem2.8, our first
task is to compute the directional derivative of ϕ along a matrix B ∈ Rn×n. Let us denote
the components of ϕ, X, and B by ϕij , xlm, and blm, respectively. Then we have

∂ϕij
∂xlm

(X) =
∂

∂xlm

n∑
q=1

xqixqj =

n∑
q=1

(δqlδimxqj + xqiδqlδjm) = δimxlj + xliδjm, (12)

for the partial derivatives, and

DBϕij(X) =

n∑
l,m=1

(δimxlj + xliδjm)blm =

n∑
l=1

(xljbli + xliblj) = (BTX +XTB)ij , (13)

for the directional derivative, yielding

DBϕ(X) = XTB +BTX. (14)

Our next task is to show that for each X ∈M and for any symmetric matrix S ∈ Rn×n, there
exists B ∈ Rn×n such that DBϕ(X) = S. This would guarantee that Dϕ(X), as a linear map
sending Rn×n into the space of symmetric n × n matrices, is surjective. Let S ∈ Rn×n be a
symmetric matrix. We observe that (XTB)T = BTX, and so the equation XTB+BTX = S
is of the form C +CT = S. It is not difficult to construct a matrix C satisfying C +CT = S.
For example, one can check that the following works.

Cij =


sij for i < j,
1
2sii for i = j,

0 for i > j.

(15)

Now that we have C, we need to solve XTB = C. At this point, we recall that X ∈M , that
is, XTX = I. This means that (XT )−1 = X, and hence B = XXTB = XC. We can also
independently check that

XTB +BTX = XTXC + (XC)TX = C + CTXTX = C + CT = S. (16)

We conclude that the orthogonal group M = {X ∈ Rn×n : XTX = I} is a smooth manifold
of dimension N − k = 1

2n(n− 1). The standard notation for this manifold is O(n) =M (not
to be confused with the big-O notation).

Remark 2.12. In the preimage theorem and in the preceding examples, smooth manifolds
were realized as subsets of Rn. This situation is the easiest to visualize, and moreover, it
turns out no loss of generality to study such manifolds, as the Whitney embedding theorem
guarantees that any m-dimensional smooth manifold can be realized as a subset of R2m.

Now we introduce an extremely important tool in the study of manifolds. A collection
{Uα} of subsets of a manifold M is called a cover of M if M =

∪
α Uα, and it is called an

open cover if each Uα is open. We say that a cover {Uα} of M is locally finite if for each
x ∈ M there is an open set O containing x, such that O intersects with only finitely many
Uα. Furthermore, a cover {Vi} of M is called a refinement of {Uα} if for each Vi there is Uα
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such that Vi ⊂ Uα. We also recall the notation Br = {x ∈ Rn : |x| < r} for the n-dimensional
open ball of radius r > 0. The following theorem guarantees that any open cover of M has
a refinement that is an atlas and has certain nice properties. This gives a lot of freedom in
choosing coordinate charts on any given manifold.

Theorem 2.13. Let M be a C k manifold, and let {Uα} be an open cover of M . Then there
exists a countable collection {Vi} of subsets of M , satisfying the following properties.

• Vi is open, and V i is compact for each i.
• {Vi} is a locally finite refinement of {Uα}.
• For each i, there exists a C k-diffeomorphism ϕi : Vi → B1.
• {ϕ−1

i (B1/2)} is an open cover of M .

As an immediate corollary, we can prove the so-called “partition of unity property” for
manifolds. Recall that the support of a function f :M → R, denoted by suppf , is the closure
of the set M \ f−1({0}) = {x ∈M : f(x) ̸= 0}.

Corollary 2.14 (Partition of unity). Let M be a C kmanifold, and let {Uα} be an open cover
of M . Then there exists a countable collection {fi} of C k functions on M , satisfying the
following properties.

• 0 ≤ fi ≤ 1, and suppfi is compact for each i.
• {suppfi} is a locally finite refinement of {Uα}.
•
∑

i fi(x) = 1 for each x ∈M .

The collection {fi} as above is called a C k partition of unity subordinate to {Uα}. We will
not prove these results, but advise the reader to find and read a proof elsewhere.

Remark 2.15. In fact, it can be argued that the partition of unity property given by the
preceding theorem is as fundamental as the Hausdorff and the second countability (or para-
compactness) properties, and therefore could even be included in the definition of manifolds,
cf. Exercise 2.6 below. The importance of the partition of unity property can be illustrated
by the following partial list of some of its applications and consequences.

• Definition of integration over manifolds.
• Existence of a Riemannian metric on any manifold.
• Existence of a volume form on any orientable manifold.
• The Whitney embedding theorem.

Exercise 2.1. Let Ω ⊂ Rn be open, and let f : Ω → R be a C k function. Show that the
graph Γ = {(x, f(x)) : x ∈ Ω}, as a subset of Rn+1, is a C k manifold.

Exercise 2.2. Show that M = {(x, y, z) ∈ R3 : ϕ(x, y, z) = 1} is a smooth manifold, where

ϕ(x, y, z) = (
√
x2 + y2 − 2)2 + z2. (17)

Do you recognize this surface?

Exercise 2.3. Let A ∈ Rn×n be an invertible, symmetric matrix. Then in each of the
following cases, show that M is a smooth manifold, and determine the dimension of M .

(a) M = {x ∈ Rn : xTAx = 1} ⊂ Rn.
(b) M = {X ∈ Rn×n : XTAX = A} ⊂ Rn×n.

Exercise 2.4. Let O(n) be as in Example 2.11, and let SO(n) = O(n) ∩ {detA = 1}. Show
that O(n) and SO(n) are compact. Identify the connected components of O(n). Show that
SO(2) is diffeomorphic to S1.
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Exercise 2.5. Show that the Grassmanian

G(k,Rn) = {V ⊂ Rn : V is a k-dimensional linear subspace of Rn}, (18)

is a compact smooth manifold.

Exercise 2.6. Let X be an LE-space that admits a C 0 partition of unity subordinate to any
open cover. Show that X is Hausdorff, paracompact and metrizable.

Exercise 2.7. Show that Rn and Rk are diffeomorphic to each other iff n = k.

Exercise 2.8. Prove that any smooth, connected 1-dimensional manifold is diffeomorphic to
S1 or to an open interval of R.

3. Tangent spaces

If γ : R → Rm is a smooth function, understood as a parameterized curve, then the velocity
vector at the parameter value t ∈ R is γ′(t) ∈ Rm. Now, if M ⊂ Rm is a manifold, then its
tangent space TpM at p ∈ M is the collection of all velocity vectors γ′(0) as γ varies over all
possible curves γ : R →M with γ(0) = p. Namely, we define

TpM = {γ′(0) : γ ∈ C∞(R,Rm), γ(R) ⊂M, γ(0) = p}. (19)

Here, the fact that M is a subset of Rm is used to determine when two curves γ and η yield
the same velocity vector at p. If different curves had different tangent vectors, we could have
defined TpM simply as the collection of all curves passing through p, thus eliminating the
need for the ambient space Rm. In any case, it turns out that the equality γ′(0) = η′(0) can
be checked by looking at the two curves γ and η in local coordinates near p, meaning that
γ′(0) = η′(0) if and only if (ϕ◦γ)′(0) = (ϕ◦η)′(0), where ϕ : U ⊂M → Rn is some coordinate
system with U ∋ p open. In particular, γ′(0) = η′(0) if and only if (f ◦ γ)′(0) = (f ◦ η)′(0) for
all f :M → R smooth. This leads to the following intrinsic definition of tangent spaces.

Definition 3.1. Let M be a manifold, and let Wp(M) = {γ ∈ C∞(R,M) : γ(0) = p} be the
space of curves passing through p ∈M . Then we define

TpM =Wp(M)/ ∼, (20)

where the equivalence relation ∼ on Wp(M) is defined by

γ ∼ η ⇐⇒ (f ◦ γ)′(0) = (f ◦ η)′(0) for all f ∈ C∞(M). (21)

The elements of TpM are called the tangent vectors of M at p.

