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Abstract

In this paper we will address the abstract problem for the Navier-Stokes differential equation{
du
dt

+ ∆u = (u · ∇)u t > 0

∇ · u = 0 and u(0) = a,
(1)

where u belongs to the Hilbert space of divergence free functions vanishing up to first order on
the boundary ∂Ω of a bounded domain Ω in R3. The boundary will be assumed to be of class
C 3.

1 Projection onto divergence-free subspace

Let L2(Ω) be set of vector-valued square integrable functions on Ω,

u(x, t) = (u1(x, t), u2(x, t), u3(x, t)),

equipped with (, ) L2 inner-product, makes Hilbert space. Let ϕ ∈ Cσ(Ω) be vector-valued contin-
uously differentiable functions with divϕ = 0 vanishing at up to first order on ∂Ω. Take Hσ to be
the L2-closure of Cσ(Ω). If u ∈ C 1(Ω) with div u = 0 and ∂u

∂ν = 0, the vector ν being normal to
∂Ω, then u ∈ Hσ. Moreover, denote

Mπ = {u ∈ L2(Ω) : u = ∇h, h ∈ C 1(Ω)},

and take Hπ as the L2-closure of Mπ. We claim Hσ = H 	 Hπ. To show the first inclusion
Hσ ⊂ H 	 Hπ, we easily see that if u = ∇h for some scalar-valued smooth function h, we have
∇h ≡ 0 by uniqueness of Neumann problem{

∆h = 0 in Ω
∂h
∂ν = 0 on ∂Ω.

On the other hand, for w ∈ H 	Hπ with w ⊥ Hσ. We have

(w,∇h) = 0 and (w, curlϕ) = 0 ∀h, ϕ ∈ C 1
0 (Ω) (2)
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so partial integration respectively implies that divw = 0 and curlw = 0 weakly. By the first
implication we therefore see that w ∈ C∞(Ω) by Weyl’s Lemma since

(∆w,ϕ) = −(∇w,∇ϕ) = 0 ∀ϕ ∈ C∞0 (Ω).

Moreover, since curlw = 0, w is a conservative vector-field so w = ∇h for some smooth function h
and thence w ∈Mπ thus proving the orthogonal decomposition.

Let P be the orthogonal projection from H → Hσ and consider the related problem{
du
dt +Au = Fu, t > 0,

u(0) = a,
(3)

where we took A = P∆ and Fu = P(u · ∇)u. In addition, assume that a ∈ Hσ.

Define bilinear form ã(u, v) : [Hσ(Ω)]2 → R given by

ã(u, v) = (∇u,∇v), (u, v ∈ Hσ(Ω)). (4)

The defined form is symmetric, coercive and bounded in [Hσ(Ω)]2; for simplicity we denote V =
Hσ(Ω). Using ã(·, ·), we define an operator Ã on V : for u ∈ V , if there is an element f ∈ L2(Ω)
such that a(u, v) = (f, v) for every v ∈ V , then u ∈ D(A) and Au = f . The bilinear form in
(4) is continuous in the V -topology so it it is continuous in the topology induced by L2(Ω) since
‖u‖L2 ≤ M‖u‖V for a universal M depends solely on the domain Ω; in effect, this is due to
Friedrich’s Sobolev type inquality. Consequently, we can extend ã(·, ·) to be defined on [L2(Ω)]2

and in turn may extend Ã similarly in a manner which runs as follows.
Let Λ|V denote the restriction of a member Λ belonging to (L2)∗, the dual of L2(Ω) to V . Then

for any v ∈ V ,
|(Λ|V )(v)| = |Λ(v)| ≤M‖Λ‖∗‖v‖V , (5)

thus making Λ|V ∈ V ∗. Here, V ⊂ L2(Ω), densely, so the correspondence Λ → ΛV is an injection
and thus we may identify Λ with Λ|V hence concluding the continuous embedding L2(Ω)∗ ⊂ V ∗

since
‖Λ|V ‖V ∗ ≤ ‖Λ‖∗,

i.e., (L2)∗ has the stronger topology. We have the continuous sequence of topological inclusions

V ⊂ L2(Ω) ⊂ V ∗.

Moreover, if for v ∈ V with (u, v) = 0 for every u ∈ V ∗ making v = 0 and that V is densely
embedded in V ∗. Since V is already a dense subspace of L2, we infer that the L2(Ω) is densely
embedded in V ∗. Consequently, f ∈ L2(Ω) induces a linear functional expressed by f(v) = (f, v).
On the other hand when u ∈ V fixed, a(u, ·) ∈ V ∗ and thus we have the following expression for
f ∈ V ∗

a(u, v) = f(v). (6)

As a result, we extend Ã by defining A via

a(u, v) = (Au, v) (u, v ∈ Hσ), (7)

and
D(A) = {u ∈ Hσ : Au ∈ L2(Ω)}. (8)

In other words, operator A is the Friedrich extension of Ã and from the definition it follows that

(A
1
2u,A

1
2 v) = (∇u,∇v) ∀u, v ∈ Hσ, and D(A

1
2 ) = Hσ. (9)
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2 Abstract Cauchy problem

2.1 Preliminaries: Hille-Yosida

In most generality, let X be a Banach space and let A be a densely defined linear operator on X
from D(A) ⊂ X into X. Given x ∈ X, the homogenous abstract Cauchy problem for A with initial
data x consists of finding a solution u to the operator equation{

du
dt +Au = 0, t ∈ [0,∞),

u(0) = x.
(10)

Here, the sought solution is understood to be a continuous X-valued function u(t) for t ≥ 0,
u(t) ∈ D(A) with a continuous derivative for t > 0. Evidently, under the continuity requirement
on t ≥ 0, the problem (10) cannot not admit a solution in the sense expressed above whenever
x /∈ D(A).

The solvability of the Cauchy problem (10) will first be addressed in the Hilbert setting where
X = H is a Hilbert space equipped with inner-product (·, ·), A unbounded linear operator sending
D(A) → H. It is not yet clear that A is densely defined in H. It is sufficient to assume that A
enjoyed the properties that (Av, v) ≥ 0 for every v ∈ D(A) and that Ran(I+A) = H. We will refer
to these, respectively, by monotonicity and maximality; as a consequence such operators as said to
be maximal monotone. As a result, given any f ∈ H with f ⊥ D(A) we conclude that f = 0; this
means that the domain D(A) is dense in the topology of H induced by the inner-product. Indeed,
the monotonicity of A implies that

0 = (f, v) = ‖v‖2 + (Av, v) ≥ ‖v‖2,

for any v belonging to the range Ran(I+A) whose existence is ensured by the maximality of A. It is
noteworthy to remind the reader that for a linear operator A, the resolvent set ρ(A) of A is the set
of all complex numbers λ for which the operator I+λA is invertible. The family JA(λ) = (1+λA)−1

or simply Jλ, for λ ∈ ρ(A), of bounded linear operators is called the resolvent of A. Returning to
our earlier discussion, we have in addition to the density of D(A) in X the following:

Theorem 2.1. Let H be a Hilbert space. If A is a linear operator sending D(A)→ H is maximal
monotone, then A is a closed operator and for every λ > 0, the resolvent Jλ = (I + λA)−1 is a
contractive bijection from D(A) onto H.

Proof. Let (un) ⊂ H be a sequence such that un → u with Aun → f . We claim that the limit u
belongs to D(A) and satisfies Au = f . First of all, observe that for f ∈ H, the equation u+Au = f
admits a solution u ∈ H by the assumed maximality whereas uniqueness of u is a consequence of
monotonicity; if u1 − u2 +A(u1 − u2) = 0 then

0 = ‖u1 − u2‖2 + (A(u1 − u2), u1 − u2) ≥ ‖u1 − u2‖2.

