NAVIER-STOKES FINAL PROJECT

ROBERT GRAHAM

These notes are meant to provide a summary of Terrence Tao’s paper “A Quan-
tative formulation of the global regularity problem for the periodic Navier-Stokes
System”[Tao]. This paper proves a well-known but important result that tells us
what a solution to the Navier-Stokes problem would have to look like. It is some-
what hard to write a summary of an already concise and well written summary. So
instead I have primarily added detail to many of the proofs with the goal of making
it easier for someone whos only background is our class [Schu| to understand (in
particular making it easier for me to understand). Be warned that I have likely also
added errors in the process.

We recall the definition of the navier-stokes system:

Definition 1. Given a smooth pressure term p : [0,00) x T?> — R and a smooth,
divergence free initial condition uy : T3 — R3 then u : [0,00) x T3 — R3 is a
solution to the navier-stokes with initial condition ug if it satisfies
0w = Au—+ (u-Vu) —Vp
div(u) =0
u(0,2) = up(x)

Of primary interest is finding a global smooth solution (that is a smooth solution
that is defined for all [0, 00) x T?) which is a famous open problem. The result of
Tao’s paper tells us that we can’t solve this problem unless we also show ’explicitly’
how to control the H!(T?) norm of any smooth solution. In other words any
proof of existence needs to have some sort of concrete quantative substance to
it. Moreover, we could disprove existence by showing a sequence of solutions (™
uniformally bounded in the H!(T3) norm at time 0 but unbounded at later times
0<TM < .

Formally, the main goal of the paper is to show the following

Theorem 2. The following are equivalent:

(1) There is a global smooth solution to the navier stokes for smooth initial
data
(2) There exists a non decreasing function F : [0,00) — [0, c0) satisfying
w(T) 1 (vs) < F([luollr(rs))

for any smooth solution u (with associated smooth p) and any 0 < T < oo
for which u is defined.
(3) There exists a non decreasing function G : [0,00) — [0, c0) satisfying
(D) 712 (r2y < G(|[uoll#r (r2))

for any smooth solution u (with associated smooth p) and any 0 < 7' < 1
for which w is defined.
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Note part 3 is just a less demanding version of part 2.
We can write F' more explictly as a function F : [0, 00) — [0, c0] by

F(A) = sup{|ullcomio,r1x3) * [[wollmi(rs) < 4;0 < T < oo}

so that it is non-decreasing and trivially satisfies the desired inequality ||u(T)|| g1 sy <
F(||u(0,=)||g1(r3)). The problem can thus be thought of as showing that this F
has range [0, 00). The rate of growth of F' is an interesting open problem. Though
we know %‘4) — o0 as A — oo it is not even known if F(A) > Alte

Before we can prove the main theorem we need to recall some facts. We will see
that much of these are a slight tweaking of what was already proven in our notes.

First we recall that we can rewrite the navier stokes equation to get
Ou = Au + P(divu @ u)

and hence by duhamel formula any solution is of the form
t

u(t) = e®g + / eNAP(dive @ u)dT
0

We called any u of that form a mild solution.

Moreover it suffices to consider the case where u is mean zero since the mean
gets preserved by the equations (and so it can be subtracted off). We let HS(T?)
be the space of mean zero functions in H*(T?). Note that the usual seminorm

[lae =Y (K> f(k)?
keZ3

is now a norm when restricted to H(T?) thus we will write ||f||zs instead of
|f|gs though this is not to be confused with the norm defined in our notes. It is
easy to see why this is now a norm because |f|z- = 0 if and only if f(k) = 0 for
all £ = 0 but f(O) is the mean so it is also zero, therefore |f|gs = 0 if and only if
f =0. (we will sometimes write H} to emphasize we are taking the H} norm with
respect to the ’space’ variables. Unfortunately this overides the 0 in H{...)

In this paper we say a mild solution w is a strong (H3) solution if u is defined
on [0,7] and u € X} where

Xh = COHY(0,T) x T%) N L2 H3(0,T) x T°)
which is a banach space with norm
lullxy = llullcomg (o,x13) + |[ullL2 2 j0,71%T2)

In other words we say u is a strong solution when we have control over its H'
norm for all ¢ and we have control over the average of its H? norm.
The following important result is key to proving the main theorem

