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1 Introduction

In this paper we are interested in developing methodologies for the sensitivity analysis of
boundary (shape) functionals and the optimal shape design of bodies immersed in a �uid.
Under the terminology of optimal control theory, when a shape functional depends on the
solution of a boundary value problem (BVP) it is said to be constrained. In the same spirit,
the BVP is the state, the domain is the control and the geometric/topological constraints on
the domain are the control constraints. �e above notions are found in problems concerned
with the optimal control of domain boundaries, commonly referred to as shape optimization
methods. Shape optimization methods have found widespread application in aerodynamics,
aeroacoustics, structural mechanics, electromagnetics and many other engineering and phys-
ical disciplines where one is interested in �nding an optimal shape given a desired function.
For instance, classical examples are the drag minimization of an aerodynamic body, design of
magnets producing prescribed magnetic �elds and the optimal locomotion of microswimmers
in Stokes �ow.

In engineering sciences and applied mathematics one usually refers to adjoint-based shape
optimization methods owing to the following central idea: treating the state equation as an
equality constraint for a shape functional, and through the use of Lagrange multipliers, we
naturally obtain a dual (adjoint) variable associated with a dual (adjoint) problem which, in
fact, is the adjoint equation of the linearized state. �e importance of this realization will be
made clearer in the following chapters, as the methodology will be described in detail. �is
work builds upon the Euler equations whilst only a brief description is provided for the ex-
tension of the method to boundary value problems described by the Navier-Stokes equations.

1.1 Preliminaries of shape sensitivity analysis

�e main mathematical tools of shape optimization are outlined in the following subsections.
Upon these notions, a methodology for shape optimization in �uid dynamics is described in
sections 2 and 3.

1.1.1 Domain transformations

Let Ω ⊂ Rn be a domain of class Ck with k ≥ 1 and disjoint boundaries ∂Ω = {Γ∞,Γ}
where Γ∞ can be termed as the far�eld boundary and Γ the obstacle boundary. Let also both
the convex, bounded domain B and the domain Σ be simply connected and of the same class,
such that Ω = B \ Σ and ∂B = Γ∞ ⊂ ∂Ω, ∂Σ = Γ ⊂ ∂Ω. Later on, we will see that there
will be a BVP de�ned on Ω and from now on, we set our control to be the boundary Γ of the
obstacle Σ, where every boundary functional will be de�ned. �erefore, to perform the shape
sensitivity analysis of boundary functionals we consider a transformation (�ow map) that acts
on Ω. �is transformation is based on the concept of an arti�cial velocity vector.

De�nition 1.1. (Speed method) �e admissible arti�cial velocity (speed) �elds V are elements of
D(B,Rn). For V ∈ D(B,Rn) we de�ne the perturbation of the identity mapping Tτ (Ω)(V ) ∈
C([0, ε],D(B,Rn)) by

Tτ (Ω)(V ) := x 7→ x+ τV (x) : Ω→ Ωτ for every x ∈ Ω ⊂ B (1)

and for τ ∈ [0, ε], ε > 0. For su�ciently small τ > 0, Tτ (Ω)(V ) is a di�eomorphism [1] that
maps Ω onto Ωτ .
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Subsequently, Tτ : Ω→ Ωτ generates a one-parameter family of perturbed domains

O := {Ωτ := Tτ (Ω) : 0 ≤ τ ≤ ε, ∂Ωτ = {Γτ ,Γ∞},Γτ ∩ Γ∞ = ∅}

that share the same topological and regularity properties1 and are always contained in the
compact set B.

A convenient arti�cial velocity �eld, that we will be using in the following sections, was
proposed by Hadamard [2], having the following de�nition.

De�nition 1.2. (Hadamard parameterization) Consider the extension V ∈ D(B,Rn) of the
unit normal vector �eld ν ∈ C∞(Γ). �e Hadamard parameterization is recovered using the
aforementioned speed method with V (x) = ζ̂(x)V(x) for x ∈ Ω, where ζ̂ ∈ C∞(Rn) is de�ned
as the extension of a function ζ ∈ C∞(Γ).

