
NAVIER-STOKES FINAL PROJECT

ROBERT GRAHAM

These notes are meant to provide a summary of Terrence Tao's paper �A Quan-
tative formulation of the global regularity problem for the periodic Navier-Stokes
System�[Tao]. This paper proves a well-known but important result that tells us
what a solution to the Navier-Stokes problem would have to look like. It is some-
what hard to write a summary of an already concise and well written summary. So
instead I have primarily added detail to many of the proofs with the goal of making
it easier for someone whos only background is our class [Schu] to understand (in
particular making it easier for me to understand). Be warned that I have likely also
added errors in the process.

We recall the de�nition of the navier-stokes system:

De�nition 1. Given a smooth pressure term p : [0,∞) × T3 → R and a smooth,
divergence free initial condition u0 : T3 → R3 then u : [0,∞) × T3 → R3 is a
solution to the navier-stokes with initial condition u0 if it satis�es

∂tu = ∆u+ (u · ∇u)−∇p
div(u) = 0

u(0, x) = u0(x)

Of primary interest is �nding a global smooth solution (that is a smooth solution
that is de�ned for all [0,∞) × T3) which is a famous open problem. The result of
Tao's paper tells us that we can't solve this problem unless we also show 'explicitly'
how to control the H1

x(T3) norm of any smooth solution. In other words any
proof of existence needs to have some sort of concrete quantative substance to
it. Moreover, we could disprove existence by showing a sequence of solutions u(n)

uniformally bounded in the H1
x(T3) norm at time 0 but unbounded at later times

0 ≤ T (n) <∞.
Formally, the main goal of the paper is to show the following

Theorem 2. The following are equivalent:

(1) There is a global smooth solution to the navier stokes for smooth initial
data

(2) There exists a non decreasing function F : [0,∞)→ [0,∞) satisfying

||u(T )||H1(T3) ≤ F (||u0||H1(T3))

for any smooth solution u (with associated smooth p) and any 0 < T <∞
for which u is de�ned.

(3) There exists a non decreasing function G : [0,∞)→ [0,∞) satisfying

||u(T )||H1(T3) ≤ G(||u0||H1(T3))

for any smooth solution u (with associated smooth p) and any 0 < T ≤ 1
for which u is de�ned.
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Note part 3 is just a less demanding version of part 2.
We can write F more explictly as a function F : [0,∞)→ [0,∞] by

F (A) := sup{||u||C0
tH

1
x([0,T ]×T3) : ||u0||H1

x(T3) ≤ A; 0 ≤ T <∞}

so that it is non-decreasing and trivially satis�es the desired inequality ||u(T )||H1(T3) ≤
F (||u(0,−)||H1(T3)). The problem can thus be thought of as showing that this F
has range [0,∞). The rate of growth of F is an interesting open problem. Though

we know F (A)
A →∞ as A→∞ it is not even known if F (A) & A1+ε

Before we can prove the main theorem we need to recall some facts. We will see
that much of these are a slight tweaking of what was already proven in our notes.
First we recall that we can rewrite the navier stokes equation to get

∂tu = ∆u+ P(divu⊗ u)

and hence by duhamel formula any solution is of the form

u(t) = et∆g +

ˆ t

0

e(t−τ)∆P(divu⊗ u)dτ

We called any u of that form a mild solution.
Moreover it su�ces to consider the case where u is mean zero since the mean

gets preserved by the equations (and so it can be subtracted o�). We let Hs
0(T3)

be the space of mean zero functions in Hs(T3). Note that the usual seminorm

|f |Hs :=
∑
k∈Z3

|k|2sf̂(k)2

is now a norm when restricted to Hs
0(T3) thus we will write ||f ||Hs0 instead of

|f |Hs though this is not to be confused with the norm de�ned in our notes. It is

easy to see why this is now a norm because |f |Hs = 0 if and only if f̂(k) = 0 for

all k 6= 0 but f̂(0) is the mean so it is also zero, therefore |f |Hs = 0 if and only if
f = 0. (we will sometimes write H1

x to emphasize we are taking the H1
0 norm with

respect to the 'space' variables. Unfortunately this overides the 0 in H1
0 ...)