Note that if γ, η ∈ Wp(M) are curves representing two different tangent vectors, then
there exists f such that (f ◦ γ)′(0) ̸= (f ◦ η)′(0). Moreover, we observe that the quantity
(f ◦ γ)′(0) depends only on f and the equivalence class [γ] ∈ TpM , and not on the particular
representative curve γ. In the embedded case M ⊂ Rm, we recognize (f ◦ γ)′(0) as the
directional derivative of f along the vector γ′(0).

Definition 3.2. For V ∈ TpM and f ∈ C∞(M), we define

V (f) = (f ◦ γ)′(0), (22)

where γ ∈Wp(M) is such that V = [γ]. This defines a linear map V : C∞(M) → R, and may
be called the action of V on f , or the directional derivative of f along the direction V .

Example 3.3. Let Ω ⊂ Rn be open, and let p ∈ Ω. Then for any f ∈ C∞(Ω) and γ ∈Wp(Ω),
we have

(f ◦ γ)′(0) =
n∑
i=1

∂f

∂xi
(p)γ′i(0), (23)
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where γi : R → R, i = 1, . . . , n, are the components of γ : R → Ω ⊂ Rn. Thus we see that
(f ◦ γ)′(0) = (f ◦ η)′(0) for all f if and only if γ′(0) = η′(0). Moreover, for any a ∈ Rn, we can
construct a curve γ ∈ Wp(Ω) with γ

′(0) = a. This means that the tangent space TpΩ can be
identified with Rn through the correspondence [γ] 7→ γ′(0). As for the directional derivative
aspect, for V = [γ] ∈ TpΩ, we get

V (f) = (f ◦ γ)′(0) =
n∑
i=1

ai
∂f

∂xi
(p), (24)

where a = γ′(0) ∈ Rn. Since f is arbitrary, we rewrite it as

V =

n∑
i=1

ai

( ∂

∂xi

)
p
, (25)

and think of V itself as a differential operator (at a point). Then the partial derivative
operators ∂

∂xi
acting at the point p form a basis of the tangent space TpΩ.

Remark 3.4. The arguments from the preceding example can be adapted to the general
case. Let (U, ϕ) be a coordinate chart on M with U ∋ p. Then we have

V (f) = (f ◦ γ)′(0) = (f ◦ ϕ−1 ◦ ϕ ◦ γ)′(0) =
n∑
i=1

∂(f ◦ ϕ−1)

∂xi
(ϕ(p))(ϕi ◦ γ)′(0), (26)

which shows that the coefficients (ϕ ◦ γ)′(0) ∈ Rn completely determine the vector V , in the
sense that if (ϕ ◦ γ)′(0) = (ϕ ◦ η)′(0) then (f ◦ γ)′(0) = (f ◦ η)′(0) for all f . In other words,
the map ϕ∗ : TpM → Rn defined by ϕ∗V = (ϕ ◦ γ)′(0) is injective. On the other hand, given
a ∈ Rn, we can define the curve γ(t) = ϕ−1(ϕ(p)+ ta) satisfying (ϕ◦γ)′(0) = a, meaning that
ϕ∗ : TpM → Rn is surjective. Hence we are justified to call (ϕ ◦ γ)′(0) ∈ Rn the coordinate
representation of V = [γ] ∈ TpM , with respect to the coordinate system ϕ. The invertible
map ϕ∗ : TpM → Rn also induces a linear structure on TpM , making it an n-dimensional
vector space.

Now, if ψ is another coordinate system, then

ψ∗V = (ψ ◦ γ)′(0) = (ψ ◦ ϕ−1 ◦ ϕ ◦ γ)′(0) = D(ψ ◦ ϕ−1)(ϕ(p))(ϕ ◦ γ)′(0) = Jϕ∗V, (27)

where J is the Jacobian matrix of ψ ◦ ϕ−1 evaluated at ϕ(p). Since this coordinate transfor-
mation law for vectors is linear, it is clear that the linear structure of TpM induced by ϕ is
identical to the linear structure induced by ψ. With y = (ψ ◦ ϕ−1)(x), we can rewrite the
transformation law as

bk =
n∑
i=1

∂yk
∂xi

ai, (28)

where a = ϕ∗V and b = ψ∗V .

For any V ∈ TpM , the directional derivative V : C∞(M) → R, as in Definition 3.2, can be
written as

V (f) =

n∑
i=1

ai
∂(f ◦ ϕ−1)

∂xi
(ϕ(p)), (29)

where a = ϕ∗V , and hence satisfies the Leibniz law

V (fg) = f(p)V (g) + g(p)V (f). (30)

Such a map V : C∞(M) → R is called a derivation of C∞(M) at p. It turns out that the
derivation property characterizes tangent vectors.

Theorem 3.5. Let D : C∞(M) → R be a derivation of C∞(M) at p, in the sense that D is
linear and satisfies the Leibniz law (30). Then D is realized by an element of TpM .
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Proof. Suppose that g ∈ C∞(M) vanishes in a neighbourhood of p, and let h ∈ C∞(M) be
such that h(p) ̸= 0 and gh ≡ 0 on M . Then the Leibniz law gives

0 = D(gh) = g(p)D(h) + h(p)D(g) = h(p)D(g), (31)

that is, D(g) = 0. This means that D(f) depends only on the local behaviour of f ∈ C∞(M)
near the point p, and hence we can restrict our attention to a coordinate chart (U, ϕ) on M
with U ∋ p and ϕ(p) = 0. Then for g = f ◦ ϕ−1 ∈ C∞(U), we have

g(x) = g(0) +

∫ 1

0

d

dt
g(tx)dt = g(0) +

∫ 1

0

n∑
i=1

∂g

∂xi
(tx)xidt = c+

n∑
i=1

gi(x)xi, (32)

where c = g(0), and

gi(x) =

∫ 1

0

∂g

∂xi
(tx)dt, i = 1, . . . , n. (33)

Note that gi(0) =
∂g
∂xi

(0). Now with fi = gi ◦ ϕ, we can write

f(q) = c+
n∑
i=1

fi(q)ϕi(q), q ∈ U, (34)

and by applying D on both sides, we get

D(f) = D(c) +

n∑
i=1

D(fi)ϕi(p) +

n∑
i=1

fi(p)D(ϕi) = D(c) +

n∑
i=1

fi(p)D(ϕi), (35)

where we have used the fact that ϕi(p) = 0. For the constant function 1, we have

D(1) = D(1 · 1) = 1D(1) + 1D(1) = 2D(1), (36)

yielding D(c) = D(c1̇) = cD(1) = 0 by linearity. Finally, taking into account the equality

fi(p) = gi(0) =
∂g

∂xi
(0) =

∂(f ◦ ϕ−1)

∂xi
(ϕ(p)), (37)

we infer

D(f) =

n∑
i=1

fi(p)D(ϕi) =

n∑
i=1

ai
∂(f ◦ ϕ−1)

∂xi
(ϕ(p)), (38)

where ai = D(ϕi). Therefore D is realized by the vector V = (ϕ∗)
−1a ∈ TpM . □

Let ϕ : M → N be a smooth map, and let p ∈ M . Then a curve γ ∈ Wp(M) gets sent to
the curve η = ϕ ◦ γ ∈Wq(N), with q = ϕ(p). Moreover, for g ∈ C∞(N), we have

(g ◦ η)′(0) = (g ◦ ϕ ◦ γ)′(0) = (f ◦ γ)′(0), with f = g ◦ ϕ, (39)

meaning that ϕ induces a map ϕ∗ : TpM → TqN between the tangent spaces, by

ϕ∗[γ] = [ϕ ◦ γ]. (40)