From
‖u‖2 + (Au, u) = (f, u) ≥ ‖u‖2,

we conclude that ‖u‖ ≤ ‖f‖ making the map f 7→ v, which we write as (I +A)−1, continuous and
invertible. Now for every n ≥ 1 we may write un = (I +A)−1(un +Aun) so by continuity

‖un + (I +A)−1(u+ f)‖ ≤ ‖(I +A)−1‖(‖un − u‖ + ‖Aun + f‖),
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concluding that u+Au = u+ f ; we have shown u ∈ D(A) and Au = f proving that the operator A
is closed. We now address desired results on the resolvent, in particular, we will show that for any
λ > 0, the map (I + λA) is a bijection D(A)→ H and ‖(I + λA)−1‖ ≤ 1. Suppose that λ0 ∈ ρ(A)
and let λ > λ0

2 . We will show that for any given f ∈ H the equation λu+λAu = f admits a unique
solution in D(A). Rewriting

u+ λAu = f ⇐⇒ λ(u+ λ0Au)λ0 = f + λu− λ0u

⇐⇒ u+ λ0Au =
λ0

λ
f +

(
1− λ0

λ

)
u,

so by defining

Tu = (I + λ0A)−1

[
λ0

λ
f +

(
1− λ0

λ

)
u

]
,

we see that for any u, v ∈ H,

‖Tu− Tv‖ ≤ ‖u− v‖
∣∣∣∣1− λ0

λ

∣∣∣∣.
In particular, the operator T is a contraction whenever λ satisfies |1 − λ0

λ | < 1. Recalling that
maximality of A ensures Ran(I + A) = H, then 1 ∈ ρ(A) and therefore we inductively have
conclude that λ ∈ ρ(A) for λ > 1

2n for any n ≥ 0.

Recalling that A need not be bounded making desirable analysis difficult, however, using the
resolvent one may circumvent this obstacle by defining for A a regularized operator

Aλ ≡
1

λ
(I − JA(λ)), (11)

which is bounded for every λ > 0 and inherits many of the crucial information of A. Among the
most noteworthy is the fact that Aλ : H → Ran(A) with the property that

‖Aλv −Av‖ → 0 as λ→ 0 ∀v ∈ D(A), (12)

Equally as important is that resolvent Jλ : H → D(A) acts like an approximation to the identity:

‖Jλv − v‖ → 0 as λ→ 0 ∀v ∈ H. (13)

An intimate relationship between the resolvent and Aλ is revealed by the identities

Aλv = A(Jλv) ∀v ∈ H and that A(Jλv) = Jλ(Av) ∀v ∈ D(A). (14)

Note that the family (Aλ)λ>0 of bounded operators approximating A inherits the monotonicity from
A and ‖Aλv‖ ≤ ‖Av‖ for all v ∈ D(A). However, the ‖Aλ‖ need not be uniformly bounded for in
general we will show below that ‖Aλ‖ ≤ 1

λ . The operator Aλ is said to be a Yosida approximation
or regularization of A. We proceed by proving (14), (13) and (12) respectively.

Proof. We begin by expressing for v ∈ H

Jλv + λA(Jλv) = (I + λA)Jλv = v

=⇒ A(Jλv) =
1

λ
(v − Jλv) =

1

λ
Aλv.
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Again, if v ∈ D(A), then

Av = Aλv + λA(Aλv) = (I + λA)Aλv,

proving that Aλv = Jλ(Av) thus completing proof for (14) . Now let v ∈ D(A) and we readily see
that

‖v − Jλv‖ ≤ λ‖Aλv‖ ≤ λ‖Av‖ → 0 as λ→ 0.

We extend this argument to H by using the density of D(A). Namely, for v ∈ H, pick ṽ ∈ D(A) for
which ‖v − v‖ < ε

2 . Then

‖Jλv − v‖ ≤ ‖Jλv − Jλṽ‖+ ‖Jλṽ − ṽ‖+ ‖ṽ − v‖
≤ ‖Jλṽ − ṽ‖+ ε.

Now using the identity in (14) we see that for v ∈ D(A)

‖Aλv −Av‖ = ‖Jλ(Av)−Av‖ → 0 as λ→ 0,

by virtue of (13). Finally by adding and subtracting Jλv from the second argument of (Aλv, v) we
use monotonicity of A to see that for any v ∈ H,

(Aλv, v) = λ|Aλv|2 + (A(Jλv), Jλv) ≥ λ‖Aλv‖2, (λ > 0).

Finally, an application of Cauchy-Schwarz on the forgoing relation yields for λ > 0

‖Aλv‖2 ≤
1

λ
‖Aλv‖‖v‖ ∀v ∈ H.

2.2 Homogenous initial value problem

We now have the necessary tools for the treatment of the following problem. For x ∈ D(A) we
define the graph norm

|x|2G = ‖x‖2 + ‖Ax‖2,

which induces a Banach topology on D(A) since A is closed under the aforementioned assumptions.
In other words, A has closed graph.

Theorem 2.2. Let A be a maximal monotone operator. Then, given any x ∈ D(A), there exists a
unique function

u ∈ C 1([0,∞) : H) ∩ C ([0,∞) : D(A))

satisfying {
du
dt +Au = 0 on [0,∞)

u(0) = x.
(15)

Moreover,
‖u(t)‖ ≤ ‖x‖ and ‖Au(t)‖ ≤ ‖Ax‖ ∀t ≥ 0. (16)
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Proof. Uniqueness follows from monotonicity. Indeed,

1

2

d

dt
‖u(t)− ũ(t)‖2 = −(A(u− ũ), u− ũ) ≤ 0 ∀t ≥ 0

and ‖u(0)− ũ(0)‖ = 0. We turn our attention to the matter of existence. The strategy is to make
use of the boundedness of the (Aλ)λ>0 to obtain a family of solutions (uλ)λ>0 belonging to the
class C 1([0,∞),H). This is ensured by the boundedness of Yosida approximations Aλ. Following
to that we will complete the proof by showing that a limit of uλ for λ→ 0 exists and satisfies (15)
and (16).

Define a family of related equations

duλ(t)

dt
+Aλuλ(t) = 0 for t ≥ 0 with uλ(0) = x ∈ D(A). (17)

We will derive an analogous statement to (16) for the related family of equations (17) by showing
that the functions t 7→ |uλ(t)| and t 7→ |Aλuλ(t)| are nonincreasing for t ≥ 0. Note that for any
w ∈ C 1([0,∞),H), the function |w|2 ∈ C 1([0,∞),R) with derivative d

dt |w|
2 = 2(dw

dt , w) owing
to the symmetry of the inner-product. Applying this to the solutions (uλ)λ>0, together with the
monotonicity of Aλ, we have

1

2

d

dt
‖uλ‖2 ≤

(
duλ
dt

, uλ

)
+ (Aλuλ, uλ) = 0, (λ > 0).

Note that duλ(t)
dt also satisfies (17) so inductively we conclude that duλ

dt ∈ C 1([0,∞) : H) and
consequently

‖uλ(t)‖ ≤ ‖x‖ and ‖(duλ/dt)(t)‖ ≤ ‖Ax‖ ∀t ≥ 0, ∀λ > 0.

We will now prove that for every t ≥ 0, the solutions uλ(t) converges to some limit, denoted by
u(t). Given any λ, µ > 0 we have from (17)

d(uλ − uµ)(t)

dt
+Aλuλ(t)−Aµuµ(t) = 0, (t > 0).

We claim that
1

2

d

dt
‖uλ − uµ‖2 ≤ 2(λ+ µ)‖Au0‖2, (λ, µ > 0). (18)

Indeed,

(Aλuλ −Aµuµ, uλ − uµ)

= (Aλuλ −Aµuµ, uλ − Jλuλ + Jλuλ − Jµuµ + Jµuµ − uµ)

= (Aλuλ −Aµuµ, λAλuλ − µAµuµ) + (A(Jλu− Jµuµ), Jλu− Jµuµ)

≥ (Aλuλ −Aµuµ, λAλuλ − µAµuµ).

(19)

Owing to (18) we integrate to obtain

‖uλ(t)− uµ(t)‖ ≤ 2
√

(λ+ µ)t‖Ax‖, (t ≥ 0). (20)

On every finite interval [0, T ], the family of solutions (uλ)λ>0 converge uniformly to a function
u ∈ C ([0,∞),H). Assuming, in addition, that x ∈ D(A2); it will be shown that D(A2) is dense in
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the topology of D(A) induced by the graph norm. We claim that (duλ/dt)(t) will converge uniformly
on [0, T ] as λ→ 0 to some continuous limit in H on [0, T ] making u continuously differentiable in H
on [0, T ]. This will be done in the same spirit done for the convergence of (uλ)λ>0. Set, for t ≥ 0,
vλ(t) = (duλ/dt)(t); the function vλ satisfies (??) and

1

2
‖vλ − vµ‖2 ≤ (‖Aλvλ‖+ ‖Aµvµ‖)(λ‖Aλvλ‖+ µ‖A− µvµ‖),

by the same procedure made in (19). Following the same logical path we arrive at

‖Aλvλ(t)‖ ≤ ‖AλAλx‖ and ‖Aµvµ(t)‖ ≤ ‖AµAµx‖.