In this paper we say a mild solution u is a strong (H1
0 ) solution if u is de�ned

on [0, T ] and u ∈ X1
T where

X1
T := C0

tH
1
0 ([0, T ]× T3) ∩ L2

tH
2
0 ([0, T ]× T3)

which is a banach space with norm

||u||X1
T

:= ||u||C0
tH

1
0 ([0,T ]×T3) + ||u||L2

tH
2
0 ([0,T ]×T3)

In other words we say u is a strong solution when we have control over its H1

norm for all t and we have control over the average of its H2 norm.
The following important result is key to proving the main theorem

Lemma 3. (Local existence) Let A > 0 and set T := c
A4 where c is some constant.

If u0 ∈ H1
0 (T3) with ||u0||H1

0 (T3) ≤ A then there exists a unique strong solution

u ∈ X1
T with the bound

||u||X1
T
. A

Moreover the map φ : {u0 ∈ H1
0 (T3) : ||u0||H1

0 (T3) ≤ A} → X1
T is lipschitz

continuous and �nally u(t) is smooth for all t > 0 (note we don't need to assume
u0 is smooth).
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The proof of this theorem is similar to the 'local existence in 3 dimensions' we've
down in class. Many of the ideas are there but just not written with the space X1

T

in mind. The basic idea for showing existence is to de�ne the map Φ : X1
T → X1

T

by

Φ(u)(t) := et∆u0 +

ˆ t

0

e(t−τ)∆P(divu⊗ u)dτ

and show this has a �xed point by the banach �xed point theorem. This amounts
to showing Φ is a well de�ned contraction mapping. All the necessary control over
norms ultimately arises from an energy estimate which we will prove right now
(once again it is reminiscent to something in the notes, namely the 'basic energy
estimate')

Lemma 4. (Special case of the energy estimate) For u0 ∈ H1
0 (T3), u ∈ X1

T we have

u(t) := et∆u0 +
´ t

0
e(t−τ)∆P(u⊗ u)dτ lies in X1

T with

||u(t)||X1
T
. c′||u0||H1

0 (T3) + C||P(divu⊗ u)||L2
tL

2
x([0,T ]×T3)

for some constatns c′, C.

Proof. By taking a limit we can assume everything is smooth and hence we can
assume that u solves ∂tu = −∆u+ P(divu⊗ u)

then (ignoring some constants arising from the precise de�nition of the norm)
we get

∂t||u(t)||2H1
0

= ∂t

ˆ
|∇u|2

= −
ˆ
∇u · ∇∂tu

=

ˆ
∇u · ∇∆u−

ˆ
∇u · ∇P(divu⊗ u)

=

ˆ
∂iuj∂i∂

2
kuj +

ˆ
∇2u · P(divu⊗ u)

= −
ˆ
∂2
i uj∂

2
kuj −

ˆ
∇2u · P(divu⊗ u)

≤ −||u(t)||2H2
0 (T3) + a||u(t)||2H2

0 (T3) + a′||P(divu⊗ u)||2L2(T3), a > 0, a′ > 0

where the last line follows from generalized youngs inequality. by choosing the
constants of the generalized youngs inequality appropriately we can ensure that we
get

∂t||u(t)||2H1
0
≤ c′||u(t)||2H2

0 (T3) + c′′||P(divu⊗ u)||2L2(T3), c
′ > 0, c′′ > 0

So by integration we get

||u(t)||2H1
0
− ||u0||2H1

0
≤ c′||u||2L2

tH
2
0 ([0,T ]×T3) + c′′||P(divu⊗ u)||2L2

tL
2
x([0,T ]×T3)

for all t ∈ [0, T ] hence we can replace ||u(t)||2
H1

0
with ||u||C0

tH
1
0 ([0,T ]×T3) and the

result follows by appropriate algebraic manipulations. �

Now we can show some of the details of Lemma 3
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Proof. (part of Lemma 3) We will show the the �rst major part of the proof to get
a basic idea of the computations involved. Like we mentioned above de�ne the map
Φ : X1