Remark 1. It is possible to enforce additional conditions on the admissible class of arti�cial
velocity �elds in order to satisfy certain geometric constraints. For instance, to preserve the volume
of Ωτ for every τ ∈ [0, ε] we can set V to be divergence-free

V ∈ VC := {u ∈ D(B,Rn) :

∫
Ω

∇ · u =

∫
Γ

u · ν = 0}

1.1.2 �e structure of the shape derivative

Functionals de�ned in the domain Ω or on the boundary Γ are referred to as shape functionals.
In the present context, we de�ne the mapping J : O → D ′(B) taking domains from the one-
parameter family O to the space of distributions D ′(B). Subsequently, J (V ) : D(B)→ Rn

for V ∈ O. �e simplest examples of shape functionals are the measures

J1 =

∫
Rn
χΩ dnx , J2 =

∫
Γ

dΓ

whereχΩ is the characteristic function of Ω. Based on the above, we de�ne the shape (Gateaux)
derivative of the functional J (Ω) by

dV J (Ω)(V ) =
d

dτ
J (Ω)(V )

∣∣∣
τ=0+

= lim
τ→0

J (Ωτ )−J (Ω)

τ
(2)

where the limit is to be understood in the topology of D ′.

De�nition 1.3. (Shape di�erentiable functional) �e functional J (Ω) : D → R is shape
di�erentiable in Ω if

i) the shape derivative dV J (Ω)(V ) exists for all admissible directions V ∈ D(B,Rn),

ii) the mapping Tτ (Ω)(V ) 7→ dV J (Ω)(V ) : Ωτ → R is linear and continuous.

1�e regularity is preserved for V ∈ D(B,Rn).
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For example, we have that

J (Ωτ ) =

∫
Rn
χΩτ =

∫
Rn
χΩ γ(τ)

where τ 7→ γ(τ) ≡ det(∇Tτ ) can be shown to be di�erentiable in D with [3]

γ(τ)− 1

τ
→ ∇ · V as τ → 0

�en

dV J (Ω)(V ) =

∫
Ω

∇ · V = 〈χΩ,∇ · V 〉D ′(Rn)×D(Rn) = 〈−∇χΩ,V 〉(D ′(Rn))n×(D(Rn))n

with 〈·, ·〉D ′×D denoting the duality pairing. �us, there exists distribution G ∈ D ′(Ω,Rn)
such that

dV J (Ω)(V ) = 〈G,V 〉D ′×D = 〈−∇χΩ,V 〉D ′×D for all Tτ ∈ C([0, ε],D(B,Rn))

Furthermore, for Γ ∈ C1, using Stoke’s theorem we can write

dV J =

∫
Ω

∇ · V =

∫
Γ

V · ν

�e next result follows from the above de�nitions.

Proposition 1.1. Let V be an open and bounded set in Rn and suppose that for every set Ωτ ∈ O
we have that Ωτ ⊂ B ⊂ V . If a shape functional J (Ωτ ) : D → R is shape di�erentiable in
Ωτ , then there exists a distribution G ∈ D ′(Ω,Rn) such that

dV J (Ω)(V ) = 〈G,V 〉D ′(B)×D(B) for all Tτ ∈ C([0, ε],D(B,Rn)) (3)

It is easy to see that arti�cial velocity �elds producing nontrivial transformations Tτ (Ω)(V )
must be supported on Γ.

Proposition 1.2. For V ∈ D(Ω) and for shape di�erentiable J (Ωτ ) : D → R we have that

J (Ωτ )(V ) = J (Ω)(V ) =⇒ dV J (Ω)(V ) = 0

for any τ ∈ [0, ε].

Proof. �e above result immediately follows from the de�nition of the shape derivative and
the fact that for compactly supported speed �elds in Ω one obtains Ωτ ≡ Ω.