This is called the differential of ϕ at p, which may also be denoted by (dϕ)p, Dϕ(p), and Tpϕ.
From (39), we can further extract an equivalent definition in the language of derivations, as

(ϕ∗V )(g) = V (g ◦ ϕ), (41)

for V ∈ TpM and g ∈ C∞(N). It makes it clear that

• ϕ∗ is a linear map.
• If ψ : N → Σ is another smooth map, then (ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗.
• In particular, (ϕ−1)∗ = (ϕ∗)

−1 if ϕ is a diffeomorphism.
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Remark 3.6. Suppose that ϕ : U → Ω is a diffeomorphism, where U ⊂ M and Ω ⊂ Rn are
open, i.e., ϕ is a coordinate system. Then for g ∈ C∞(Ω) and γ ∈ Wp(U), with ϕi : U → R
denoting the i-th component of ϕ, we have

(g ◦ ϕ ◦ γ)′(0) =
n∑
i=1

∂g

∂xi
(ϕ(p))(ϕi ◦ γ)′(0), (42)

which yields

(ϕ∗V )(g) =
n∑
i=1

(ϕi ◦ γ)′(0)
∂g

∂xi
(ϕ(p)) =

n∑
i=1

V (ϕi)
∂g

∂xi
(ϕ(p)). (43)

This can be written as

ϕ∗V =

n∑
i=1

ai

( ∂

∂xi

)
ϕ(p)

∈ Tϕ(p)Ω, (44)

where ai = V (ϕi) = (ϕi ◦ γ)′(0), i = 1, . . . , n, cf. Example 3.3. Since ϕ∗V can be identified
with (a1, . . . , an) ∈ Rn, the differential map ϕ∗ : TpM → Tϕ(p)Ω is consistent with the map

ϕ∗ : TpM → Rn defined in Remark 3.4. Applying (ϕ∗)
−1 on both sides of the preceding

equality, we infer

V =
n∑
i=1

ai(ϕ∗)
−1

( ∂

∂xi

)
ϕ(p)

, (45)

showing that the vectors Ei = (ϕ∗)
−1( ∂

∂xi
)ϕ(p) ∈ TpM form a basis of the tangent space TpM .

Note that the vector Ei is represented by the curve γ(t) = ϕ−1(ϕ(p)+tei), which is simply the
“coordinate line” xi passing through the point p. For this reason, it is convenient to introduce
the notation ( ∂

∂xi
)p ≡ Ei, and rewrite the preceding equation as

V =
n∑
i=1

ai

( ∂

∂xi

)
p
. (46)

The collection {( ∂
∂xi

)p : i = 1, . . . , n} is called the coordinate (or holonomic) basis of TpM ,
associated to the coordinate system ϕ.

Example 3.7. Let E be a vector space, and let p ∈ E. Let τ : E → E be defined by
τ(x) = x−p. Clearly, we have τ(p) = 0 and τ−1(x) = x+p, which ensures that τ∗ : TpE → T0E
is an isomorphism. Thus TpE is naturally identified with T0E. We shall further identify T0E

with E itself. Let ϕ : E → Rn be an isomorphism. Then the vectors (ϕ∗)
−1( ∂

∂xi
)0 ∈ T0E

form a basis of T0E. In other words, ϕ∗ : T0E → T0Rn is a linear isomorphism. Since
T0Rn can be canonically identified with Rn, we can write ϕ∗ : T0E → Rn, inducing the
identification ϕ−1 ◦ ϕ∗ : T0E → E. We claim that this identification does not depend on ϕ.
Let ψ : E → Rn be another isomorphism. Then we have ψ∗ = (ψ ◦ϕ−1)∗ ◦ϕ∗ = (ψ ◦ϕ−1)◦ϕ∗,
because (ψ ◦ ϕ−1)∗ = ψ ◦ ϕ−1 under the identification between T0Rn and Rn. Hence we infer
ψ−1 ◦ ψ∗ = ψ−1 ◦ (ψ ◦ ϕ−1) ◦ ϕ∗ = ϕ−1 ◦ ϕ∗, which proves the claim.

Exercise 3.1. Let ϕ : M → N be a smooth map, and let p ∈ M . Find the expression for
(dϕ)p in a coordinate basis.

Exercise 3.2. Show that the tangent bundle TM = {(p, v) : p ∈ M, v ∈ TpM} admits a
canonical smooth structure, making it a smooth manifold.
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4. Vector fields and flows

A vector at p ∈ M is simply the operation of taking the derivative (f ◦ γ)′(0) of a scalar
function f , for some curve γ ∈ Wp(M). Moreover, for any smooth curve γ : (a, b) → M and
any parameter value t ∈ (a, b), we can define the vector γ′(t) ∈ Tγ(t)M by

γ′(t)f = (f ◦ γ)′(t) =
( d
dt

)
t
(f ◦ γ), (47)

where ( ddt)t is the derivative operator acting at the point t ∈ (a, b), in the same spirit as

the notation ( ∂
∂xi

)p. We call γ′(t) the velocity vector of γ at the parameter value t. Since

( ddt)t ∈ Tt(a, b), we can also write

γ′(t) = γ∗

( d
dt

)
t
= (dγ)t

( d
dt

)
t
. (48)

If we want to consider the problem of finding a curve with given velocity vectors, or if we want
to be able to take a directional derivative of scalar functions at each point ofM , then we need
to consider a vector field X, which is by definition an assignment of a vector Xp ∈ TpM to
each point p ∈ M . Unless otherwise specified, vector fields are assumed to be smooth, in the
sense that Xf ∈ C∞(M) for all f ∈ C∞(M), where the function Xf is defined by pointwise
application of X to f , as

(Xf)(p) = Xp(f), p ∈M. (49)

The set of all smooth vector fields on M is denoted by X(M) or C∞(TM).
In local coordinates ϕ : U ⊂M → R, we have

(Xf)(p) =

n∑
i=1

ai(p)
∂f

∂xi
(p), (50)

with ai(p) = Xp(ϕi), and since the components ϕi of ϕ are smooth, the coefficients ai of X
are smooth functions in U . On the other hand, if all coefficients ai are smooth, then from the
preceding formula we see that Xf is smooth in U , for all smooth f . To conclude, smoothness
of a vector field is the same as smoothness of its coefficients in local coordinates.

Remark 4.1. In X(M), addition, subtraction, and multiplication by scalar functions are
well-defined, meaning that X(M) is a module over C∞(M). Moreover, any X ∈ X(M) is a
derivation of C∞(M), in the sense that X : C∞(M) → C∞(M) is linear, and satisfies the
Leibniz law

X(fg) = fXg + gXf, f, g ∈ C∞(M). (51)

The derivation property characterizes vector fields. To see this, let D : C∞(M) → C∞(M)
be a derivation. Then at p ∈M , it satisfies

D(fg)|p = f(p)(Dg)|p + g(p)(Df)|p, (52)

and so by Theorem3.5, there is Xp ∈ TpM such that D(f)|p = Xp(f) for all f . This defines
a vector field X ∈ X(M), which is smooth, since Xf = D(f) is smooth for all f ∈ C∞(M).

Now we start our discussion about finding curves with given velocity vectors.

Definition 4.2. A curve γ : (a, b) →M is called an integral curve of X ∈ X(M), if

γ′(t) = Xγ(t) for all t ∈ (a, b). (53)

It is called maximal (or inextendible), if there is no integral curve η : (α, β) → M of X
satisfying γ = η|(a,b) and (a, b) ⊊ (α, β).
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To be concrete, let X ∈ X(M), let p ∈M , and consider the problem{
γ′(t) = Xγ(t) for t ∈ (a, b),

γ(0) = p.
(54)

In local coordinates ϕ : U → Ω, where U ⊂ M and Ω ⊂ Rn are open, if we write F = ϕ∗X
and x(t) = ϕ(γ(t)) ∈ Ω, this problem is equivalent to the initial value problem{

x′(t) = F (x(t)) for t ∈ (a, b),

x(0) = q,
(55)

where q = ϕ(p) ∈ Ω. Then the standard ODE theory tells us the following.