Lemma 3. (Local existence) Let A > 0 and set T := 7 where c is some constant.
If ug € HY(T?) with l[wol|ma(rsy < A then there exists a unique strong solution
u € X} with the bound
lullx3 S A
Moreover the map ¢ : {uy € H}(T?) : |uol|mp(rsy < A} — X1 is lipschitz
continuous and finally u(t) is smooth for all t > 0 (note we don’t need to assume
ug s smooth).
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The proof of this theorem is similar to the 'local existence in 3 dimensions’ we’ve
down in class. Many of the ideas are there but just not written with the space X}
in mind. The basic idea for showing existence is to define the map ® : X1 — X}
by

t
O(u)(t) == ePuy + / e=DAP(dive ® u)dr
0

and show this has a fixed point by the banach fixed point theorem. This amounts
to showing @ is a well defined contraction mapping. All the necessary control over
norms ultimately arises from an energy estimate which we will prove right now
(once again it is reminiscent to something in the notes, namely the ’basic energy
estimate’)

Lemma 4. (Special case of the energy estimate) For ug € H}(T?),u € X} we have
u(t) := etBug + fot eF=TAP(u @ u)dr lies in X} with

lu®)l x2S ¢luollmarsy + ClIP(divu @ u)l| L2 12 (0,17 xT3)
for some constatns ¢, C.

Proof. By taking a limit we can assume everything is smooth and hence we can
assume that u solves dyu = —Au + P(divu @ u)

then (ignoring some constants arising from the precise definition of the norm)
we get

olu(oliz; = [ 17uP
= —/Vu -Vowu
:/VU~VAU—/Vu-VIP’(divu®u)
_ /aiujaia,fuj +/V2u~P(divu®u)
_ _/afuja,iuj —/v2u~P(divu®u)

< Aul®)23z0 + allu®)] gy + | [B(dive @ ) o). a > 0,0 > 0

where the last line follows from generalized youngs inequality. by choosing the
constants of the generalized youngs inequality appropriately we can ensure that we
get

Onllu(®)] 3 < ¢ llul®)] 132 sy + ¢ [P(dives © )] [Fagqy. ¢ > 0,¢” >0
So by integration we get
|\U(t>||?qg - HUOH%@ < C/||U\|%3Hg([o,T]xT3) + c||[P(divue ® U)||2L$Lg([o,T]x1r3)

for all ¢ € [0,7] hence we can replace |[u(t)||3,, with ||u||coi(o,r)xs) and the
p ;
result follows by appropriate algebraic manipulations. O

Now we can show some of the details of Lemma [
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Proof. (part of Lemma @ We will show the the first major part of the proof to get
a basic idea of the computations involved. Like we mentioned above define the map
®: X1 — X1 by

¢
d(u)(t) == ePuy + / eDAP(dive ® u)dr
0

We would like to show this map has the claimed domain. To this end recall some
basic facts, firstly for f € L?[0,T] we have

T T
| fl|z2(0,77) = \//0 | f2dt = \//0 |f]? - 1dt
T T
A]t) % 244) %
<\/</0 Fladt) </0 12d1)

T
_ T%(/ |£1*dt) = T5]|f]] a1y
0

(this is just an instance of the well known proof that LP[0,T] C L?[0,T] for
p < ¢). We also recall (without proof) another fundamental result; a special case
of Sobolev’s inequality which says for f : T?> — R smooth we have

I[fllzecrsy SV fllL2(rs)
see [Shkol). We begin with our energy estimate
(see | g gy

1@ (w)llx1 < [lwollmzersy + |[P(dive @ w)|| L2 12 (jo,11xT3)
< A+ [|P(dive ® w2212 (jo,7)xT2)

To control [|[P(divu ® u)||L22 (0,r1xTs) We note that P(divu ® u) is made up of
terms of the form d;uju; (when divu = 0) whereas |u||Vu| is made up of terms of
the from w;0 u) thus we can conclude

[[P(dive ® w)||z2r2 (o, 77x12) < Il Vaulllz2z2 (o,r1xs)

using our first fact

1 1o
el Vulllzz ez qoyxrsy < T ull Vulll s 22 o,7)xms) = €¥ A7 [Jul[Vulll s £2 (0,7 x79)
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Now we apply holders inequality (twice) and basic properties of suprenum

][ Vul| ‘L;‘L’;’C([O,T]xﬂ‘i‘)

— (/OT(/W |u2|Vu|2dx)2dt>i = (/OT(/TS |u|2Vu|Vu|dx)2dt>

T 3
g(/ (/ |u\%|vu|%dx)%(/ |vu|6dx)édt) ,holderwithp:§,q:6
o Jrs T3 5
T

<([ ([ [vupaniant . s ([ jul¥(vafdn)
0 T3 0<t<T JT3

1
1

1 5
= ||Vaul|Z, - sup ([ [|u¥|Vul®dz)T
tYe  0<t<T JT3

1 1 1 . ) 5
< [IVullZzpe - sup ( 8 |ul®dz)s - (/w Vul*)%, hold with p = 7.q= ¢

1 1
< HVUHZng : ||UHL§’°L2 : ||VU‘|[2,;>°L§
Next, using the sobolev inequality mentioned we have
1 1
Va2 - lullogzs - Vll e s
1 1
<IVullEs s - I Vullze 2 - 1VullEe