Proposition 1.3. Let Ω be a domain of class Ck with ∂Ω = {Γ,Γ∞} and J (Ω) : D(B)→ R
be shape di�erentiable with dV J = 〈G,V 〉D ′×D . �en

〈V
∣∣
Γ
, ν〉Rn ≡ 0 =⇒ dV J (Ω)(V ) = 0
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Proof. Assume that 〈V
∣∣
Γ
, ν〉Rn ≡ 0. �en, for any x ∈ Γ we have that Tτ (x,V ) ∈ Γ. �at

means that the boundary Γ is globally invariant to the transformation induced by Tτ (Ω)(V )
and consequently Ωτ ≡ Ω, implying that dV J (Ω)(V ) = 0.

�e collection of the above results leads to the structure theorem of the shape gradient.
�eorem 1.4. (Hadamard-Zolesio structure theorem) Let J (Ωτ ) : D(B) → R be a shape
di�erentiable functional in any Ωτ ∈ C∞ with ∂Ω ∈ C∞. �en, there exists a scalar distribution
g ∈ D ′(Γ) such that the gradient G ∈ D(Ω,Rn) is given by

G(x) = γ∗Γ(gν) , x ∈ Ω (4)

where γΓ : D(Ω,Rn) → D(Γ,Rn) is the trace operator and γ∗Γ denotes its adjoint operator.
Hence, a general formula for the shape gradient is obtained.

dV J (Ω)(V ) = 〈G,V 〉D ′(B,Rn)×D(B,Rn) = 〈g,V
∣∣
Γ
· ν〉D ′(Γ)×D(Γ) = dV J (Γ)(V ) (5)

Proof. We can prove that for a distribution u ∈ D ′(Ω) of order k and with compact support
on Γ, it holds that [4, �m. 2.3.5]

〈u, ϕ〉D ′×D =
∑
|α|≤k

uα
(
∂αϕ

∣∣
Γ

)
=
∑
|α|≤k

uα γΓ

(
∂αϕ

)
=
∑
|α|≤k

((
− 1
)|α|

∂α
(
γ∗Γuα

))
ϕ (6)

where uα is a distribution of compact support on Γ and of order k − |α|. �us,

u =
(
− 1
)|α|

∂α
(
γ∗Γuα

)
where we have de�ned the adjoint of the trace operator as

〈γ∗Γuα, ϕ〉D ′(Rn)×D(Rn) := 〈uα, γΓϕ〉D ′(Γ)×D(Γ)

From propositions 1.1 and 1.2 it immediately follows that supp G ⊂ Γ which in turn implies
that there exists distribution ĝ ∈ D ′(Γ,Rn) such that

dV J (Ω)(V ) = 〈G,V 〉D ′(B,Rn)×D(B,Rn) = 〈ĝ, γΓV 〉D ′(Γ,Rn)×D(Γ,Rn)

Now de�ne B = {u ∈ D(B,Rn) : 〈u, ν〉Rn = 0 on Γ} and observe that proposition 1.3 infers
that B ⊂ ker

(
dV (·)(Ω)(V )

)
. �is suggests that without loss of generality we can select

V from the quotient space D(B,Rn)/B where two elements V1,V2 ∈ D(B,Rn)/B having
di�erent tangential components on Γ are identi�ed. Based on this, we obtain the �nal form

dV J (Ω)(V ) = 〈ĝ, γΓV 〉D ′(Γ,Rn)×D(Γ,Rn) = 〈g, ν · γΓV 〉D ′(Γ)×D(Γ) = 〈γ∗Γ(gν),V 〉D ′(B)×D(B)

for scalar distribution g ∈ D ′(Γ).
Remark 2. �is important result implies that the shape derivative of a distribution de�ned over
the domain Ω can be reduced to a distribution de�ned only on the boundary Γ.