Recall that under the added assumption we have Ax ∈ D(A) from which we obtain the chain of
relations

AλAλx = JλAJλAx = JλJλAAx = J2
λA

2x,

which makes
‖AλAλx‖ ≤ ‖A2x‖ and ‖AµAµx‖ ≤ ‖A2x‖.

With these estimates on ‖AνAνx‖ and ‖AνAνx‖ for ν = λ and µ, we are led to the familiar estimate

‖vλ(t)− vµ(t)‖ ≤ 2
√

(λ+ µ)t‖A2x‖, (t ≥ 0), (21)

proving the claim that (duλ/dt)λ>0 converges uniformly [0, T ]. Moreover, this limit is in fact equal
to du/dt in H since u ∈ C 1([0,∞),H). We now proceed by proving that under the assumption
that x ∈ D(A2), the limit u(t) of the family of solutions (uλ)λ>0 satisfies the operator differential
equation in (15). By re-writing (17) as

duλ(t)

dt
+A(Jλuλ(t)) = 0,

and observing that Jλuλ(t) → u(t) as λ → 0, we conclude from the fact that A has closed graph
that u(t) ∈ D(A) for all t ≥ 0 and satisfies the ordinary differential equations (15) in H. Recall
that u ∈ C 1([0,∞),H) so the function t 7→ Au(t) is continuous from [0,∞) → H making u ∈
C ([0,∞);D(A)).

We conclude the proof by turning our attention to the initial condition. This will be proven with
the aid of the following result:

Let x ∈ D(A). Then for every ε > 0 there exists an element x̄ ∈ D(A2) such that
|x− x̄|G < ε. In other words, D(A) is | · |G-dense in D(A).

We now have all the necessary ingredients to relate family of problems (17) to original problem
(15). Construct using the Lemma above a sequence (xn)n≥1 ∈ D(A2) with xn → x with respect to
the graph topology of A to obtain a sequence of solutions to

dun
dt

+Aun = 0 on [0,∞) and un(0) = xn.

We have for all t ≥ 0, owing to the estimates (16),

|un(t)− um(t)|G = ‖un(t)− um(t)‖ +

∥∥∥∥dun(t)

dt
− dum(t)

dt

∥∥∥∥
≤ ‖xn − xm‖ + ‖Axn −Axm‖ → 0 as n,m→∞.
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The sequences (un)n≥1 and (dun/dt)n≥1 uniformly converges, respectively, to u(t) and (dun/dt)(t)
on [0, T ] for every T > 0,i.e., convergence is uniform on [0,∞) making u ∈ C 1([0,∞),H). The
fact A is a closed operator makes u(t) ∈ D(A) and that u(t) satisfying original problem (15) with
u ∈ C ([0,∞),D(A)) as well.

Remark. The requirement x ∈ D(A) cannot be relaxed to x ∈ H without risking that the
obtained solution u(t) would not exhibit sufficient regularity to be a solution in the classical sense.
One can circumvent this obstacle by requiring A to be self-adjoint as well. While self-adjoint
operators are symmetric in general, the converse fails to hold whenever operators are unbounded.

3 Infinitesimals generator for C0 semigroups

In view of Theorem 2.2, for each t ≥ 0, consider the map sending any initial data x ∈ D(A) 7→
u(t) ∈ D(A), where u(t) is the solution to (15). This map, denoted by TA(t), is bounded in D(A)
because |u(t)|G ≤ |x|G, and since D(A) is dense in the topology of H induced by the inner-product,
TA(t) ∈ L(H) with ‖TA(t)‖ ≤ 1. Moreover by uniqueness,

TA(t+ s) = TA(t) ◦ TA(s) ∀s, t ≥ 0,

with TA(0) = I and
lim
t→0
‖TA(t)x− x‖ = 0.

The family of bounded operators {TA(t)}t≥0, depending on a nonnegative parameter t, satisfying
the aforementioned properties are said to be a family of continuous semigroup of contractions. It is
remarkable to see how unbounded operators induces on a family of bounded contractive operators;
A needs only to be maximal monotonicity so as to ensure that A has a closed graph. In this section
we develop the theory of semigroups for linear operators.

Let X be a Banach space and let {T (t)}t≥0, or simply T (t), be a family of operators. A linear
operator A on X defined by

D(A) =

{
x ∈ X : lim

t→0

T (t)x− x
t

exists

}
, (22)

and

Ax = lim
t→0

T (t)x− x
t

=: D+T (0). (23)

is called the infinitesimal generator of the semigroup TA(t) with D(A) being the domain of linear
operator A. For notational simplicity, we will drop the subscript A from TA(t) wherever there lies
no confusion. We say a semigroup T (t) of bounded linear operators is strongly continuous if

lim
t→0

T (t)x = x ∀x ∈ X. (24)

Strongly continuous semigroups are said to be a semigroup of class C0, or simply C0 semigroup;
this type of semigroup will be central in our exposition, and for this, we will derive some of the
important properties C0 semigroups enjoy. Let T (t) be a C0 semigroup and let A be its infinitesimal
generator. The following properties hold.
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Lemma 3.1. There exists α ≥ 0 and M ≥ 1 such that ‖T (t)‖ ≤Meαt for t ≥ 0.

Proof. Suppose that ‖T (t)‖ is unbounded on 0 ≤ t ≤ T . Then for some tn ≥ 0 with tn → 0
we have ‖T (t)‖ > n. But for every x ∈ X, strong continuity of T (t) implies that T (t)x → x as
t → 0 in X so by Uniform Boundeness property, ‖T (t)‖ < ∞ uniformly in t which is contrary to
unboundedness assumption made above. Let now M > 0 be a uniform bound for T (t) and without
loss of generality, let ‖T (0)‖ = 1, then M ≥ 1. Let α = 1

T logM . Given any t ≥ 0, write t = nT + δ
for some δ ∈ [0, T ) and n ∈ N. Then by the semigroup property we are led to the estimate

‖T (t)‖ = ‖T (δ)T (t)n‖ ≤Mn+1 ≤MM t/T = Meαt.

Remark. If α = 0, the semigroup T (t) is uniformly bounded and if moreover M = 1 then we
say that semigroup T (t) is a C0 semigroup of contractions. This will be addressed in more detail
the subsequent section.

Lemma 3.2. For every x ∈ X, t 7→ T (t)x belongs to C ([0,∞), X).

Proof. Claim readily follows from strong continuity and Lemma 3.1; for any h > 0

‖T (t+ h)x− T (t)x‖ ≤ ‖T (t)‖‖T (h)x− x‖ ≤Meαt‖T (h)x− x‖.

Now send h→ 0.

Lemma 3.3. For x ∈ X,

lim
h→0

1

h

∫ t+h

t

T (s)xds = T (t)x. (25)

Proof. Let x ∈ X and h > 0. By strong continuity of T (t) in t ≥ 0, pick δ > 0 for which
‖T (s)x− T (t)x‖ < ε whenever |s− t| < δ so that whenever h satisfies 0 < h < δ we have∥∥∥∥ 1

h

∫ t+h

t

T (s)x− T (t)xds

∥∥∥∥ ≤ 1

h

∫ t+h

t

‖T (s)x− T (t)x‖ds <
ε

h
h.

Lemma 3.4. For x ∈ X,∫ t

0

T (s)xds ∈ D(A) and A

(∫ t

0

T (s)xds

)
= T (t)x− x. (26)

Proof. Let x ∈ X. For h > 0, we have by semigroup property

T (h)− I
h

∫ t

0

T (s)xds =
1

h

∫ t+h

t

T (s)x ds− 1

h

∫ h

0

T (s)xds.

Now apply Lemma 3.3 to the equality above.
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Lemma 3.5. For x ∈ D(A), T (t)x ∈ D(A) and

d

dt
T (t)x = AT (t)x = T (t)Ax. (27)

In other words, T (t)x is differentiable and A commutes with T (t).

Proof. For x ∈ X,

D+T (t)x = lim
h→0

T (t+ h)x− T (t)x

h
= T (t)

(
T (h)− I

h

)
x = T (t)Ax.