T → X1
T by

Φ(u)(t) := et∆u0 +

ˆ t

0

e(t−τ)∆P(divu⊗ u)dτ

We would like to show this map has the claimed domain. To this end recall some
basic facts, �rstly for f ∈ L2[0, T ] we have

||f ||L2[0,T ] =

√ˆ T

0

|f |2dt =

√ˆ T

0

|f |2 · 1dt

≤

√
(

ˆ T

0

|f |4dt) 1
2 (

ˆ T

0

12dt)
1
2

= T
1
4 (

ˆ T

0

|f |4dt) 1
4 = T

1
4 ||f ||L4[0,T ]

(this is just an instance of the well known proof that Lp[0, T ] ⊂ Lq[0, T ] for
p ≤ q). We also recall (without proof) another fundamental result; a special case
of Sobolev's inequality which says for f : T3 → R smooth we have

||f ||L6(T3) . ||∇f ||L2(T3)

(see [Shko]). We begin with our energy estimate

||Φ(u)||X1
T
. ||u0||H1

0 (T3) + ||P(divu⊗ u)||L2
tL

2
x([0,T ]×T3)

≤ A+ ||P(divu⊗ u)||L2
tL

2
x([0,T ]×T3)

To control ||P(divu⊗ u)||L2
tL

2
x([0,T ]×T3) We note that P(divu⊗ u) is made up of

terms of the form ∂iujui (when divu = 0) whereas |u||∇u| is made up of terms of
the from uiδjuk thus we can conclude

||P(divu⊗ u)||L2
tL

2
x([0,T ]×T3) . |||u||∇u|||L2

tL
2
x([0,T ]×T3)

using our �rst fact

|||u||∇u|||L2
tL

2
x([0,T ]×T3) ≤ T

1
4 |||u||∇u|||L4

tL
2
x([0,T ]×T3) = c

1
4A−1|||u||∇u|||L4

tL
2
x([0,T ]×T3)
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Now we apply holders inequality (twice) and basic properties of suprenum

|||u||∇u|||L4
tL

2
x([0,T ]×T3)

=

(ˆ T

0

(

ˆ
T3

|u|2|∇u|2dx)2dt

) 1
4

=

(ˆ T

0

(

ˆ
T3

|u|2|∇u||∇u|dx)2dt

) 1
4

≤

(ˆ T

0

(

ˆ
T3

|u| 125 |∇u| 65 dx)
5
3 (

ˆ
T3

|∇u|6dx)
1
3 dt

) 1
4

, holder with p =
6

5
, q = 6

≤ (

ˆ T

0

(

ˆ
T3

|∇u|6dx)
1
3 dt)

1
4 · sup

0≤t≤T
(

ˆ
T3

|u| 125 |∇u|6dx)
5
12

= ||∇u||
1
2

L2
tL

6
x
· sup

0≤t≤T
(

ˆ
T3

|u| 125 |∇u|6dx)
5
12

≤ ||∇u||
1
2

L2
tL

6
x
· sup

0≤t≤T
(

ˆ
T3

|u|6dx)
1
6 · (
ˆ
T3

|∇u|2)
1
4 , hold with p =

5

2
, q =

5

3

≤ ||∇u||
1
2

L2
tL

6
x
· ||u||L∞t L6

x
· ||∇u||

1
2

L∞t L
2
x

Next, using the sobolev inequality mentioned we have

||∇u||
1
2

L2
tL

6
x
· ||u||L∞t L6

x
· ||∇u||

1
2

L∞t L
2
x

. ||∇2u||
1
2

L2
tL

2
x
· ||∇u||L∞t L2

x
· ||∇u||

1
2

L∞t L
2
x

= ||u||
1
2

L2
tH

2
x
||u||

3
2

L∞t H
1
x
≤ ||u||

1
2

X1
T
||u||

3
2

X1
T

= ||u||2X1
T

So we've shown that

||Φ(u)||X1
T
. A+ c

1
4A−1||u||2X1

T

and so (if c is small enough) there is a constant C so that Φ maps the ball of
radius CA to itself. �

We are now ready to prove most of the main theorem

Proof. (1 ⇐ 2 in Theorem 2) From 3 we have a smooth solution up to time T :=
c

||u0||4
H1

0

and moreover from our assumption we have

||u(T )||H1
x(T3) ≤ F (||u0||H1

x(T3))

so by plugging in u(T ) as our initial time we can extend this solution by
time c

F (||u0||H1
x(T3))

4 and once again at the end of this time we have the same

bound F (||u0||H1
x(T3)). Iterating process we can move forward by intervals of

c
F (||u0||Hx1(T3))

4 adin�num and thus get a global smooth solution. (It's worth con-

trasting this with the control over ||u(T )||H1
x(T3) we get just from Lemma 3 directly

which at each step n only allows one to move forward by c
Q4n||u0||4n

H1
x

, Q > 0 and

hence may converge to some blow up time) �

Proof. (3 ⇒ 2 of Theorem 2) Let u : [0, T ] × T3 → R3 be a smooth solution for
0 < T < ∞. Let ε > 0 be a small number depending on ||u0||H1

x(T3) which will be
chosen later. To simplify equations let E = ||u0||H1

x(T3), our goal is to gain uniform
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control over ||u(t)||H1
x(T3) in terms of E from time 0 to time T , i.e. we want to

show:

||u||C0
tH

1
x([0,T ],T3) .E 1

Case 1: T < 1
ε2 having �xed epislon, we just need to iterate our assumption: we

know that from our assumption we get control up to time 1. if T < 1 we are done,
else we can gain (somewhat worse) control up to time 2 etc... in the end we get

||u||C0
tH

1
x([0,T ],T3) .E,ε 1

so as long as ε only depends on E (which we will see it does) we are done.
Case 2: T ≥ 1

ε2 . As usual we begin with an energy estimate. In this case it is
the 'basic energy estimate' from our notes.

∂t||u||2L2
x(T3) = ∂t

ˆ
|u|2dx = 2

ˆ
u · ∂tu

= 2

ˆ
u ·∆u+ 2

ˆ
u · (u · ∇u)− 2

ˆ
u · ∇p

= 2

ˆ
ui∂

2
j ui + 2

ˆ
ui∂j(ujui)− 2

ˆ
uiδip

= −2

ˆ
(∂jui)

2 + 2

ˆ
ui(djuj)ui + 2

ˆ
uiuj∂jui + 2

ˆ
∂iuip

= −2

ˆ
|∇u|2 + 0− 2

ˆ
ui∂j(ujui) + 0

= −2

ˆ
|∇u|2 = −2||∇u||2L2

x(T3)

(where the second last line follows from the fact that divu = 0 and the last from
the fact that we've shown 2

´
ui∂j(ujui) = −2

´
ui∂j(ujui))

By integration and taking a sup over all t we thus get

||u||L∞t L2
x([0,T ]×T3) + ||∇u||L2

tL
2
x([0,T ]×T3) . ||u0||L2

x(T3) ≤ ||u0||H1
x(T3)

Where the last inequality just the observation that
∑
k∈Z3 |û0(k)|2 ≤

∑
k∈Z3 k2|û0(k)|2

since the mean of u0 is f̂(0) = 0 (or just a special case of poincare's inequality).
Now recalling our de�nition of E we rewrite this as

||u||L∞t L2
x([0,T ]×T3) + ||∇u||L2

tL
2
x([0,T ]×T3) .E 1

in particular ||∇u||L2
tL

2
x([0,T ]×T3) .E 1 and hence there exists a 0 ≤ T ′ ≤ 1

ε2 so
that

||∇u(T ′)||L2
x(T3) .E ε

(since otherwise we would have ||∇u(T ′)||L2
tL

2
x([0, 1

ε2
],T3) &E ||ε||L2

t ([0,
1
ε2

]) = ε2 · 1
ε2 =

1). So

||u(T ′)||H1
x(T3) .E ε

we will show that having this arbitrary control allows us to extend our control to
an arbitrary time. Lets start by extending our control to min(T ′+1, T ) we will just
assume T ′ + 1 < T as the other case holds by identical computations. By triangle
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inequality

||u(T ′ + 1)||H1
x(T3) ≤ ||e∆u(T ′)||H1

x(T3) + ||u(T ′ + 1)− e∆u(T ′)||H1
x(T3)