Furthermore, if g is integrable, e.g. g ∈ L1(Γ), then

dV J (Γ)(V ) = 〈g, ν · γΓV 〉D ′(Γ)×D(Γ) =

∫
Γ

g V · ν (7)

In the sections to follow we will work out a methodology where an augmenented (constrained)
shape functional de�ned on the domain Ω is reduced to a functional on the boundary by the
use of the adjoint state of the boundary value problem acting on Ω. To this end, we �rst need
to develope the notions of material and shape derivative for functions living in Ω.
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1.1.3 Shape derivatives of domain and boundary functionals

De�nition 1.4. (Material derivative) Let uτ : Ωτ → R be a function in Ck(Ωτ ) that depends
smoothly on the parameter τ ∈ [0, ε] and u0 ≡ u. �e material derivative of u with respect to
the transformation Tτ is de�ned as

u̇(x) := DV u(x) := lim
τ→0

(uτ ◦ Tτ )(x)− u(x)

τ
, x ∈ Ω (8)

with the subscript V denoting the arti�cial velocity �eld associated to Tτ (x)(V ).

Remark 3. �e operatorDV satis�es the classical rules of di�erential operators such as the chain
rule, product rule, etc. but does not commute with time and space derivatives. It is also identi�ed
with the Lie derivative for scalar functions f , i.e. DV f ≡ LV f .

A more explicit form of the material derivative can be obtained by extending uτ (x) : Ωτ → R
to ũ(x, τ) : B × [0, ε]→ R. �en for x ∈ Ω and ũ(x, 0) ≡ u(x), we can write

DV u(x) =
d

dτ

(
ũ(x, τ) ◦ Tτ (V )(x)

)∣∣∣
τ=0

= ∂τ ũ(x, 0) +∇ũ(x, 0)
d

dτ
Tτ (V )(x)

∣∣∣
τ=0

= ∂τ ũ(x, 0) +
(
V (x) · ∇

)
ũ(x, 0)

= ∂τu(x) +
(
V (x) · ∇

)
u(x) (9)

It can be seen from the above expression that the material derivative can be decomposed in
two parts: the rate of change of u due to its dependence on τ , and the convective e�ect which
is due to the arti�cial velocity �eld V (x). Given the vector �eld V (x), the convective term
can be easily computed for known u. On the other hand the term ∂τu(x) is trickier to compute
since u is usually the solution of a BVP evolving with the pseudotime τ on the domains O.

De�nition 1.5. (Shape derivative) In the above context, the derivative ∂τu(x) ≡ u′(x) for x ∈ Ω
is called the shape derivative of u with respect to the transformation Tτ (x)(V ). Also, assuming
that the material derivative exists, we can de�ne the shape derivative in explicit form as

u′(x) = DV u(x)−
(
V (x) · ∇

)
u(x) , x ∈ Ω (10)

Remark 4. �e shape derivative operator obeys the classical rules of di�erential operators and
also commutes with time and space derivatives.

Using the above notions and some basic di�erential geometry we can now calculate the shape
derivatives of functionals depending on the transforming domain Ω.

Lemma 1.5. Let Ck(Ωτ ) 3 uτ : Ωτ → R and consider the distributed and the boundary
functionals E and J respectively, de�ned by

Eτ =

∫
Ωτ

uτ (x) , Jτ =

∫
Γτ

uτ (x) for all x ∈ Ωτ , τ ∈ [0, ε] (11)

�e shape derivatives of E ,J with respect to the transformation Tτ (Ω)(V ) read

dV E : =
d

dτ
Eε

∣∣∣
τ=0

=

∫
Ω

u′ +

∫
Γ

u〈V , ν〉Rn (12a)

dV J : =
d

dτ
Jε

∣∣∣
τ=0

=

∫
Γ

u′ +
(
〈ν,∇〉Rn + κ

)
u〈V , ν〉Rn (12b)

where ν is the normal unit vector on Γ, κ the mean curvature of Γ and 〈·, ·〉Rn denotes the inner
product in Rn. Also, the manifold Γ is considered closed, i.e. ∂Γ = ∅.
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Proof. For the former functional, we �rst transform it in the reference domain Ω as