Moreover, applying the same argument to T (h)−T (t−h) yields the limit AT (t)x and thus T (t)x ∈
D(A).

lim
h→0

[
T (t)− T (t− h)

h
− T (t)Ax

]
= lim
h→0+

T (t− h)

[
T (h)x− x

h
−Ax

]
+ lim
h→0+

(T (t− h)Ax− T (t)Ax).

The first term goes to zero since ‖T (t − h)‖ is bounded uniformly on 0 ≤ h ≤ t meanwhile the
second term vanishes by strong continuity of T (t).

Lemma 3.6. For x ∈ D(A),

T (t)x− T (s)x =

∫ t

s

T (τ)Ax dτ =

∫ t

s

AT (τ)xdτ. (28)

Proof. In view of (27) in Lemma 3.5, we integrate from s to t.

In the context of the previous section, it was revealed that the density of the domain D(A) in
the X, where X was taken to be a Hilbert space, is essential in ensuring that a solution u(t) to the
homogenous initial value problem admits sufficient regularity. Moreover, it was also revealed that
part of the sufficient condition for solvability is the closedness of A. A sufficient condition for an
unbounded operator in a Hilbert space to admit both properties is for the operator to be maximal
monotone, so for us to extend the theory to a general Banach setting, it would not be natural to
believe that a dense domain and closedness of the operator would also play an important role in
solvability. We have the following result which is in effect a corollary of the properties above.

Theorem 3.7. If A is an infinitesimal generator of a C0 semigroup T (t) then D(A), the domain
of A, is dense in X and A is a closed linear operator.

Proof. Let x ∈ X and set xt = 1
t

∫ t
0
T (s)x ds. In view of Lemma 3.4 we have xt ∈ D(A) for any

t > 0 and by Lemma 3.3, xt converges in X to x as t tends to 0 from above; the closure of D(A)
therefore includes X. The operator A is linear due to its definition in (23). To prove closedness let
xn ∈ D(A) with xn → x and Axn → y as n→∞. From (28) in Lemma 3.6 we have

T (t)xn − xn =

∫ t

0

T (s)Axn ds.

The integrand T (s)Axn converges uniformly on bounded intervals to T (s)y, so upon diving by t
on both sides of the above equality, sending t → 0+ we see from Lemma 3.3 that x ∈ D(A) and
Ax = y.

10



We address the uniqueness of semigroups.

Theorem 3.8. Let T (t) and S(t) be C0 semigroups of bounded linear operators with infinitesimal
generators A and B respectively. If A = B then T (t) = S(t).

Proof. For x ∈ D(A) = D(B), the map s 7→ T (t− s)S(t) is differentiable by property and

d

ds
T (t− s)S(t) = T (t− s)(B −A)S(s)s = 0

so in particular for s = 0 and s = t we conclude T (t)x = S(t)x so T (t) = S(t) for all x ∈ X by
density property.

3.1 The Hille-Yosida Theorem

In this section we will prove a key result by Hille-Yosida on the characterization of infinitesimal
generators of C0 semigroups of contractions. This result will be in the spirit of Theorem 2.1
generalized to the Banach setting.

Theorem 3.9 (Hille-Yosida). A linear (unbounded) operator A in a Banach space X is the in-
finitesimal generator of a C0 semigroup of contractions T (t), t ≥ 0 if and only if

(i) A is closed and D(A) = X.

(ii) The resolvent set ρ(A) of A contains R+ and for every λ > 0

‖RA(λ)‖ ≤ 1

λ
.

Remark. We will address the parallelism between this theorem and it’s analog discussed
previously in the Hilbert setting. Let L(λ) = I+λA and let S(µ) = µI−A. By a scaling argument
we can see that

−λS(− 1
λ ) = −λ(− 1

λI −A) = L(λ).

Meaning, if λ ∈ ρ(A), then µ = − 1
λ ∈ ρ(A). In other words, if λ ∈ ρ(A) with λ > 0, then S(µ) is

invertible for µ < 0 and the operator A considered in Theorem 3.9 A is dissipative. An operator
A in a Hilbert space is dissipative whenever −A is monotone or accretive. While noticing that
JA(λ) = [L(λ)]−1, we have

JA(λ) = − 1
λ [S(− 1

λ )]−1 = µRA(µ), λ = − 1
µ ∈ ρ(A).

Simply put, A in the context of Theorem 3.9, with X being a Hilbert space, plays the role of −A
in Theorem 2.1.

Proof. We will prove that conditions (i) and (ii) are necessary for contractive C0 semigroups;
sufficiency will require some additional lemmas. The density of D(A) in X follows immediately
from Theorem 3.9. To prove necessity of (ii), define for x ∈ X and λ > 0

R(λ)x =

∫ ∞
0

e−λtT (t)xdt,

11



Recall that t 7→ T (t)x is continuous and uniformly bounded so the integral exists so R(λ) is a
bounded linear operator on X with

‖R(λ)x‖ ≤
∫ ∞

0

e−λt‖T (t)x‖ dt ≤ 1

λ
‖x‖.

For h > 0 (
T (h)x− x

h

)
R(λ)x =

eλh − 1

h

∫ ∞
0

e−λtT (t)x dt− eλh

h

∫ h

0

e−λtT (t)xdt,

yielding AR(λ)x = λR(λ)x− x under the limit h→ 0. So for all x ∈ X, R(λ) ∈ D(A) and

(λI −A)R(λ) = I.

Consequently, for x ∈ D(A), R(λ) commutes with A. Indeed,

R(λ)Ax =

∫ ∞
0

e−λtT (t)Axdt =

∫ ∞
0

e−λtAT (t)xdt = A

(∫ ∞
0

e−λtT (t)x dt

)
= AR(λx),

where we used the fact that A and T (t) commute and that A is closed. We have for any λ > 0

R(λ)(λI −A)x = x ∀x ∈ D(A),

thus making R(λ) the inverse of λI −A for all positive λ.

Remark. Notice by this theorem we my express the resolvent of the operator A characterized
in Theorem 3.9 as

RA(λ)x =

∫ ∞
0

e−λtT (t)x dt, x ∈ D(A). (29)

In order to address the sufficiency of conditions (i) and (ii) to characterize contractive C0 semi-
groups, recall the Yosida approximation: For λ = − 1

µ > 0, the Yosida approximation (11) for
dissipative operator −A is given by

Aµ =
1

µ
(I − JA(µ)) = −λ(I − λRA(λ)) = λ2RA(λ)− λI ≡ Aλ. (30)

With this definition, it follows from Theorem 3.9 that if A is dissipative, we have for any x ∈ D(A)

‖λRA(λ)x− x‖ = ‖ARA(λ)x‖

= ‖RA(λ)Ax‖ ≤ 1

λ
‖Ax‖ → 0 as λ→∞.

Consequently, for any x ∈ D(A), we have

‖Aλx−Ax‖ → 0 as λ→∞, (31)

which mirrors the behaviour described in (12). A Yosida approximation Aλ of a perhaps unbounded
operator A is bounded. We will use this boundedness of Aλ to obtain an explicit representation

12



for T (t)x for x ∈ D(A) and T (t) being A’s semigroup. In order to do this, we will first claim that
semigroups generated by bounded functions are uniformly continuous in the sense that

lim
s→t
‖T (s)− T (t)‖ = 0.

Notice that this is a stronger property than of strong continuity property in (24). By defining, for
a bounded linear operator B,

etB ≡
∞∑
n=0

(tB)n

n!
, (t ≥ 0). (32)

The operator etB converges uniformly in X for every t ≥ 0 and satisfies semigroup properties.
Moreover, by the Taylor approximation,

‖etB − I‖ ≤ t‖B‖et‖B‖ → 0 as t→ 0,

and therefore ∥∥∥∥etB − It
−B

∥∥∥∥ ≤ ‖B‖‖etB − I‖ → 0 as t→ 0.

thus T (t) ≡ etB is a uniformly bounded semigroup with B as its infinitesimal generator. By letting
B = Aλ in (32), Aλ being the Yosida approximations for an unbounded infinitesimal generator A,
we realize the following:

Lemma 3.10. Let A satisfy the hypothesis of Theorem 3.9. If Aλ is the Yosida approximation of
A, then Aλ is the infinitesimal generator of a uniformly continuous semigroup of contractions etAλ .