• There exists a maximal solution x : (a, b) → Ω of (55), with a < 0 < b.
• This maximal solution is unique.
• For each compact set K ⊂ Ω, there exists ε > 0, such that (a, b) ⊃ (−ε, ε) independent
of q ∈ K. In particular, if b < ∞ (respectively, if a > −∞), then x(t) escapes every
compact set K ⊂ Ω as t↗ b (respectively, as t↘ a).

• Let us write (aq, bq) and xq(t) to make the dependence of these quantities on the initial
data q explicit. Then the set Σ = {(q, t) : q ∈ Ω, aq < t < bq} is open, and the map
(q, t) 7→ xq(t) is smooth in Σ.

It is not difficult to generalize the aforementioned results to the problem (54).

Theorem 4.3. Given any manifold M , a vector field X ∈ X(M), and a point p ∈ M , there
exists a unique maximal integral curve γ : (a, b) → M satisfying (54), with a < 0 < b.
Furthermore, we have the following.

(a) For each compact set K ⊂M , there exists ε > 0, such that (a, b) ⊃ (−ε, ε) independent of
p ∈ K. In particular, if b <∞ (respectively, if a > −∞), then γ(t) escapes every compact
set K ⊂M as t↗ b (respectively, as t↘ a).

(b) Let us write (ap, bp) and γp(t) to make the dependence of these quantities on the initial
point p explicit. Then the set Σ = {(p, t) : p ∈ M, ap < t < bp} is open, and the map
(p, t) 7→ γp(t) is smooth as a map between Σ and M .

Proof. Fix p ∈ M , and let {Iα} be the set of all intervals such that there is a solution
γα : Iα → M of the initial value problem (54), where α runs over some index set. Consider
two indices α and β, and let t ∈ Iα ∩ Iβ. Without loss of generality, assume t > 0, and cover
the compact set γα([0, t]) by a finitely many coordinate charts U1, . . . , Um, with p ∈ U1 and
γα(t) ∈ Um. Since γα(0) = γβ(0), by local theory, we have γα ≡ γβ in U1. Then, assuming
that U1 ∩ U2 ∩ γα([0, t]) ̸= ∅, the same argument implies γα ≡ γβ in U2. Repeating this, we
get γα(t) = γβ(t). Thus, we can consistently define a function γ : I → M with I =

∪
α Iα,

satisfying γ(t) = γα(t) for all α, whenever t ∈ Iα. By construction, γ is a solution of the
initial value problem (54), and it cannot be extended to a larger interval of existence, hence
its maximality. For uniqueness, suppose that γ1 : I1 →M and γ2 : I2 →M are two maximal
solutions. Then we can construct an extension γ defined over I1∪I2. However, by maximality
of γ1, we get I1 = I, and similarly, I2 = I. This gives I1 = I2, and hence γ1 = γ2.

To prove (b), let (p, t) ∈ Σ. Without loss of generality, assume that t > 0, and let U1, . . . , Um
be coordinate charts covering γp([0, t]) as in the preceding paragraph. Then we subdivide the
time interval [0, t] into smaller subintervals [0, t1], [t1, t2], and so on, until [tN , t], with the
image of each subinterval under γp entirely contained in one of the charts U1, . . . , Um. Let
pi = γp(ti) for all i. First, we choose an open set VN ⊂M containing pN , such that γq(t− tN )
is defined for all q ∈ VN . This is possible by the ODE theory in Rn. In the second step, we
choose an open set VN−1 ⊂M containing pN−1, such that γq(tN − tN−1) is not only defined,
but also satisfies γq(tN − tN−1) ∈ VN for all q ∈ VN−1. We continue this process, until we



BASIC DIFFERENTIABLE MANIFOLDS 15

reach the point p, where we choose an open set V0 ⊂ M containing p, such that γq(t1) is
defined and γq(t1) ∈ V1 for all q ∈ V0. Now, if we write Φτ (q) = γq(τ), then by construction,
Φt : V0 → M is well defined, as it is the composition of finitely many smooth maps. Finally,
let Σ0 ⊂ M × R be an open set containing (p, 0), such that γq(τ) is defined and γq(τ) ∈ V0
for all (q, τ) ∈ Σ0. Then Σt = {(q, τ + t) : (q, τ) ∈ Σ0} is an open neighbourhood of (p, t),
and for any (q, τ) ∈ Σt, we have γq(τ) = Φt(γq(τ − t)), which makes it clear that γq(τ) is well
defined, and is a smooth function of (q, τ) ∈ Σt.

As for (a), consider a compact set K ⊂ M . Invoking Theorem2.13, we can find a finite
collection of diffeomorphisms ψi : B1 → Vi ⊂M , such that {ψi(B1/2)} is a cover of K. Since

B1/2 ⊂ B1 is compact, the claim follows from the local results. □
A vector field is called complete if each of its integral curves is defined for all t ∈ R.

Corollary 4.4. Any vector field on a compact manifold is complete.

Example 4.5. Let M = R, and consider the initial value problems x′ = x and x′ = x2, with
x(0) = q. The solution of the first problem is x(t) = qet. Obviously, we have in this case
(a, b) = R for all q ∈ R, meaning that the vector field X = x ∂

∂x is complete. The second

problem is solved by x(t) = q
1−qt , which blows up as t↗ b = 1

q for q > 0 and as t↘ a = 1
q for

q < 0. Thus, the maximal interval of existence is given by

(a, b) =


R for q = 0,

(−∞, 1q ) for q > 0,

(1q ,∞) for q < 0,

(56)

which shows that the vector field X = x2 ∂
∂x is incomplete. More generally, x1+α ∂

∂x is incom-

plete as long as α > 0. On the other hand, the vector fields x log x ∂
∂x and x(log x) log log x ∂

∂x

on R are complete, even though their integral curves behave like ee
t
and ee

et

, respectively.
One can add more iterated logarithms without making the vector field incomplete, but any
of those logarithms cannot be raised to a power greater than 1. For example, x(log x)1+α ∂

∂x

and x(log x)(log log x)1+α ∂
∂x are incomplete, as long as α > 0.

Definition 4.6. Let M be a manifold, and let X ∈ X(M). For p ∈M , let γp : (ap, bp) →M
be the maximal integral curve satisfying (54). Then the flow (map) of X is defined by
Φt(p) = γp(t) for p ∈M and ap < t < bp.

Since γp(0) = p, we have Φ0 = id on M . Given t ∈ R, the flow map Φt is defined on
Σt = {p ∈ M : t ∈ (ap, bp)}, which is in general a proper subset of M , but is nonempty for
small t. We also know from Theorem4.3 that the set Σ = {(p, t) : p ∈ M, ap < t < bp} is
open, and the map (p, t) 7→ Φt(p) is smooth as a map between Σ and M .

Theorem 4.7. For any p ∈ M , there exist an open set p ∈ U ⊂ M and ε > 0, such that Φt
is defined on U for all t ∈ (−ε, ε), and

Φs+t = Φt ◦ Φs on U, (57)

whenever s, s + t ∈ (−ε, ε). In particular, for t ∈ (−ε, ε), the flow map Φt : U → Φt(U) is a
diffeomorphism with (Φt)

−1 = Φ−t.