Eτ =

∫
Ωτ

uτ (y) dy =

∫
Ω

(uτ ◦ Tτ )(x) det(∇Tτ ) dx

Di�erentiating with respect to the pseudotime τ

d

dτ

(∫
Ωτ

uτ (y) dy
)∣∣∣

τ=0
=

d

dτ

(∫
Ω

(uτ ◦ Tτ )(x) det(∇Tτ ) dx
)∣∣∣

τ=0

=

∫
Ω

DV u(x) + u(x)
d

dτ
det(∇Tτ ) dx

=

∫
Ω

u′(x) +
(
V (x) · ∇

)
u(x) + u(x)

(
∇ · V (x)) dx

=

∫
Ω

u′(x) +∇ ·
(
V (x)u(x)

)
dx

where we have used the formulas d
dτ

det(∇Tτ ) = ∇ · V and DV u = u′ +
(
V (x) · ∇

)
u(x).

Since V has compact support in B, V vanishes on Γ∞. �us, the divergence theorem for
∂Ω = {Γ,Γ∞} asserts that

dV E (Ω)(V ) =

∫
Ω

u′ +

∫
Γ

(
V · ν

)
u

For the la�er case, we will be using without proof the following transformation formulas [3,
Sec. 2.17] ∫

Γτ

uτ (y) dy =

∫
Γτ

(
uτ ◦ Tτ

)
(x) γτ dx

where γτ = det(∇Tτ )
∥∥(∇T>τ )−1 · ν

∥∥
Rn and

γ′τ :=
d

dτ
γτ

∣∣∣
τ=0

= ∇Γ · V (13)

where ∇Γ denotes the tangential derivative. Also [5, Sec. 4.4],∫
Γ

∇Γu =

∫
Γ

uκν for any u ∈ Ck(Γ) (14)

for a smooth manifold Γ with ∂Γ = ∅ and mean curvature κ. Using the above formulas and
working as before we �nd

d

dτ

(∫
Γτ

uτ (y) dy
)∣∣∣

τ=0
=

d

dτ

(∫
Γ

(uτ ◦ Tτ )(x) γτ dx
)∣∣∣

τ=0

=

∫
Γ

DV u(x) + u(x)
d

dτ
γτ dx

=

∫
Γ

u′(x) +
(
V (x) · ∇

)
u(x) + u(x)∇Γ · V (x) dx

=

∫
Γ

u′(x) +
(
V · ν

)
∂νu(x) +

(
V (x) · ∇Γ

)
u(x) + u(x)∇Γ · V (x) dx

=

∫
Γ

u′(x) +
(
V · ν

)
∂νu(x) +∇Γ ·

(
u(x)V (x)

)
dx
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where in the last two lines we decomposed the term
(
V (x) ·∇

)
u(x) in normal and tangential

components. Finally, using formula (14) one obtains

dV J (Γ)(V ) =

∫
Γ

u′ + (V · ν)
(
∂ν + κ

)
u

2 Optimal control of the boundary for the Euler equations

�is section contains the main material of the present work where the shape optimization
method is formulated as an optimal control problem for the boundary Γ.

2.1 Linearized Euler equations

Let Ω ⊂ R3 with disjoint boundaries ∂Ω = {Γ∞,Γ} be the set that was de�ned in the pre-
vious section and de�ne the primitive and the conservative variables as the vectors Up, Uc ∈
C1(Ω,R5) respectively, having the form

Upi =
(
ρ, u1, u2, u3, p

)>
(x) , Ui ≡ Uci =

(
ρ, ρu1, ρu2, ρu3, E

)>
(x) , x ∈ Ω (15)

De�nition 2.1. (Euler equations) �e nonlinear system of conservation laws for the mass con-
tinuity, momentum balance and energy conservation that describes the dynamics of an inviscid
compressible �uid is fully described by the convective �ux vector Fcij ∈ C1(Ω,R5) given by

Fcij =
(
ρu1, ρuiu1 + pδi1, ρuiu2 + pδi2, ρuiu3 + pδi3, ρuiH

)>
, i = 1, . . . , 3 , (16)

the vector of conservative variables Ui and the constitutive equations of the �uid. For ideal gases,
the constitutive equations take the form

p = (γ − 1)ρ
(
E − 1

2
uiui

)
, H = E +

p

ρ
, γ ' 1.4 (atm. air) (17)

Finally, ρ represents the density, p the pressure, V = (u1, u2, u3) the velocity vector, E the total
energy, H the enthalpy and γ the heat capacity ratio.