Furthermore, for every x ∈ X, λ, µ > 0, we have

‖etAλ‖ = e−tλ‖etλ
2RA(λ)‖ ≤ e−tλetλ

2‖RA(λ)‖ ≤ e−tλetλI = 1,

and ∫ 1

0

d

ds
(etsAλet(1−s)Aµx) ds =

∫ 1

0

tetsAλet(1−s)Aµ(Aλx−Aµx) ds,

so we deduce that

‖etAλx− etAµx‖ ≤
∫ 1

0

t‖etsAλet(1−s)Aµ(Aλx−Aµx)‖ ds ≤ t‖Aλx−Aµx‖. (33)

We will now use the preceding results to complete the proof of Theorem 3.9; in particular, we prove
sufficiency of condition (i) and (ii) in characterizing infinitesimal generators of strongly continuous
semigroups of contractions. In view of (31), we define for x ∈ D(A), xλ = etAλx and conclude from
(33) that (xλ)λ>0 converges in X as λ→∞ so we may write

lim
λ→∞

etAλx = T (t)x, (34)

for every x ∈ D(A) which by density of the range extends to every x ∈ X. The defined T (t) in
(34) satisfies the semigroup properties and T (0) = I with ‖T (t)‖ ≤ 1 since ‖etAλ‖ ≤ 1 uniformly.
Moreover, t 7→ T (t)x is continuous since the limit in (34) is uniform on bounded intervals (in the t
variable). Consequently, T (t) is indeed a strongly continuous semigroup of contractions on X. We
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will now conclude by the assertion that A is the infinitesimal generator for T (t). For x ∈ D(A),
viewing implication (34) in light of (28) we deduce that

T (t)x− x = lim
λ→∞

(etAλx− x) = lim
λ→∞

∫ t

0

esAλAλxds =

∫ t

0

T (s)Ax ds,

with uniform convergence of etAλAλx to T (t)Ax justifies the interchanging of limits. Let B be the
infinitesimal generator of T (t) and let x ∈ D(A). Using the reasoning made in Lemma 3.5 and
an application of Lemma 3.3 we arrive at Bx = Ax for all x ∈ D(B); D(B) ⊇ D(A). Recall that
1 ∈ ρ(B) necessarily and that 1 ∈ ρ(A) holding by assumption.

(I −B)D(A) = (I −A)D(A) = X =⇒ D(B) = (I −B)−1X = D(A).

In other words, A = B.

Corollary 3.11. Let A be the infinitesimal generator of a C0 semigroup of contractions T (t). If
Aλ is the Yosida approximation of A, then

T (t)x = lim
λ→∞

etAλx ∀x ∈ X.

Remark. An interpretation of this corollary is that T (t) in a sense is “equal” to etA.

We infer an equivalence between maximal monotone operators and infinitesimal generators of
strongly continuous semigroup of contractions. In light of Theorem 3.9 we observe that for a
Hilbert space X = H a densely defined linear operator A : D(A)→ H which is maximal monotone
has a closed range with a contractive and bijective resolvent sending D(A) to H. It is revealed by
Lumer-Philips that maximal monotone operators form continuous semigroups of contractions. In
particular, if A is dissipative then there exists λ0 > 0 such that Ran(λ0I − A) = X implying that
A is an infinitesimal generator of a C0 semigroup of contractions.

We conclude this section by the following example. Let X be the space of uniformly continuous
bounded functions on R. Let

(T (t)f)(x) ≡ f(x+ t), (x ∈ R, t ≥ 0).

Clearly, the operator T (t) is a C0 semigroup of contractions on X and in view of (22) and (23), the
infinitesimal generator for T (t) is given by Af = f ′ with domain

D(A) = {f : f ∈ X, f ′ exists and f ′ ∈ X}.

For this semigroup we have

(
Ahf

)
(x) =

f(x+ h)− f(x)

h
≡ (∆hf)(x),

from which we can write

(Akhf)(x) =
1

hk

k∑
m=0

(−1)k−m
(
k

m

)
f(x+mh) ≡ (∆k

hf)(x).
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In view of the following result. We have on bounded intervals of t:

∀x ∈ X, Ahx =
T (h)x− x

h
=⇒ T (t)x = lim

h→0+
etAhx uniformly,

a generalized Taylor’s formula for uniformly continuous and bounded functions f

f(x+ t) = lim
h→0+

∞∑
k=0

tk

k!
(∆k

hf)(x). (35)

3.2 Inhomogeneous abstract Cauchy problem

In this section we extend the results presented in the previous section to the inhomogeneous setting
in Banach spaces. Here, we consider the initial value problem for x ∈ D(A) given by{

du(t)
dt +Au(t) = f(t), t > 0

u(0) = x
(36)

where f : [0, T )→ X and, throughout this section, we assume that −A is infinitesimal generator of
C0 semigroup T (t). The most natural notion of solvability for (36) is characterized by the following:

Definition 1. We say that u : [0, T )→ X is a classical operator solution of the operator equation
(36) if u(t) ∈ X satisfies the inhomogeneous problem on [0, T ),

u ∈ C 1(0, T : D(A)) ∩ C ([0, T ) : X),

and u(t) ∈ D(A) for (0, T ).

We ensure uniqueness of solvability by the requirement that f ∈ L1(0, T ;X). Indeed, if we set
v(s) = T (t− s)u(s), u being a solution to (36),

dv

ds
= AT (t− s)u(s) + T (t− s)u′(s) = T (t− s)f(s),

so by (28),

u(t) = T (t)x+

∫ t

0

T (t− s)f(s) ds. (37)

In other words, if f ∈ L1(0, T ;X) then any solution u(t) of (36) will be given by (37). For example,
setting f ≡ 0 in (36) we recover (15) and from (28) and infer that the unique solution is given
by u(t) = T (t)x and this is true for every initial value x ∈ D(A). It is important to note that
f ∈ L1(0, T ;X) only ensures that the integral expression (37) satisfies the initial value problem
formally, that is, the representation (37) does not necessarily admit the necessary regularity to be
an operator solution in the classical sense. This motivates to define a weaker notion for solvability.

Definition 2. Let −A be the infinitesimal generator of a C0 semigroup T (t). let x ∈ X and
f ∈ L1(0, T : X). The function u ∈ C([0, T ] : X) given by

u(t) = T (t)x+

∫ t

0

T (t− s)f(s) ds, 0 ≤ t ≤ T, (38)

is the mild solution of the initial value problem (36) on [0, T ].
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Naturally, we are interested in imposing further conditions on f ∈ L1(0, T ;X) so that for
x ∈ D(A), the mild solution given by (38) becomes a classical operator solution.

Theorem 3.12. Assume that f ∈ L1(0, T : X) be continuous on [0, T ) and let

v(t) =

∫ t

0

T (t− s)f(s) ds, 0 ≤ t ≤ T.

Problem (36) has a classical operator solution u(t) on [0, T ) for all x ∈ D(A) if one of the following
is satisfied:

(i) If v(t) belong to class C 1(0, T ;X), or

(ii) if v(t) ∈ D(A) for 0 < t < T and Av(t) ∈ C (0, T : X).

Conversely, if problem (36) admits a classical operator solution on [0, T ) for some x ∈ D(A) then
v satisfies (i) and (ii) necessarily.

Proof. Suppose that u is a solution to (36). Then

u(t) = T (t)x+

∫ t

0

T (t− s)f(s) ds ≡ T (t)x+ v(t).

The solution u(t) is differentiable by assumption and T (t)x ∈ D(A) is differentiable in X since
x ∈ D(A) and v′(t) = u′(t) + AT (t)x is a continuous on (0, T ) since u is a solution and we have
proved condition (i) holds. On the other hand, v(t) ∈ D(A) for t > 0 since u(t) ∈ D(A) for t > 0,
and

Av(t) = Au(t)−AT (t)x = −u′(t) + f(t)−AT (t)x, (39)

where all terms are continuous for t ≥ 0 thus proving (ii). Conversely, express

v(t+ h)− v(t)

h
=

1

h

∫ t+h

0

T (t+ h− s)f(s) ds− 1

h

∫ t

0

T (t− s)f(s) ds

=
T (h)− I

h

∫ t

0

T (t− s)f(s) ds+

∫ t+h

t

T (t+ h− s)f(s) ds.