= ||e∆u(T ′)||H1
x(T3) + ||

ˆ T ′+1

T ′
e(T ′+1−τ)∆P(divu⊗ u)dt||H1

x(T3)

The �rst term is bounded by

||e∆u(T ′)||H1
x(T3) =

∑
k∈Z3

|k|2e−|k|
2

û(T ′)(k) ≤ e−1
∑
k∈Z3

|k|2û(T ′)(k) = e−1||u(T ′)||H1
x(T3)

To bound the second term is more involved. If ε is small enough we can apply
Lemma 3 with initial condition u(T ′) to get

||u||C0
tH

1
x([T ′,T ′+1]×T3) + ||u||L2

tH
2
x([T ′,T ′+1]×T3) . ||u(T ′)||2H1

x(T3)

In fact the details of the proof of that lemma give that

||P(divu⊗ u)||L2
tL

2
x([T ′,T ′+1]×T3) .E ||u(T ′)||2H1

x(T3)

We also recall from our notes that any t ∈ [0,∞) and s ≥ 1 with f ∈ Hs(T3) we
get

||et∆f ||Hs(T3) . (1 + t−κ)||f ||Hs−1(T3), 0 < κ < 1

combining this we have

||
ˆ T ′+1

T ′
e(T ′+1−τ)∆P(divu⊗ u)dt||H1

x(T3) ≤
ˆ T ′+1

T ′
||e(T ′+1−τ)∆P(divu⊗ u)||H1

x(T3)dt

.
ˆ T ′+1

T ′
(1 + (T ′ + 1− τ)−κ)||P(divu⊗ u)||L2

x(T3)dt

. ||P(divu⊗ u)||L2
x(T3)

.E ||u(T ′)||2H1
x(T3)

So for some constant CE depending on E we've shown

||u(T ′ + 1)||H1
x(T3) ≤ e−1||u(T ′)||H1

x(T3) + CE ||u(T ′)||2H1
x(T3)

but since ||u(T ′)||H1
x(T3) .E ε, if ε is small enough (depending on E) we get

e−1||u(T ′)||H1
x(T3) + CE ||u(T ′)||2H1

x(T3) ≤ ||u(T ′)||H1
x(T3)

so

||u(T ′ + 1)||H1
x(T3) ≤ ||u(T ′)||H1

x(T3)

We can control up from T ′ to T ′ + 1 just using by Lemma 3 (since we get
||u||C0

tH
1
x([T ′,T ′+1]×T3) . ||u(T ′)||2H1

x(T3)), but now with the above inequality we can

iterate this procedure to get control from T ′ to T i.e.

||u||C0
tH

1
x([T ′,T ],T3) .E 1

and �nally since T ′ ≤ 1
ε2 we can gain control from 0 to T ′ by case 1,

||u||C0
tH

1
x([0,T ],T3) .E 1

�

for the last stage of the theorem we need to recall some basic notions of conver-
gence and a technical lemma relating them
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De�nition 5. Given an element u ∈ H1(T3) and sequence {u(n)}n∈N ⊂ H1(T3),
we say u(n) converges weakly to u in H1(T3) provided that u(n) converges weakly to
u in L2(T3) and∇u(n) converges weakly to∇u in L2(T3) (in the usual sense viewing
L2(T3) as the dual banach space to itself). It's easy to see that weak convergences
preserves the mean providing a notion of weak convergence in H1

0 (T3) [Shko].