Proof. Let p ∈M and s ∈ (ap, bp). Define η(t) = γp(s+ t) for s+ t ∈ (ap, bp). Then we have

η′(t) = γ′p(s+ t) = Xγp(s+t) = Xη(t), η(0) = γp(s), (58)

which shows that t ∈ (aq, bq) and η(t) = γq(t), where q = γp(s). In other words, we have

Φs+t(p) = Φt(Φs(p)) whenever s, s+ t ∈ (ap, bp). (59)
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Given p ∈M , we can find an open set p ∈ U ⊂M and ε > 0, such that U × (ε, ε) ⊂ Σ, where
Σ is the domain of the map (q, t) 7→ Φt(q), cf. Theorem4.3 or the paragraph preceding the
current theorem. This completes the proof. □

Exercise 4.1. Let X ∈ X(M), and let Φt be the associated flow. Show that for λ ∈ R \ {0},
the flow associated to the scaled vector field λX is given by Φt/λ.

5. Lie derivatives

Recall that the differential of a smooth map ϕ : M → N at p ∈ M is a map between the
tangent spaces TpM and TqN , which is defined by

(ϕ∗V )(g) = V (g ◦ ϕ) for V ∈ TpM and g ∈ C∞(N), (60)

or equivalently, by

ϕ∗[γ] = [ϕ ◦ γ] for γ ∈Wp(M). (61)

By allowing p ∈ M to vary, we can regard ϕ∗ as a mapping between the tangent bundles
TM and TN . However, in general, this map does not send a vector field X on M into a
vector field Y on N , since (i) ϕ may be nonsurjective, in which case we have no way of
unambiguously defining Y everywhere on N , and (ii) ϕ may be noninjective, meaning that
there exist distinct points p, q ∈ M satisfying ϕ(p) = ϕ(q), and so ϕ∗Xp ̸= ϕ∗Xq in general.
For invertible mappings, all these problems disappear.

Definition 5.1. If ϕ : M → N is a diffeomorphism between two manifolds, then the push-
forward ϕ∗X ∈ X(N) of X ∈ X(M) is defined by (ϕ∗X)ϕ(p) = (dϕ)pXp, that is,

(ϕ∗X)f = X(f ◦ ϕ) ◦ ϕ−1 for f ∈ C∞(N). (62)

Let us compute the push-forward in local coordinates. Thus let p ∈ M , and let {xi} and
{yk} be coordinate systems on neighbourhoods of p and of q = ϕ(p), respectively. With Xi

and ϕk denoting the components of X and ϕ, respectively, we have

(ϕ∗X)qf = Xp(f ◦ ϕ) =
∑
i

(Xi)p

(∂ϕk
∂xi

)
p

( ∂f
∂yk

)
q
, (63)

yielding

(ϕ∗X)q =
∑
i

(Xi)p

(∂ϕk
∂xi

)
p

( ∂

∂yk

)
q
. (64)

Let X ∈ X(M) and let Φt be the flow of X. Fix a point p ∈ M . Then by Theorem4.7,
there exist an open set U ∋ p and ε > 0 such that Φt : U → Φt(U) is a diffeomorphism
with (Φt)

−1 = Φ−t for each t ∈ (−ε, ε). Now let Y ∈ X(M) be another vector field. Then
(Φ−t)∗(Y |Φt(U)) would be a vector field on U , that, in a certain sense, can be considered as
the vector field Y |Φt(U) “transported back” to U along the vector field X. In particular, by
writing (Φ−t)∗Y = (Φ−t)∗(Y |Φt(U)) for simplicity, at the point p, we can think of the vector
Γ(t) = ((Φ−t)∗Y )p ∈ TpM as the vector YΦt(p) brought back to p along the vector field X. In
local coordinates, we have

Γ(t) =
∑
i

(Yi)Φt(p)

(∂(Φ−t)k
∂xi

)
Φt(p)

( ∂

∂xk

)
p
, (65)

which shows that Γ : (−ε, ε) → TpM is a smooth curve. Hence Γ′(0) is well defined, and is an
element of the tangent space of TpM at Yp. Since TYpTpM can be canonically identified with
TpM , we can (and will) consider Γ′(0) as an element of TpM .
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Definition 5.2. In the setting of the preceding paragraph, the Lie derivative of Y ∈ X(M)
along X ∈ X(M) is defined by

LXY =
d

dt
((Φ−t)∗Y )

∣∣∣
t=0

. (66)

Remark 5.3. For scalar functions, we may introduce the Lie derivative by using the notion
of pull-back Φ∗

t f = f ◦ Φt as

LXf =
d

dt
(Φ∗

t f)
∣∣∣
t=0

. (67)

However, since Φ∗
t f(p) = f(Φt(p)) = f(γp(t)), we get

(LXf)(p) =
d

dt
f(γp(t))

∣∣∣
t=0

= (f ◦ γp)′(0) = Xpf, (68)

meaning that the Lie derivative for scalar functions is simply the directional derivative.

Let us get back to the Lie derivatives of vector fields. We have

((Φ−t)∗Y )f − Y f = Y (f ◦ Φ−t) ◦ Φt − Y (f) ◦ Φt + Y (f) ◦ Φt − Y f

= Y (Φ∗
−tf − f) ◦ Φt +Φ∗

t (Y f)− Y f,
(69)

and dividing through by t and taking the limit t→ 0, we get

LXY = Y (−Xf) +X(Y f) = X(Y f)− Y (Xf). (70)

Definition 5.4. The Lie bracket or commutator of X,Y ∈ X(M) is a vector field defined by

[X,Y ](f) = X(Y f)− Y (Xf) for f ∈ C∞(M). (71)

Clearly, [X,Y ] is bilinear and antisymmetric in X and Y . The fact

LXY = [X,Y ], (72)

already shows that [X,Y ] ∈ X(M), but we can independently check if it obeys the Leibniz
law as follows. We have

X(Y (fg)) = X(fY g + gY f) = fX(Y g) + (Xf)(Y g) + (Xg)(Y f) + gX(Y f), (73)

and similarly for Y (X(fg)), yielding the desired identity

[X,Y ](fg) = f [X,Y ](g) + g[X,Y ](f). (74)

Another important property is the following derivation property

LX(fY ) = [X, fY ] = X(f)Y + f [X,Y ] = X(f)Y + fLXY, (75)

which can be verified direclty.

Example 5.5. Let ϕ : U → Rn be a coordinate system in an open set U ⊂ M , and let
Ei = (ϕ∗)

−1( ∂
∂xi

), i = 1, . . . , n, be the associated basis of TpM , as p ∈ U varies. Then for

f ∈ C∞(M), we have

Eif =
∂(f ◦ ϕ−1)

∂xi
, and EjEif =

∂2(f ◦ ϕ−1)

∂xi∂xj
, (76)

which implies that

[Ei, Ej ] = 0 or simply [ ∂∂xi ,
∂
∂xj

] = 0 for all i, j. (77)

Now let

X =
∑
i

XiEi ∈ X(U), and Y =
∑
i

YiEi ∈ X(U). (78)
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Then we have

[X,Y ] =
∑
k

X(Yk)Ek +
∑
k

Yk[X,Ek] =
∑
k

X(Yk)Ek −
∑
i

Y (Xi)Ei, (79)

which gives the coordinate expression of the commutator.

Example 5.6. In R2, take the two vector fields X = ∂
∂x and Y = ax ∂

∂y , where a ∈ R is a

constant, and xy denotes the standard coordinate system in R2. We have

LXY = −LYX = [X,Y ] = a
∂

∂y
. (80)

Note that on the y-axis we have Y ≡ 0, but LYX ̸= 0 if a ̸= 0. Thus the Lie derivative LYX
along the y-axis depends on the behaviour of Y “nearby” the y-axis.

Remark 5.7. Let X and Y be vector fields, and let γ be an integral curve of X with
γ(0) = p ∈ M . Suppose that Y = 0 along γ, i.e., Yγ(t) = 0 for all t. Then for any scalar
function f , we have Y f = 0 along γ, and hence

[X,Y ]p(f) = Xp(Y f)− Yp(Xf) = ((Y f) ◦ γ)′(0) = 0. (81)

This means that in general, [X,Y ]p depends only on the values of Y restricted to the curve γ,
or, put it differently, if Y is defined only along the curve γ, then [X,Y ]p does not depend on
how one extends Y to be a vector field on M . Note that this behaviour is already apparent
from the definition of the Lie derivative.