Look at the identity for h > 0

T (h)− I
h

v(t) =
v(t+ h)− v(t)

h
− 1

h

∫ t+h

t

T (t+ h− s)f(s) ds. (40)

If we assume (i), then v(t+h)−v(t)
h → v′(t) ∈ C (0, T ;X) and 1

h

∫ t+h
t
·ds → f(t) on (0, T ) which

makes limh→0
T (h)−I

h v(t) exist and therefore v(t) ∈ D(A) on (0, T ) by definition; thence we have
the equality −Av(t) = v′(t) − f(t). By setting u(t) = T (t)x + v(t) we see that u(0) = x since
v(0) = 0 and that u′(t) = −AT (t)x + v′(t) is a sum of continuous functions on (0, T ) and by
equalities concerning Av(t) we see from

u′(t) = −AT (t)x+ v′(t) = −AT (t)x−Av(t) + f(t) = −A(T (t)x+ v(t)) + f(t),

that u(t) given above solves the initial value problem for x ∈ D(A). On the other hand if v(t) ∈
D(A), limh→0+

T (h)−I
h v(t) exists so (40) tends to −Av(t) = D+v(t)−f(t). The righthand derivative

D+v(t) is continuous by assumption (ii) so D+v(t) ≡ v′(t) and the result follows from the same
reasoning made earlier.
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We will now consider another notion of solution of the initial value problem (??), namely the
strong solution.

Definition 3. A function u which is differentiable almost everywhere on [0, T ] such that u′ ∈
L1(0, T : X) is called a strong solution of the initial value problem (36) if u(0) = x and

u′(t) +Au(t) = f(t) a.e, (t ∈ [0, T ]). (41)

In a manner similar to proving Theorem 3.12 we arrive to an existence theorem in the sense
characterized in Definition 3 by simply replacing the criteria (i) and (ii) in Theorem (3.12) to

(i) If v(t) is differentiable a.e on [0, T ] and v′(t) ∈ L1(0, T ;X), or

(ii) if v(t) ∈ D(A) on [0, T ] and Av(t) ∈ L1(0, T : X).

Let now f be Lipschitz continuous on [0, T ] with Banach space X be reflexive. Appealing to
Lebsegue’s theorem, we see that f is differentiable almost everywhere. and f ′ ∈ L1(0, T ;X) so by
looking at the difference

v(t+ h)− v(t) =

∫ t+h

0

T (s)[f(t+ h− s)− f(t− s)] ds,

it is clear that that v′(t) exists a.e on [0, T ] and that

‖v′(t)‖L1 ≤
∫ t

0

‖T (t)f(0)‖+

∫ T

0

∫ t

0

‖T (t− s)f ′(s)‖dsdt <∞.

In other words, we have the following corollary.

Corollary 3.13. Let X be a reflexive Banach space and let −A be the infinitesimal generator of a
C0 semigroup T (t) on X. If f is Lipschitz continuous on [0, T ] then for every x ∈ D(A) the initial
value problem (36) has a unique strong solution u on [0, T ] given by (38).

3.3 Extension to semilinear equations

We complete the first part of our exposition by addressing semilinear equations with C0 semigroups.
Consider the initial value problem{

du(t)
dt +Au(t) = f(t, u(t)), t > 0

u(0) = x
(42)

where the operator −A is an infinitesimal generator of a C0 semigroup on a Banach space X.
Analogous to the reasoning above, we know if u solves (42) then it satisfies the integral equations

u(t) = T (t)a+

∫ t

0

T (t− s)f(s, u(s)) ds. (43)

Definition 4. A continuous function t 7→ u(t) ∈ X on [0, T ] satisfying the integral equation (43)
will be called a mild solution of the initial value problem (42).

We conclude this exposition by saying a sufficient condition when a mild solution is in fact a
strong one.
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Theorem 3.14. Let −A be the infinitesimal genitor of a C0 semigroup T (t) on a reflexive Banach
space X. If f : [0, T ] × X → X is Lipschitz continuous in both variables, x ∈ D(A) and u is the
mild solution of the initial value problem (42), then u is the strong solution.

Proof. Assume ‖T (t)‖ ≤M ; note that [0, T ] is compact. Assume that ‖f(t, u(t))‖ ≤ N for 0 ≤ t ≤
T ; this can be due to continuity, and let C be associated Lipschitz constant;

‖f(s, u)− f(t, v)‖ ≤ (C|s− t|+ ‖u− v‖), 0 < s, t < T, u, v ∈ X.

Let t > 0 be given. For h > 0 with h < t, appealing to the (43) we express

u(t+ h)− u(t) = T (t+ h)x− T (t)x+

∫ h

0

T (t+ h− s)f(s, u(s)) ds

+

∫ t

0

T (t− s)[f(s+ h, u(s+ h))− f(s, u(s))] ds,

note that ‖T (h)x− x‖ ≤ h‖Ax‖ by definition of A so we arrive at

‖u(t+ h)− u(t)‖ ≤ hM‖Ax‖+ hMN +MC

∫ t

0

(h+ ‖u(s+ h)− u(s)‖) ds

≤ CΩh+MC

∫ t

0

‖u(s+ h)− u(s)‖ ds,

Finally, by virtue of Gronwall we obtain

‖u(t+ h)− u(t)‖ ≤ CΩeTMCh.

The vector-valued function u is Lipschitz continuous in t. It follows that t 7→ f(t, u(t)) is also
locally Lipschitz continuous on [0, T ] since for any s, t < T ,

‖f(s, u(s))− f(t, u(t))‖ ≤ (C + CΩeTMC)|s− t|, |s− t| < h.

By appealing to Corollary 3.13, the initial value problem{
dv(t)

dt +Av(t) = f(t, u(t)) t > 0

v(0) = x,
(44)

has a unique strong solution v on [0, T ] satisfying

v(t) = T (t)x+

∫ t

0

T (t− s)f(s, u(s)) ds ≡ u(t).

4 Navier-Stokes on bounded domains

5 Formulation

We have the abstract initial value problem{
du
dt = −Au+ Fu, t > 0,

u(0) = a,
(45)
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where Fu = −P(u · ∇)u, where P denotes the projector defined above. Here, the map t 7→ u(t) is
regarded as a function on intervals in R+ into Hσ. The derivative du/dt is understood to be the
derivative of u in the strong topology of Hσ. We are interested in solutions belonging to a particular
class defined as follows:

Definition 5. Let I be a closed interval [0, T ] or a semiclosed interval [0, T ). By S(I) we denote

the class of all functions u ∈ C (I : Hσ) such that A
1
2u ∈ C (I ∼ {0} : Hσ) with ‖A 1

2u(t)‖ = o(t−
1
4 )

for t→ 0 and A
3
4u ∈ C (I ∼ {0} : Hσ) with ‖A 3

4u‖ = o(t−
1
2 ) for t→ 0.

Remark. A particular K(t) can be chosen to be sup0<s≤t s
1
4 ‖A 1

2u(s)‖.

We seek a solution u ∈ S[0, T ] to the integral equation

u(t) = e−tAa+

∫ t

0

e−(t−s)AFu(s) ds. (46)

6 lemmas

Lemma 6.1. If u ∈ D(A
3
4 ), then for an absolute constant CΩ depending on Ω we have

‖Fu‖ ≤ CΩ‖A
1
2u‖‖A 3

4u‖. (47)

Moreover, if v ∈ D(A
3
4 )

‖Fu− Fv‖ ≤ CΩ(‖A 3
4u‖‖A 1

2 (u− v)‖+ ‖A 3
4 (u− v)‖‖A 1

2 v‖). (48)

Proof.

‖Fu‖ ≤
(∫

Ω

|u|2|∇u|2
) 1

2

≤ ‖u‖L6‖∇u‖L3 ,

owing to Holder with p = 1
3 . Noting that ‖u‖L6 ≤ ‖CΩA

1
2 ‖ by Friedrich, it only remains to prove

that ‖∇u‖L3 can be controlled by ‖A 3
4u‖. We will use, without proof, the fact D(A) ⊂ [H2(Ω)]3; cf.

Cattabriga (1961). The exponent refers to the tensor function with number of components. This
implies that the ∇ operator sends [H2(Ω)]3 into grad[H2(Ω)]3 = [H1(Ω)]9 ⊂ [L6(Ω)]9. Similarly,

∇ : D(A
1
2 ) = [H1

0 (Ω)]2 ⊂ [H1(Ω)]9 → grad[H1(Ω)]3 = [L2(Ω)]9.