1 3 1 3 9
= lull s g llF o s < Ml el = Il ey
So we’ve shown that
1
()llxy S A+t A7 Jull%y

and so (if ¢ is small enough) there is a constant C' so that ® maps the ball of
radius C'A to itself. O

We are now ready to prove most of the main theorem

Proof. (1 < 2 in Theorem @ From |3 we have a smooth solution up to time 7" :=

I%r and moreover from our assumption we have

uol]
Hg

() 2 (rsy < F'(|Juollmacrs))

so by plugging in u(T) as our initial time we can extend this solution by
time ———"——; and once again at the end of this time we have the same
F(H”UHH}E(T?’))

bound F(|[uol|g1(rsy). Iterating process we can move forward by intervals of

m adinfinum and thus get a global smooth solution. (It’s worth con-
Haz+ (T

trasting this with the control over ||u(T)||z1(1s) we get just from Lemma directly
which at each step n only allows one to move forward by W, @ > 0 and
i

hence may converge to some blow up time) O

Proof. (3 = 2 of Theorem @ Let u : [0,T] x T®> — R3 be a smooth solution for
0 <T < oo. Let € > 0 be a small number depending on ||ug||z1(r3) which will be
chosen later. To simplify equations let £/ = [|uo|| g1 (13), our goal is to gain uniform
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control over ||u(t)||g1(rs) in terms of E from time 0 to time 7', i.e. we want to
show:
ullco g1 jo,m,m3) SE 1
Case 1: T < = L having fixed epislon, we just need to iterate our assumption: we
know that from our assumption we get control up to time 1. if T < 1 we are done,
else we can gain (somewhat worse) control up to time 2 etc... in the end we get

[ulleo g1 jo,r,msy SEve 1

so as long as € only depends on F (which we will see it does) we are done.
Case 2: T > <. As usual we begin with an energy estimate. In this case it is
the ’basic energy estlmate from our notes.

Oulul 32 ey = 00 [ [uPdo =2 [ 00

:2/u'Au+2/u~(u'Vu)72/u'Vp
/uza u1+2/ :0j(u;u;) _Q/Uiéip

= —2/ |Vu|2 +0— 2/ui6j(ujui) +0
_ / IVuf? = —2/|Vul2 oo,

(where the second last line follows from the fact that divu = 0 and the last from
the fact that we’ve shown 2 [;0;(uju;) = =2 [4;0;(uju;))
By integration and taking a sup over all t we thus get

l[ullLge 2 (0, 11xm3) + 1| Vull 22 (0,11x13) S |uollzz (rey < [[uollmz(re)

Where the last inequality just the observation that Y, s [tio(k)|* < 3, czs k2|0 (K)|?

since the mean of wug is f(O) = 0 (or just a special case of poincare’s inequality).
Now recalling our definition of E we rewrite this as

l[ul|Lge 2 (0, x13) + [Vl L2 L2 (0,11x13) SE 1

in particular |[Vul[p272(o,7)x12) SE 1 and hence there exists a 0 < T7 < & so
that
[IVu(T")| L2 (13) Sk €

(since otherwise we would have HVU(T/)HLng([O,E%],W) 2F ||€||L§([0,}2]) = 5=

1). So
(T ) a2 (rey S €
we will show that having this arbitrary control allows us to extend our control to

an arbitrary time. Lets start by extending our control to min(7”+1,T") we will just
assume T” +1 < T as the other case holds by identical computations. By triangle
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inequality
u HI(T3) > [|€ U H1(T3) u — € u HL(T3)
(T + 1)l 2 crsy < e ulT") [ crsy + (T + 1) = eBu(T")] |2
T'+1 ,
— [Je2u(T" )l g3 rs) + I / TSP diva @ w)dt] 12 e
T/
The first term is bounded by
leAu(T) [z cmay = > [k u u(T)(k) < e > RPa(T) (k) = e u(T)| | 1)
kez3 kez3
To bound the second term is more involved. If € is small enough we can apply
Lemma [3] with initial condition u(1") to get
||U||CQH;([T/,T/+1}xT3) + \|U||L§Hg([T/,T/+1]xT3) S lu(T /)H?{;(W)
In fact the details of the proof of that lemma give that
IP(dive @ )| 2 L2 (27 1741 x19) S (T o

We also recall from our notes that any ¢ € [0,00) and s > 1 with f € H*(T?) we
get

HetAfHHs(TS) S A+ e sy, 0 <k <1
combining this we have

’

1 T'+1
H (T +1—T)A[p>(divu ® u)dtHH;(’IFS) < / He(T +1—T)Ap(divu ® U)HH;(']I‘J)dt
T T

’