Lemma 6. As in Lemma 3 we let A > 0 and set T := c
A4 . If u0 ∈ H1

0 (T3) with

||u0||H1
0 (T3) ≤ A and u ∈ X1

T is the corresponding strong solution from Lemma 3 and

if {u(n)
0 }n∈N ⊂ H1

0 (T3) is a sequence with ||u(n)
0 ||H1

0 (T3) ≤ A which converges weakly

to u0 in H1
0 (T3) then for any 0 < ε < T , u(n) converges strongly in C0

tH
1
0 ([ε, T ]×T3)

to u.

Proof. (very quick glimpse) Let v(n) := u(n) − u so

v(n)(t) = et∆v(n)(0) +

ˆ t

0

e(t−τ)∆(P(div(v(n) ⊗ u)) + P(div(u(n) ⊗ v(n)))dτ

We can thus bound v(n)(t) in a similar manner to the computations done in
Lemma 3. In particular the energy estimate can be made more general (as it is
done in Tao's paper). In fact, the proof of this more general result is virtually
identical to what we proved here. In this case it gives us

||v(n)||C0
tL

2
s
+||v(n)||L2

tH
1
0
. ||v(n)(0)||L2

x
+||P(div(v(n)⊗u))+P(div(u(n)⊗v(n))||L2

tH
−1
0

and from here we go through some similar (though messier) computations to get
v(n) converging strongly in C0

tH
1
0 ([ε, T ]× T3) to 0. �

We can now �nish the proof of Theorem 2

Proof. (1 ⇒ 3 of Theorem 2) Suppose that property 3 was false. We have there
is some A > 0 so that for all non decreasing functions G : [0,∞) → [0,∞) and
any smooth mean zero solution u(g) : [0, T (g)] × T3 → R3 (with associated p(g) :

[0, T (g)]× T3 → R), 0 < T (g) ≤ 1 with ||u(g)
0 ||H1(T3) ≤ A so that

||u(g)(T (g))||H1
0 (T3) > G(||u(g)

0 ||H1
0 (T3))

That is to say for some A, if the initial condition is bounded by A this is not
enough to control later times. Hence we can �nd a sequence of smooth mean zero

solutions u(n) : [0, T (n)]× T3 → R3,0 < T (g) ≤ 1 with ||u(n)
0 || ≤ A for which

lim
n→∞

||u(n)(T (n))||H1
0 (T3) =∞

by passing to a subsequence we may assume

lim
n→∞

T (n) = T

where 0 ≤ T ≤ 1. Moreover if T = 0 then for T (n) su�enciently small we can
just apply lemma 3 to control ||u(n)(T (n))||H1

0 (T3) which is a contradiction thus we
may assume T > 0.

Now ||u(n)
0 ||L2

x(T3) ≤ ||u
(n)
0 ||H1

x(T3) = ||∇u(n)
0 ||L2

x(T3) ≤ A so using the Banach-

Alaoglu theorem twice we can pass to a subsequence so that both u(n) and ∇u(n)
0

converge weakly in L2(T3). Therefore by de�nition u
(n)
0 converges weakly to some

u0 in H1
0 (T3). Thus by Lemma 3 we can extend u0 to [0, T ′] for some T ′ and

moreover u(t) for t > T ′ is smooth, therefore by our assumption applied to the
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smooth initial data u(T ′) we can extend u0 to a global smooth solution u. In
particular

A′ := ||u(t)||C0
tH

1
x([0,2T ]×T3) <∞

So if we let A′′ = max{A′, A} then we have ||u(n)
0 ||H1

0 (T3) and ||u0||H1
0 (T3) ≤ A′′ so

we can iterate Lemma 6 to get u(n) converges strongly to u in C0
tH

1
0 ([T2 , 2T ]×T3).

In particular for n large since T (n) ∈ (T2 , 2T ) so we have

||u(n)(T (n))− u(T (n))||H1
0 (T3) → 0

and so
||u(n)(T (n))||H1

0 (T3) ≤ 2A′

which is a contradiction. �
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