Appealing to interpolation theory of Banach spaces for 1/6 + 1/2 = 2/3 we conclude that ∇ :

D(A
3
4 )→ [L3(Ω)]9 continuously.

Lemma 6.2. Let α be a real number in 0 < α ≤ e. Then

‖Aαe−tA‖ ≤ t−α (t > 0). (49)

Furthermore, tα‖Aαe−tAu‖ → 0 as t→ 0 for every u ∈ Hσ.

Lemma 6.3. Let α be any real number in 0 < α < 1. Then, the inequality

‖(e−hA − I)u‖ ≤ 1

α
hα‖Aαu‖ (h > 0), (50)

holds for any u ∈ D(Aα).
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Lemma 6.4. Consider

u(t) =

∫ t

0

e−(t−s)Af(s) ds (t ∈ [0, T ], T > 0), (51)

where f ∈ C (0, T ] ≡ C ((0, T ];Hσ) is assumed to satisfy

sup
0<s≤t

sλ‖f(s)‖ ≤M(t) <∞ (0 < t ≤ T ), (52)

for a constant λ ∈ [0, 1) and real-valued function M . If α is a number in 0 ≤ α < 1, then Aαu(t)
exists for each t ∈ (0, T ] and satisfies the inequality

‖Aαu(t)‖ ≤ t1−α−λM(t)B(1− α, 1− λ), (53)

where B(·, ·) represents the beta function
∫ 1

0
s·−1(1 − s)·−1 ds. Moreover, Aαu ∈ C ϑ(0, T ] for any

ϑ ∈ (0, 1− α). In particular, we have Aαu ∈ C ϑ[0, T ] with Aαu(0) = 0 if 0 < ϑ ≤ 1− α− λ.

Lemma 6.5. Let α, ϑ and µ be real numbers such that 0 ≤ α < 1 and 0 < µ < ϑ− α. Let

v(t) =

∫ t

0

e−(t−s)A(f(s)− f(t)) ds (t ∈ [0, T ], T > 0) (54)

where f ∈ C ϑ[0, T ]. Then A1+αv(t) exists for each t ∈ [0, T ] and can be expressed as

A1+αv(t) =

∫ t

0

A1+αe−(t−s)A(f(s)− f(t)) ds. (55)

Moreover, A1+αv ∈ C µ[0, T ].

Lemma 6.6. Again consider u given by (??), assuming that f ∈ C ϑ[0, T ] for some ϑ ∈ (0, 1).
Then

u ∈ C 1+ν(0, T ] and Au ∈ C ν(0, T ] (56)

for any ν subject to 0 < ν < ϑ. Furthermore, u′ ≡ du/dt can be expressed as

u′ = −Au+ f (57)

or as

u′(t) = e−tAf(t)−
∫ t

0

Ae−(t−s)A(f(s)− f(t)) ds. (58)

6.1 Existence of mild solution

Let u ∈ S[0, T ] for a positive number T . For some nonnegative continuous function K = K(t) with
K(0) = 0, owing to (59)

‖Fu(s)‖ ≤ CΩK2s−
3
4 , (0 < s ≤ t ≤ T ). (59)

Now put

Φ(t) ≡ Φ(u; t) =

∫ t

0

e−(t−s)AFu(s) ds. (60)
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We claim that the function Φ exists and continuous on [0, T ].

‖Φ(t)‖ ≤
∫ t

0

‖e−(t−s)A‖‖Fu(s)‖ds ≤ CΩK2

∫ t

0

s−
3
4 ds,

making
‖Φ(t)‖ ≤ CΩ 1

4K
2t

1
4 <∞, (0 ≤ t ≤ T ),

A similar reasoning will show that A
1
2 Φ is also continuous in (0, T ] and for any α ∈ (0, 1), the

integral AαΦ, by appealing to the Beta function

B(1− α, 1− β) = t1−α−β
∫ t

0

(t− s)−αs−β ds <∞ ∀α, β ∈ (0, 1),

yields

‖AαΦ(t)‖ ≤
∫ t

0

‖Aαe−(t−s)A‖‖Fu(s)‖ ds

≤ CΩK2
t

∫ t

0

(t− s)−αs 3
4 ds ≤ CΩK2

tBαt
1
4−α,

(61)

where Bα = B(1−α, 1
4 ), valid for 0 ≤ t ≤ T . Consequently, we conclude that Φ ∈ S[0, T ] whenever

u ∈ S[0, T ]; the integral (60) is well-defined for solutions belonging to class S. Moreover, from

‖A 1
2 e−tAa‖ ≤ ‖A 1

4 e−tA‖‖A− 1
4 a‖ ≤ ‖A 1

4 a‖t− 1
4 , (0 ≤ t ≤ T ).

In other words, e−tAa ∈ S[0, T ] whenever a ∈ D(A
1
4 ) making the right side of (60) belong to

S[0, T ] whenever u ∈ S[0, T ] and a ∈ D(A
1
4 ). With this set up, we may conclude uniqueness of

mild solution to the integral equation (60).

Theorem 6.7 (Uniqueness). If a ∈ Hσ then the solution to (60) is unique and is in the class
S[0, T ].

Proof. Supposing that u and v are solutions to (60) in the class S[0, T ]. Put w = u − v and
expressing

w(t) ≡
∫ t

0

e−(t−s)A(Fu(s)− Fv(s)) ds, 0 < t ≤ T.

Buy definition and employing estimate (48) together with bounding ‖Aα(u−v)‖ by ‖Aαu‖+‖Aαv‖
we have

‖Fu(s)− Fv(s)‖ ≤ 4CΩβK(t)D(t)s−
3
4 , 0 < s ≤ t ≤ T, β = B1/2B3/4,

where we made the choices

K(t) ≡ max
α= 1

2 ,
3
4

{
sup

0<s≤t
s

1
4−α‖Aαu(s)‖, sup

0<s≤t
s

1
4−α‖Aαv(s)‖

}
,

and D(t) ≡ max{D1/2, D3/4} for Dα ≡ sup0<s≤t s
1
4−α‖Aαw(s)‖. Again, we have for

‖Aαw(t)‖ ≤ 4CΩβK(t)D(t)

∫ t

0

(t− s)−αs− 3
4 ds = 4CΩβBαK(t)D(t)t

1
4−α, (α = 1

2 ,
3
4 ).
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Then
D(t) ≤ 4CΩB1K(t)D(t), (0 < t ≤ T ). (62)

due to the increasing nature of K(t)D(t) in t. We claim that w(t) ≡ 0 for sufficiently small t. Since
K(0) = 0, we can choose τ > 0 such that 4CΩB1K(τ) < 1, so concluding from (62) above that

D(τ) = 0 and also for any τ0 < τ . From now on we restrict ourselves to Iτ = [τ, T ]. Since A
1
2u and

A
1
2 v are both continuous on Iτ , we find a positive constant Kτ such that

max{‖A 1
2u(s)‖, ‖A 3

4u(s)‖} ≤ Kτ and max{‖A 1
2 v(s)‖, ‖A 3

4 ‖} ≤ Kτ , (s ∈ Iτ ).

It therefore follows that

‖Fu(s)− Fv(s)‖ ≤ 4CΩKτDτ (t), (τ ≤ s ≤ t ≤ T ),

where
Dτ (t) ≡ max{ sup

τ≤s≤t
‖A 1

2w(s)‖, sup
τ≤s≤t

‖A 3
4w(s)‖} = D(t),

where the equality on the right is true since D ≡ 0 on [0, τ ]. In order to obtain the desired
conclusion, we let η ∈ Iτ and let δ = 1/(16CΩKτ )2 and we will proceed by showing that if w(t) ≡ 0
on [0, η], then w(t) = 0 on [0, η + δ] ∩ Iτ . Indeed, from the relation

w(t) =

∫ t

η

e−(t−s)A(Fu(s)− Fv(s)) ds,

we see that
‖A 1

2w(t)‖ ≤ 8CΩKτDτ (t)(t− η)
1
2 , (t ∈ [η, T ]).