The following result characterizes commuting vector fields.

Theorem 5.8. Let X and Y be vector fields on M , and let Φt and Ψs be the respective flows.
Then the following are equivalent.

(a) [X,Y ] = 0, that is, the vector fields commute.
(b) (Φt)∗Y = Y , that is, Y is invariant along the flow of X.
(c) Φt ◦Ψs = Ψs ◦ Φt, that is, the flows commute.

Proof. It is immediate from the definition of the Lie derivative that (b) implies (a). Suppose
that (c) holds, and for p ∈M , write

((Φt)∗Y )p = [Φt ◦ ηΦ−t(p)], (82)

where ηq is the integral curve of Y with ηq(0) = q ∈M , and the equivalence class is understood
to be of curves passing through p. By using the commutativity of the flows, we infer

Φt(ηΦ−t(p)(s)) = Φt(Ψs(Φ−t(p))) = Φt(Φ−t(Ψs(p))) = Ψs(p) = ηp(s), (83)

which proves (b), as

((Φt)∗Y )p = [Φt ◦ ηΦ−t(p)] = [ηp] = Yp. (84)

Finally, suppose that (a) holds. First, with Θs = Φt ◦Ψs ◦ Φ−t, we have

d

ds
Θs(p) = (Φt)∗(YΦ−t(p)) = ((Φt)∗Y )p, (85)

meaning that Θs is the flow of (Φt)∗Y . On the other hand, since (Φt+τ )∗ = (Φτ )∗(Φt)∗ by the
group property of the flow, we have

d

dt
(Φt)∗Y =

d

dτ
((Φt+τ )∗Y )

∣∣∣
τ=0

= −LX(Φt)∗Y = [(Φt)∗Y,X]. (86)

Taking into account that

(Xf ◦ Φt)(p) = Xγp(t)f = (f ◦ γp)′(t) = X(f ◦ Φt)(p), (87)
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the commutator can be computed as

[(Φt)∗Y,X](f) = Y (Xf ◦ Φt) ◦ Φ−t −X(Y (f ◦ Φt) ◦ Φ−t)

= Y (X(f ◦ Φt)) ◦ Φ−t −X(Y (f ◦ Φt)) ◦ Φ−t

= (Φt)∗[Y,X](f),

(88)

and therefore we infer
d

dt
(Φt)∗Y = (Φt)∗[Y,X] = 0. (89)

This shows that (Φt)∗Y = Y , and hence Φt ◦Ψs ◦ Φ−t = Ψs, or Φt ◦Ψs = Ψs ◦ Φt. □

Exercise 5.1. Prove the Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0. (90)

Exercise 5.2. Show that

L[X,Y ] = [LX ,LY ] := LX ◦ LY − LY ◦ LX . (91)

Exercise 5.3. Let X and Y be vector fields on M , and let Φt and Ψs be the respective flows.
Fix a point p ∈M , and let η(t) = (Ψ−t ◦ Φ−t ◦Ψt ◦ Φt)(p) for t small. Show that

• η′(0) = 0.
• (f ◦ η)′′(0) = 2[X,Y ]p(f) for any scalar function f .

6. Covectors and 1-forms

The notion of tangent spaces is connected to curves, or maps of the form γ : R → M . At
each point s ∈ R, and under the canonical identification TsR = R, the differential of γ is a
linear map (dγ)s : R → TpM , where p = γ(s). By linearity, this map is completely determined
by its value at 1 ∈ R, and we call γ′(s) = (dγ)s1 the velocity vector of γ at s.

An equally natural class is scalar functions f : M → R, which plays a dual role to curves.
The derivative of such a function at p ∈ M is a linear map (df)p : TpM → R, that is, (df)p
is an element of the dual space of Tp. We say that (df)p is a covector at p. The dual space of
Tp (or the space of covectors at p) is called the cotangent space of M at p, and denoted by

T ∗
pM = (TpM)∗. (92)

Let us look closely at what exactly (df)p is. Before invoking the identification TsR = R, the
differential is a map (df)p : TpM → TsR with s = f(p), and by definition, we have

((df)pV )(g) = V (g ◦ f), (93)

for V ∈ TpM and g ∈ C∞(R). In local coordinates, we compute

((df)pV )(g) = V (g ◦ f) =
∑
i

Vi
∂(g ◦ f)
∂xi

∣∣∣
p
= g′(s)

∑
i

Vi
∂f

∂xi

∣∣∣
p
= V (f)

( d
ds

)
s
(g), (94)

and therefore

(df)pV = V (f). (95)

As an immediate application, for f, g ∈ C∞(M), we have

(d(fg))pV = V (fg) = f(p)V (g) + g(p)V (f) = f(p)(dg)pV + g(p)(df)pV, (96)

meaning that

d(fg) = fdg + gdf. (97)
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Example 6.1. Let xi : U → R, i = 1, . . . , n, be coordinate functions with U ⊂ M open.
Since (dxi)pV = V (xi) for any V ∈ TpM , we have

(dxi)p

( ∂

∂xk

)
p
=

( ∂

∂xk

)
p
xi =

( ∂xi
∂xk

)
p
= δik, (98)

meaning that {(dxi)p} is a basis of T ∗
pM , dual to the basis {( ∂

∂xk
)p} of TpM . We say the the

basis {(dxi)p} is induced by the coordinate system {xi}.

Just as vectors lead to the notion of vector fields, covectors lead to the notion of “covector
fields,” which is customarily called 1-forms. More precisely, a 1-form is an assignment of a
covector αp ∈ T ∗

pM to each point p ∈M . Unless otherwise specified, 1-forms are assumed to
be smooth, in the sense that αX ∈ C∞(M) for all X ∈ X(M), where the scalar function αX
is defined by pointwise application of α to X, as

(αX)(p) = αpXp, p ∈M. (99)

We will also employ the notations

⟨α,X⟩ = α(X) = αX, and ⟨α,X⟩p = α(X)p = (αX)(p) = αpXp. (100)

The set of all smooth 1-forms on M is denoted by Ω1(M) or C∞(T ∗M).
In local coordinates xi : U ⊂M → R, i = 1, . . . , n, we have

αp =

n∑
i=1

ai(p)(dxi)p, (101)

and applying both sides to ( ∂
∂xk

)p yields ai(p) = αp(
∂
∂xi

)p. Since
∂
∂xi

∈ X(U), the coefficients

ai of α are smooth functions in U . On the other hand, if all coefficients ai are smooth, then
from the preceding formula we see that αX is smooth in U , for all X ∈ X(M). Therefore,
smoothness of a 1-form is the same as smoothness of its coefficients in local coordinates.

In Ω1(M), addition, subtraction, and multiplication by scalar functions are well-defined,
meaning that Ω1(M) is a module over C∞(M). Furthermore, for any 1-form α, the map
X 7→ α(X) : X(M) → C∞(M) is linear and satisfies α(fX) = fα(X) for all f ∈ C∞(M)
and X ∈ X(M). This is called the tensorial (or C∞-linearity) property, which runs a sort of
parallel to the derivation property of vector fields, cf. Remark 4.1.

Theorem 6.2. Let A : X(M) → C∞(M) be a tensorial (or C∞-linear) map, in the sense
that A is linear and satisfies

A(fX) = fA(X), f ∈ C∞(M), X ∈ X(M). (102)

Then there exists α ∈ Ω1(M) such that αX = A(X) for all X ∈ X(M).