We are interested in BVP problems of the Euler equations for domains that contain a smooth
(streamlined) obstacle Σ. Consequently, Γ is the boundary of the obstacle and the far�eld
boundary Γ∞ is placed at a su�cient distance from the body, where freestream �ow conditions
can be considered. For the steady Euler equations, i.e. ∂tU ≡ 0 a�er a transient period, the
BVP reads 

∂i
(
Fcij(U)

)
= 0 in Ω

V · ν = 0 on Γ

W+ = W∞ on Γ∞

(18)

where ν is the unit normal vector on Γ and W is the vector of characteristic variables2.

2At the far�eld, boundary conditions are prescribed according to the propagation direction of characteristics.
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�e linearized Euler equations can then be expressed according to �rst order perturbations
around a base state U0. De�ning the perturbation vector δU we write U = U0 + δU and thus

Fcij(U) = Fcij(U0) +
∂Fcij
∂Uk

∣∣∣∣
U0k

δUk = Fci0 + Acijk

∣∣∣
U0k

δUk i = 1, . . . , 3, j, k = 1, . . . , 5

(19)

�e third order tensor Acijk is known as convective �ux Jacobian and takes the compact form

Acijk =


0 δi1 δi2 δi3 0

−uiu1 + δi1φ u1 − (γ − 2)u1δi1 u1δi2 − (γ − 1)u2δi1 u1δi3 − (γ − 1)u3δi1 (γ − 1)δi1
−uiu2 + δi2φ u2δi1 − (γ − 1)u1δi2 u2 − (γ − 2)uiδi2 u2δi3 − (γ − 1)u3δi2 (γ − 1)δi2
−uiu3 + δi3φ u3δi1 − (γ − 1)u1δi3 u3δi2 − (γ − 1)u2δi3 u1 − (γ − 2)uiδi3 (γ − 1)δi3
ui(φ−H) −(γ − 1)uiu1 +Hδi1 −(γ − 1)u1u2 +Hδi2 −(γ − 1)uiu3 +Hδi3 γui

 (20)

where φ = (γ − 1)/2 uiui. Consequently, the linearized BVP for the Euler equations reads
∂i
(
AcijkδUk

)
= 0 in Ω

δui νi = 0 on Γ

δW+ = 0 on Γ∞

(21)

2.2 Shape derivatives of the Euler equations

Now we want to control the boundary Γ in such a way that the Euler equations are satis�ed
in the domain Ωτ for every τ ∈ [0, ε], Ω ≡ Ωτ=0. To this end, we derive a BVP problem for
the shape derivatives of the Euler system. �e Euler equations (18) in weak form read∫

Ωτ

∂i
(
Fcij(U)

)
ϕj = 0 , ϕj ∈ D(Ωτ ,R5)

Taking the shape derivative (Lemma 1.5)

d

dτ

(∫
Ωτ

∂i
(
Fcij(U)

)
ϕj

)∣∣∣
τ=0

= 0∫
Ω

(
∂i
(
Fcij(U)

)
ϕj

)′
+

∫
Γ

(
∂i
(
Fcij(U)

)
ϕj

)
〈V , ν〉R3 = 0

and since ϕj ∈ D(Ωτ ,R5) does not depend on the pseudotime τ we get∫
Ω

(
∂i
(
Fcij(U)

))′
ϕj =

∫
Ω

∂i
(
F ′cij(U)