In particular

‖A 1
2w(t)‖ ≤ 8CΩKτDτ (η + δ)δ

1
2 =

1

2
Dτ (η + δ),

for any t ∈ [η, η + δ], so it follows that Dτ (η + δ) ≤ 1
2Dτ (η + δ) so Dτ (η + δ) = 0 and consequently

w ≡ 0 on [0, η + δ].

We will justify the following: if u is a solution to the integral problem in [0, T ], then u is a
solution of

u(t) = e−(t−τ)Au(τ) +

∫ t

τ

e−(t−s)AFu(s) ds (t ≥ τ) in [τ, T ] (63)

for any τ ∈ (0, T ). Suppose that u satisfies integral equation (60) then for any τ ∈ (0, t) easily
verify ∫ t

0

e−(t−s)AFu(s) ds =

∫ τ

0

e−(t−s)AFu(s) ds+

∫ t

τ

e−(t−s)AFu(s) ds

= e(t−τ)A

∫ τ

0

e−(τ−s)AFu(s) ds+

∫ t

τ

e−(t−s)AFu(s) ds.

So noting that e−tAa = e−(t−τ)Ae−τAa we therefore obtain (??) from (??).

Theorem 6.8 (Existence). Assume that a ∈ D(A
1
4 ). Then there exists a solution u ∈ S[0, T ] for

the integral equation (60) for some T > 0 depending on a.
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Proof. We will construct a solution by successive approximation by first setting u0(t) = e−tAa and
iteratively defining

un+1(t) = u0(t) + Φ(un; t) (n = 0, 1, 2, ...), (64)

This (why) iteration can be continued indefinitely within the class S[0,∞), so the

Kn(t) = sup
0<s≤t

s
1
4 ‖A 1

2un(s)‖ (n = 0, 1, 2, ...),

are continuous and increasing on [0,∞). For t > 0, n = 0, 1, 2...., we have

Kn+1(t) = sup
0<s≤t

s
1
4 ‖A 1

2 (u0 + Φ(un; t))‖

≤ K0(t) + sup
0<s≤t

s
1
4 ‖A 1

2 Φ(un; t)‖ ≤ K0(t) + CΩB1K
2
n(t),

by (61) so Kn satisfies the recurrence inequalities

Kn+1(t) ≤ K0(t) + CΩB1K
2
n(t) (t > 0, n = 0, 1, 2, ...),

where, as before, B1 = B( 1
4 ,

1
2 ). Note that

sup
0<s≤t

s
1
4 ‖A 1

2 Φ(un; s)‖ ≤ CΩB1K
2
n(t),

owing to the monotonicity of Kn(t) in t. By the same reasoning carried earlier, we may choose T > 0
such that 4CΩB1K0(T ) < 1 then using the recursive relation to infer that {Kn(T )} is bounded with

Kn(T ) ≤ χ(T ) (n = 0, 1, 2, ...),

where

χ(T ) =
1−

√
1− 4CΩB1K0(t)

2CΩB1
.

Concluding that Kn(t) ≤ χ(t) for any t ∈ (0, T ]. Note also that χ(t) ≤ 2K0(t). Now by setting
wn = un+1 − un, let

Dn(t) = sup
0<s≤t

s
1
4 ‖A 1

2wn(s)‖ (n = 0, 1, 2...; t ∈ (0, T ]),

we see that
Dn+1(T ) ≤ 2CΩB1χ(T )Dn(T ) ≤ 4CΩB1K0(T )Dn(T ) < Dn(T ). (65)

So this means that
∑
Dn(T ) converges (by the ratio test), in particular, Σt

1
4A

1
2wn(t) converges

uniformly and strongly in (0, T ]. Consequently, the sequence ‖t 1
4A

1
2wn(t)‖ → 0 as n→∞ uniformly

making t
1
4A

1
2un(t) a uniformly convergent sequence. Appealing to the facts that A−

1
2 is bounded

A−
1
2

(
lim
n→∞

t
1
4A

1
2un(t)

)
= lim
n→∞

t
1
4un(t).

The operator A
1
2 is closed making un(t) converge to a limit u(t) ∈ D(A

1
2 ) and t

1
4A

1
2un(t)

converges to t
1
4A

1
2u(t) uniformly in (0, T ].

23



The function
K(t) = sup

0<s≤t
s

1
4 ‖A 1

2u(s)‖,

satisfies K(t) ≤ χ(t) ≤ 2K0(t) on (0, T ]. Finally,

αn ≡ sup
0<s≤T

s
1
2 ‖Hun(s)−Hu(s)‖ → 0

as seen from (48). We finally verify if this u(t) is indeed a solution in [0, T ]. Clearly, Φ(un; t) →
Φ(u; t) as n→∞ since

‖Φ(un; t)− Φ(u; t)‖ ≤
∫ t

0

s−
1
2 (t− s)− 1

4αn ds→ 0,

hence we get
u(t) = u0(t) + Φ(u; t) (t ∈ (0, T ]).

We set u(0) = a and still this above holds for any t ∈ [0, T ] with u is continuous on [0, T ]. From

uniform convergence of t
1
4A

1
2un(t) we have continuity of A

1
2u(t). Also, (??) implies ‖A 1

2u(t)‖ =

o(t−
1
4 ) and thus u solves and is in S[0, T ].

Theorem 6.9 (global). In addition to the hypothesis of theorem above, suppose that

‖A 1
4 a‖+B1M <

1

4CΩB1
(B1 = B( 1

4 ,
1
2 )),

where CΩ is [] . Then there exists a solution u ∈ S[0,∞) of integral equation (??).

Proof. It suffices to show existence of a solution in S[0, T ] for any positive T . By lemma 2.10 we
have

t
1
4 ‖A 1

2 e−tAa‖ ≤ t 1
4 ‖A 1

4 e−tA‖‖A 1
4 a‖ ≤ ‖A 1

4 a‖.

With K0(t) used before satisfies K0(T ) ≤ ‖A 1
4 a‖ for any T > 0.

6.2 Existence of strong solution for the Navier-Stokes equations

In view of Theorem 3.14, a sufficient condition to assert that the unique mild solution for (45) is
in fact a strong one is by showing that the nonlinear term Fu is locally Lipschitz. This can be
achieved by showing that Aαu is Lipschitz in u for all positive α < 1 since,

‖Fu− Fv‖ ≤ CΩ(‖A 3
4u‖‖A 1

2 (u− v)‖+ ‖A 3
4 (u− v)‖‖A 1

2 v‖), t ∈ [0, T ].

Recall that

Aαu(t) = Aαe−tAa+

∫ t

0

Aαe−(t−s)AFu(s) ds.

Lemma 6.10. The function Aαu(t) is uniformly Holder continuous in any closed interval [ε, T ]
with ε > 0 if α < 1.
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Proof. Let ε > 0 be given. It is obvious that t 7→ e−tAa is Holder continuous on [ε, T ] so we focus
on the second term of which we denote by v(t). Let t be fixed. For h < T − t we have

Aαv(t+ h)−Aαv(t) =

∫ t

0

(e−hA − I)Aαe−(t−s)AFu(s) +

∫ t+h

t

Aαe−(t+h−s)AFu(s).

Then for any γ > 0,

‖Aαv(t+ h)−Aαv(t)‖ ≤ ‖(e−hA − I)A−γ‖
∫ t

0

‖Aγ+αe−(t−s)A‖‖Fu(s)‖ds

+

∫ t+h

t

‖Aαe−(t+h−s)A‖‖Fu(s)‖ds.

We appeal to the previously established relation∫ t

0

‖Aαe−(t−s)A‖‖Fu(s)‖ds ≤ CΩ
(

sup
0<s≤t

s
1
4 ‖A 1

2u(s)‖
)2

B(1− α, 1
4 )t

1
4−α,

to deduce that for any α+ γ < 1 with γ > 0,

‖Aαv(t+ h)−Aαv(t)‖ ≤ ‖(e−hA − I)A−γ‖CΩK2Bt
1
4−α +

∫ t+h

t

1

(t+ h− s)α
CΩK2

s
3
4

ds

arriving at

‖Aαv(t+ h)−Aαv(t)‖ ≤ CΩK2Bhγ +
CΩK2

1− α
t−

3
4h1−α ≤

(
CΩK2B +

CΩK2

1− α
t−

3
4

)
h1−α, (66)

holding for any t ∈ [ε, T ], where K = sup0<s≤t s
1
4 ‖A 1

2u(s)‖ and B = B(1− α, 1
4 ).
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