Proof. Let p ∈ U , and let xi : U ⊂M → R, i = 1, . . . , n, be a coordinate system, with U ∋ p
an open set. Then any vector field X ∈ X(M) can be written as X =

∑
i fi

∂
∂xi

on U , where

fi ∈ C∞(U). With h ∈ C∞(M) satisfying supph ⊂ U and h(p) = 1, we have

X = (1− h2)X + h2X = (1− h2)X +
∑
i

hfi · h
∂

∂xi
. (103)

Noting that hfi ∈ C∞(M) and h ∂
∂xi

∈ X(M), we then infer

A(X) = (1− h2)A(X) +
∑
i

hfi ·A(h ∂
∂xi

). (104)

Upon evaluation this at p, we get

A(X)p =
∑
i

fi(p)A(h
∂
∂xi

)p. (105)
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In particular, if Xp = 0 then fi(p) = 0 for all i, and hence A(X)p = 0. In other words, A(X)p
depends only on the value Xp, and the dependence is of course linear. This means that there
is a covector αp ∈ T ∗

pM such that A(V )p = αpV for all V ∈ TpM . As p ∈M is arbitrary, the
assignment p 7→ αp defines a 1-form satisfying

αX = A(X) for all X ∈ X(M). (106)

Smoothness of α is immediate, because A(X) ∈ C∞(M) for all X ∈ X(M). □

We have seen that given a coordinate system xi : U ⊂M → R, i = 1, . . . , n, the collections
{(dxi)p} and {( ∂

∂xi
)p} form a dual system of bases for T ∗

pM and TpM . Thus in U , any vector
field X can be written as

X =
∑

ifi
∂

∂xi
, (107)

with the scalar functions fi = (dxi)X = X(xi), and any 1-form α can be written as

α =
∑

igidxi (108)

with gi = ⟨α, ∂
∂xi

⟩. At this point, we want to introduce some customary notational conventions
for their practicality and built-in error prevention features.

• We will use upper indices (or superscripts) for the coordinate functions: Thus we write
xi : U ⊂ M → R instead of xi : U ⊂ M → R. Then the coordinate-induced dual
bases become {dxi} and { ∂

∂xi
}. We also write ∂i =

∂
∂xi

if the coordinate system {xi}
is clear from the context.

• The components of a vector field will have upper indices, and the components of a
1-form will have lower indices, as in X =

∑
i f

i∂i and α =
∑

i gidx
i.

• It is convenient to denote the components of a vector field or a 1-form by the same
letter as the object itself. Thus we write, e.g., X =

∑
iX

i∂i and α =
∑

i αidx
i.

• Finally, whenever there is a repeated index in an expression (usually appearing once
as a superscript and once as a subscript), summation over that index is assumed, and
hence the summation symbol can be omitted. For example, we may write X = Xi∂i
and α = αidx

i. This is called the Einstein summation convention. Note that under
this convention, if a repeated index appears when summation is not intended, one
must make it clear in the context.

With the aforementioned conventions in effect, (107) and (108) become

X = Xi∂i =
∑

iX
i∂i =

∑
i⟨dx

i, X⟩∂i, and

α = αidx
i =

∑
iαidx

i =
∑

i⟨α, ∂i⟩dx
i,

(109)

respectively.

Remark 6.3. As a generalization of the coordinate basis {∂i}, we can consider an arbitrary
collection Ei ∈ X(U), i = 1, . . . , n, of vector fields, defined on some open set U ⊂ M , such
that {(Ei)p} is a basis of TpM for each p ∈ U . Such a collection is called a moving frame on
M . A moving frame {Ei} induces a unique collection θi ∈ Ω1(U) , i = 1, . . . , n, of 1-forms,
called the dual frame or coframe, satisfying

⟨θi, Ek⟩ = δik, i, k = 1, . . . , n, (110)

where δik is the Kronecker delta. Thus {(θi)p} is the basis of T ∗
pM dual to {(Ei)p}, for each

p ∈ U . For any X ∈ X(U) and α ∈ Ω1(U), we have

X = XiEi = ⟨θi, X⟩Ei,
α = αiθ

i = ⟨α,Ei⟩θi.
(111)
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Now let us consider the frame change

Fi = Eka
k
i , ωi = bikθ

k, (112)

where A = (aki ) and B = (bik) are square matrices smoothly depending on p ∈ U . If we think
of {Ei} as a row vector consisting of vector fields, and {θi} as a column vector consisting of
1-forms, then the preceding relation can be written as F = EA and ω = Bθ. The requirement
that F and ω are dual to each other yields

δik = ⟨ωi, Fk⟩ = biℓ⟨θℓ, Em⟩amk = biℓa
ℓ
k, or BA = I. (113)

Example 6.4. polar coordinates

Exercise 6.1. Show that the cotangent bundle T ∗M = {(p, ω) : p ∈M, ω ∈ T ∗
pM} admits a

canonical smooth structure, making it a smooth manifold.

7. The exterior derivative

Our next task is to extend the notion of Lie derivatives to operate on 1-forms. The natural
operation for 1-forms that replaces push-forward on vector fields is the following: For a smooth
map ϕ :M → N and α ∈ Ω1(N), the pull-back of α along ϕ is a 1-form on M , given by

(ϕ∗α)pV = αϕ(p)(ϕ∗V ), V ∈ TpM. (114)

Since (ϕ∗)p : TpM → Tϕ(p)N is linear for each p ∈ M , it is immediate that the linear map

ϕ∗α : X(M) → C∞(M) is tensorial and hence ϕ∗α ∈ Ω1(M). Note that there is no additional
conditions on the map ϕ, in contrast to the case of push-forward for vector fields.

Let α ∈ Ω1(N), let Y ∈ X(M), and let ϕ :M → N be a diffeomorphism. Then ⟨α, ϕ∗Y ⟩ is
a scalar function on N , and we have

ϕ∗⟨α, ϕ∗Y ⟩ = ⟨α, ϕ∗Y ⟩ ◦ ϕ = ⟨ϕ∗α, Y ⟩. (115)

Now let Φt be the flow of a given vector field X ∈ X(M), and let α ∈ Ω1(M). In light of the
preceding identity, we have

Φ∗
t ⟨α, Y ⟩ − ⟨α, Y ⟩ = Φ∗

t ⟨α, Y − (Φt)∗Y ⟩+ ⟨Φ∗
tα− α, Y ⟩. (116)

Dividing both sides by t and sending t→ 0 yield

LX⟨α, Y ⟩ ≡ X⟨α, Y ⟩ = ⟨α,LXY ⟩+ ⟨LXα, Y ⟩, (117)

where the last term is defined as follows.

Definition 7.1. In the setting of the preceding paragraph, the Lie derivative of α ∈ Ω1(M)
along X ∈ X(M) is defined by

LXα =
d

dt
(Φ∗

tα)
∣∣∣
t=0

. (118)

From the product rule (117), we immediately get

⟨LXα, Y ⟩ = X⟨α, Y ⟩ − ⟨α, [X,Y ]⟩. (119)

This implies that

⟨LXα, fY ⟩ = X(f⟨α, Y ⟩)− ⟨α,X(f)Y + f [X,Y ]⟩ = f⟨LXα, Y ⟩, (120)

for f ∈ C∞(M), and hence LXα ∈ Ω1(M). We can also derive the product (or Leibniz) rule

LX(fα) = X(f)α+ fLXα. (121)
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Remark 7.2. Recall that for f ∈ C∞(M) and X ∈ X(M), one has

LXf = Xf = ⟨df,X⟩. (122)

Thus the Lie derivative on functions is the composition of two operations: First the differential
produces the 1-form df , and then this 1-form is applied to the vector field X to produce a
scalar function ⟨df,X⟩. We can write is symbolically as

LX = ιX ◦ d, (123)

where ιX is the interior product (or contraction) of a 1-form with the vector field X, defined
by ιXα = ⟨α,X⟩ for α ∈ Ω1(M).