)
ϕj =

∫
Ω

∂i
(
Acijk

∣∣
U
U ′k
)
ϕj = 0

because the shape derivative commutes with the time and space derivatives. Subsequently,

∂i
(
AcijkU

′
k

)
= 0 in Ω (22)

where U ′k is the vector of shape derivatives of the conservative variables. To work out the
boundary condition at the deforming boundary Γτ we observe that we need to satisfy the
no-penetration boundary condition on Γτ for every τ ∈ [0, ε]. �us, we impose uτ · ντ = 0
for all τ and x ∈ Ωτ or (uτ · ντ ) ◦ Tτ = 0 for all τ and x ∈ Ω. More speci�cally,

(uτ · ντ ) ◦ Tτ = (uτ · ντ ) ◦ Tτ − u · ν = 0 , τ > 0

9



because u · ν = 0 (at τ = 0). For small τ , and up to the limit, this is equivalent to

DV (u · ν) = 0 on Γ (23)

For V (x) = ζ(x)ν(x) with x ∈ Γ, the above condition can be also wri�en as

DV (u · ν) = u′ · ν + u · ν ′ + ζ
(
∂νu · ν

)
= 0 (24)

Lastly, since the boundary Γ∞ is �xed for all τ we simply obtain

(W+)′ = W ′
∞ = 0 on Γ∞

�us, the BVP describing the shape derivatives U ′i of (18) takes the form
∂i
(
AcijkU

′
k

)
= 0 in Ω

u′ · ν = −u · ν ′ − ζ
(
∂νu · ν

)
on Γ

(W+)′ = 0 on Γ∞

(25)

which closely resembles the linearized Euler equations (21) but with a modi�ed boundary
condition on Γ to account for the deforming boundary.

2.3 Boundary functionals depending on pressure

When the Euler equations are involved in aerodynamic shape optimization problems it is rea-
sonable to study boundary functionals that depend on the pressure. �antities of interest that
are functions of the pressure alone are the li�, drag and moment coe�cients. Since viscous
phenomena are absent in the Euler equations, one can only optimize a shape with respect to
its pressure drag, e.g. reduce the drag penalty due to shock-waves in transonic �ows. �is
can result in an automatic and precise way for the design of shock-free airfoils.

�erefore, from now on we work with functionals de�ned on the boundary Γ having the form

J (Γ)(p) =

∫
Γ

g(p, ν) (26)

where g ∈ Ck for k ≥ 1 is a function of the pressure p and the outward normal unit vector ν
on Γ. For instance, the pressure drag coe�cient on an airfoil is given by

cd =

∫
Γ

g(p, ν) =

∫
Γ

cp(ν ·
V∞
‖V∞‖

) where cp =
p− p∞
q∞

with V∞ the freestream velocity vector in R3, p∞ the freestream pressure and q∞ = 1
2
ρ∞V∞

the freestream dynamic pressure. Using Lemma 1.5 the shape derivative of the above func-
tional is expressed by

dV J (Γ)(V ) =

∫
Γ

g′(p, ν) +
(
(ν · ∇) + κ)g(p, ν)

(
V · ν

)
(27)

with g′(p, ν) =
∂g

∂p
p′ +

∂g

∂ν
· ν ′ (28)

10



It is insightful to rewrite the above functional in the form

dV J (Γ)(V ) =

∫
Γ

∂g

∂p
p′ +

∂g

∂ν
· ν ′︸ ︷︷ ︸

�ow and geometric shape derivatives

+
(
(ν · ∇) + κ)g(p, ν)

(
V · ν

)
︸ ︷︷ ︸

geometry and Euler �ow solution

(29)

which immediately suggest that the shape derivative dV J is composed by two main terms:
one depending on the sensitivity of the pressure �eld and the normal unit vector to the trans-
formation Tτ and the other depending on known geometric properties, the transformation
Tτ (Ω)(V ) and the solution of the Euler equations (18).