T'+1
5/ (1+(T"+ 1 —7)7")|[P(divu @ u)||2 (1s)dt
S |IP(dive @ u)|[ L2 (rs)
e (@) (s
So for some constant C'ry depending on E we’ve shown
(T + Dl g rsy < e M)z ere) + Crllul(T) [ s
but since [|u(T")||g1(13) Sk €, if € is small enough (depending on E) we get
e (T |mzcrs) + Collu(T) | F oy < (T 1 )
80
(T + Dl g1 rsy < [Ju(T)]|m1(rs)

We can control up from 7" to T 4+ 1 just using by Lemma [3| (since we get
ullco g1 (7 77417 x13) S [[w(T ’)||fq;(T3)), but now with the above inequality we can
iterate this procedure to get control from T’ to T i.e.

lullco gz 18y SE 1
and finally since 7" < E% we can gain control from 0 to T’ by case 1,
ullco g1 jo,m,m3) SE 1
O

for the last stage of the theorem we need to recall some basic notions of conver-
gence and a technical lemma relating them
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Definition 5. Given an element u € H'(T?) and sequence {u(™},cny € HY(T?),
we say u(™ converges weakly to u in H'(T®) provided that u(™ converges weakly to
uin L?(T?) and Vu(™ converges weakly to Vu in L?(T?) (in the usual sense viewing
L?(T?) as the dual banach space to itself). It’s easy to see that weak convergences
preserves the mean providing a notion of weak convergence in Hg(T?) [Shka.

Lemma 6. As in Lemma |§ we let A > 0 and set T := -7, If ug € H{(T?) with
[uol g sy < A and u € X7 is the corresponding strong solution from Lemma@ and
if {ul Y new € HL(T®) is a sequence with ||ué")\|Hé(T3) < A which converges weakly
to ug in H(T?) then for any 0 < e < T, u'™ converges strongly in COH} ([e, T] x T?)
to u.

Proof. (very quick glimpse) Let v = 4™ —u so
¢
™ (1) = o™ (0) + / eI (P(div(v™ @ u)) + P(div(u™ @ v™))dr
0

We can thus bound v(™(¢) in a similar manner to the computations done in
Lemma In particular the energy estimate can be made more general (as it is
done in Tao’s paper). In fact, the proof of this more general result is virtually
identical to what we proved here. In this case it gives us

10 llgo 2+ L2y S 110 (0)]] 22 HIP(div (0" @) )+ (div (™ @0 ™) 12 1

and from here we go through some similar (though messier) computations to get
v(™) converging strongly in CYHJ (e, T] x T?) to 0. O

We can now finish the proof of Theorem [2]

Proof. (1 = 3 of Theorem @) Suppose that property 3 was false. We have there
is some A > 0 so that for all non decreasing functions G : [0,00) — [0, 00) and
any smooth mean zero solution u(9) : [0, 7] x T — R3 (with associated p(9) :

[0,7W] x T3 5 R), 0 < T < 1 with |Julf’||s1(xs) < A so that

[ (TD) | a0y > Glllug? 1y v0))
That is to say for some A, if the initial condition is bounded by A this is not

enough to control later times. Hence we can find a sequence of smooth mean zero
solutions u(™ : [0, T™] x T? — R3,0 < T@ < 1 with |Ju"|| < A for which

; (n) (p(n) I
tim (™) (7)) 737y = o0
by passing to a subsequence we may assume
lim 70 =T

n—oo

where 0 < T < 1. Moreover if T = 0 then for 7" suffienciently small we can
just apply lemmato control |[u(™ (T("))||Hé (rsy Which is a contradiction thus we
may assume 17" > 0.

Now ||Uén)||Lg('JI‘3) < ||u(()n)||H;(T3) = ||V’u(()n)||Li(T3) < A so using the Banach-
Alaoglu theorem twice we can pass to a subsequence so that both u() and Vuén)
converge weakly in L2(T?). Therefore by definition u" converges weakly to some
up in H}(T?). Thus by Lemma 3| we can extend ug to [0,7”] for some T’ and
moreover u(t) for ¢ > T" is smooth, therefore by our assumption applied to the
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smooth initial data w(7") we can extend ug to a global smooth solution u. In
particular
A" = [u®) oo o,21)x13) < 00
So if we let A” = max{A’, A} then we have HU(()n)HH(}(W) and ||uo|| g3 (1) < A” s0
we can iterate Lemma@to get u(™) converges strongly to u in CYH{ ([, 27 x T3).
In particular for n large since 7 ¢ (%, 2T') so we have

™ (T = a(TO) 59y = 0
and so
(T || g1 psy < 247
which is a contradiction. O
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