We would like to look for a formula similar to (123) for the Lie derivatives of 1-forms. Let
us compute LXα when α = df for some scalar function f . Such 1-forms are called exact
1-forms. In light of (119), we have

⟨LXdf, Y ⟩ = X⟨df, Y ⟩ − ⟨df, [X,Y ]⟩ = X(Y f)− [X,Y ](f)

= Y (Xf) = ⟨d(Xf), Y ⟩ = ⟨d(LXf), Y ⟩,
(124)

which, upon using (123), implies that

LX ◦ d = d ◦ LX = d ◦ ιX ◦ d, (125)

with both sides understood as operators sending C∞(M) into Ω1(M). This means that

LX = d ◦ ιX , (126)

on exact 1-forms.
Now we will compute LXα for a general 1-form α. Introducing local coordinates {xi}, and

writing α = αidx
i, we infer

LX(αidx
i) = X(αi)dx

i + αiLX(dx
i) = X(αi)dx

i + αid(Xx
i)

= X(αi)dx
i + αidX

i,
(127)

where Xi = ⟨dxi, X⟩ = Xxi. On the other hand, we have

d(αX) = d(αi⟨dxi, X⟩) = d(αiX
i) = Xidαi + αidX

i, (128)

and comparing this with the previous equality gives

LXα = d⟨α,X⟩+X(αi)dx
i −Xidαi. (129)

If we apply both sides to an arbitrary vector field Y , we get

⟨LXα, Y ⟩ = ⟨d⟨α,X⟩, Y ⟩+X(αi)⟨dxi, Y ⟩ −Xi⟨dαi, Y ⟩
= Y ⟨α,X⟩+X(αi)Y

i −XiY (αi)

= Y ⟨α,X⟩+ ω(X,Y ),

(130)

where the last term is defined by

ω(X,Y ) = X(αi)Y
i − Y (αi)X

i. (131)

From a different perspective, by comparing (119) and (130), we infer

ω(X,Y ) = X⟨α, Y ⟩ − Y ⟨α,X⟩ − ⟨α, [X,Y ]⟩, (132)

which makes it clear that ω(X,Y ) is coordinate independent and defines a bilinear map
ω : X(M) × X(M) → C∞(M). In fact, one can easily show that ω is tensorial in each of its
arguments, and antisymmetric, meaning that

ω(fX, Y ) = fω(X,Y ), and ω(X,Y ) = −ω(Y,X). (133)



24 TSOGTGEREL GANTUMUR

Definition 7.3. A bilinear map ω : X(M)×X(M) → C∞(M) that is tensorial in each of its
arguments is called a covariant 2-tensor on M . In addition, if ω is antisymmetric, we call it
a 2-form on M . The space of 2-forms on M is denoted by Ω2(M).

If ω is a covariant 2-tensor onM , then in light of (the proof of) Theorem6.2, for each p ∈M
there exists a bilinear function ωp : TpM × TpM → R such that ω(X,Y )p = ωp(Xp, Yp). This
means that ω has “pointwise values” equal to ωp, p ∈ M . If ω is a 2-form, then obviously
each ωp must be antisymmetric.

We will consider scalar functions as 0-forms, and set Ω0(M) = C∞(M). Thus the differen-
tial d : Ω0(M) → Ω1(M) sends 0-forms to 1-forms. The following is its natural extension.

Definition 7.4. The exterior derivative d : Ω1(M) → Ω2(M) is defined by

(dα)(X,Y ) = X⟨α, Y ⟩ − Y ⟨α,X⟩ − ⟨α, [X,Y ]⟩, (134)

for α ∈ Ω1(M) and X,Y ∈ X(M). The differential d : Ω0(M) → Ω1(M) is now renamed to
be the exterior derivative on 0-forms.

The interior product ιX : Ω1(M) → Ω0(M) sends 1-forms to 0-forms. The interior product
between a 2-form ω and a vector field X is defined by

(iXω)(Y ) = ω(X,Y ), Y ∈ X(M). (135)

Hence we have ιX : Ω2(M) → Ω1(M).

Remark 7.5. In terms of the new concepts just defined, (130) can be written as

⟨LXα, Y ⟩ = Y ⟨α,X⟩+ (dα)(X,Y ) = ⟨dιXα, Y ⟩+ ⟨ιXdα, Y ⟩, (136)

yielding

LXα = dιXα+ ιXdα, (137)

or simply

LX = d ◦ ιX + ιX ◦ d, (138)

on 1-forms. This is called Cartan’s formula, and is the correct extension of (123) to 1-forms.

In the remainder of this section, we shall study the fundamental properties of k-forms (with
k = 0, 1, 2) and natural operations defined on them. For 0-forms, the exterior derivative is
given by ⟨df,X⟩ = Xf . The operator d : Ω0(M) → Ω1(M) is linear, and satisfies

d(fg) = fdg + gdf. (139)

Furthermore, we have

(ddf)(X,Y ) = X⟨df, Y ⟩ − Y ⟨df,X⟩ − ⟨df, [X,Y ]⟩
= X(Y f)− Y (Xf)− [X,Y ]f = 0,

(140)

meaning that

d2 = d ◦ d = 0, (141)

on 0-forms. To probe if there is a Leibniz-type rule for the exterior derivative on 1-forms, let
f ∈ Ω0(M) and α ∈ Ω1(M), and compute

(d(fα))(X,Y ) = X⟨fα, Y ⟩ − Y ⟨fα,X⟩ − ⟨fα, [X,Y ]⟩
= (Xf)⟨α, Y ⟩ − (Y f)⟨α,X⟩+ f(dα)(X,Y )

= ⟨df,X⟩⟨α, Y ⟩ − ⟨df, Y ⟩⟨α,X⟩+ f(dα)(X,Y ).

(142)

This has the appearance of a Leibniz rule, if we think of the term ⟨df,X⟩⟨α, Y ⟩−⟨df, Y ⟩⟨α,X⟩
as a 2-form, which is some kind of product between df and α, applied to the pair (X,Y ). We
are thus led to the following product operation between 1-forms.
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Definition 7.6. The exterior product (or wedge product) ∧ : Ω1(M) × Ω1(M) → Ω2(M) is
the bilinear map defined by

(µ ∧ ν)(X,Y ) = µ(X)ν(Y )− µ(Y )ν(X), X, Y ∈ X(M). (143)

For f ∈ Ω0(M) and α ∈ Ωk(M), k = 0, 1, 2, we set f ∧ α = α ∧ f = fα.

It is easy to check that µ ∧ ν is indeed a 2-form, and that µ ∧ ν = ν ∧ µ. Moreover, the
exterior product is pointwise (or tensorial), in the sense that (µ∧ ν)p depends only on µp and
νp for p ∈M . In terms of exterior products, (142) can be rewritten as

d(f ∧ α) = df ∧ α+ f ∧ dα. (144)

If we switch the order of f and α, we get

d(α ∧ f) = d(f ∧ α) = df ∧ α+ f ∧ dα = −α ∧ df + dα ∧ f. (145)

These Leibniz rules, together with (139), can be summarized as

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ, (146)

for α ∈ Ωk(M) and β ∈ Ωℓ(M) with k + ℓ ≤ 1.

Exercise 7.1. Prove the following.

(a) LX(α ∧ β) = LXα ∧ β + α ∧ LXβ
(b) LX ◦ d = d ◦ LX
(c) L[X,Y ] = [LX ,LY ] := LX ◦ LY − LY ◦ LX
(d) ιX(α ∧ β) = ιXα ∧ β + (−1)kα ∧ ιXβ
(e) ι[X,Y ] = [LX , ιY ] := LX ◦ ιY − ιY ◦ LX
Exercise 7.2. Let ϕ :M → N be a smooth map. Prove the following for the pull-back map.

(a) ϕ∗(α ∧ β) = ϕ∗(α) ∧ ϕ∗(β) for any differential forms α and β on M .
(b) ϕ∗(dα) = d(ϕ∗α) for any differential form α on M .
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