Note that, given a speed vector �eld V ∈ D(B,Rn) and the solution to equation (18), we can
subsequently solve the BVP (25) for the shape derivatives to compute dV J (Ω)(V ) ∈ R. But
this is not exactly what we wish to obtain. Instead, we are searching for the scalar distribution
G ∈ D ′(Γ) such that

dV J := 〈G,V
∣∣
Γ
· ν〉D ′(Γ)×D(Γ)

holding for all speed vectors V ∈ D(B,Rn) with V
∣∣
Γ
∈ D(Γ). �is scalar distribution is the

gradient de�ned over the boundary Γ that we will later use to perform the shape optimization.

However, it is worth mentioning that the gradient G ∈ D ′(Γ) can still be approximated by the
above method. For example, we can consider the restriction of a normalized arti�cial velocity
�eld V ∈ D(B,Rn) in a region N (x0) := Bρ(x0)∩Γ for x0 ∈ Γ. For su�ciently small ρ > 0

dV J (Γ)(V
∣∣
N (x0)

) ' G(x0) (30)

Intuitevely speaking, it is as if we were taking the Dirac delta function as the arti�cial velocity
�eld V , even though we cannot exactly do that. Hence, to approximate the gradient over the
boundary Γ at n ∈ N neighborhoods {N (xn)} of Γ using (30), we would require n solutions
of the shape derivative boundary value problem (25), one for every V

∣∣
N (xn)

.

It turns out that this can be avoided by the use of the adjoint Euler equations, so that only one
BVP needs to be solved to obtain the exact gradient, as it will be shown in the next section.

2.4 Adjoint Euler equations

Let ϕ ∈ H1(Ω,R5) and take the integration by parts of the shape derivative equation (22) for
the Euler system to obtain∫

Ω

∂i
(
AcijkU

′
k

)
ϕj =

∫
Ω

U ′k
(
− Acijk∂iϕj

)
+

∫
Γ∪Γ∞

U ′k A
c
ijkνi ϕj = 0 , ϕ ∈ H1(Ω,R5)

For the above relation to hold, we �rst demand that

−Acijk∂iϕj = 0 in Ω (31)

�e above linear homogeneous equations are known as the adjoint equations or the adjoint
state to the system of Euler equations (18). To make the term associated to the boundary Γ
vanish we work in terms of the shape derivatives of the primitive variables Upi . Knowing that
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the product rule holds for the shape derivative, e.g.
(
ρui
)′

= ρ′ui + ρu′i, the shape derivative
of pressure computes

p′ =

(
(γ − 1)ρ

(
E − 1

2
uiui

))′
= (γ − 1)

((
ρE
)′ − ρ′

2
uiui − ρuiu′i

)
p′ = (γ − 1)

((
ρE
)′ − ρuiu′i)− ρ′φ , φ = (γ − 1)

1

2
uiui (32)

Taking the formula (20) of the convective �ux Jacobian Acijk and regrouping the terms, we
observe that many terms vanish due to the boundary condition on Γ, i.e. uiνi = 0. A�er
computations we obtain∫

Γ

U ′k A
c
ijkνi ϕj =

∫
Γ

(
ρu′iνi

)
ϕ1 +

(
ρu′iνiH

)
ϕ5 + ρu′iνi(uiϕi+1) + p′

(
νiϕi+1

)
= 0∫

Γ

(
ρu′iνi

)(
ϕ1 + uiϕi+1 +Hϕ5

)
+ p′

(
νiϕi+1

)
= 0 for i = 1, . . . , 3 (33)

On the far�eld boundary Γ∞ it is possible to set ϕj ≡ 0. However, this may overconstrain
the system and a be�er choice could be to apply boundary conditions depending on the char-
acteristic variables [6]. Here, for simplicity it is assumed that ϕj ≡ 0 on Γ∞. Observing the
structure of the pressure functional (29), we see that the unknown pressure shape deriva-
tive term can be replaced if we select suitable boundary conditions on Γ. Taking (33) with
νiϕi+1 = ∂g

∂p
we obtain ∫

Γ

∂g

∂p
p′ = −

∫
Γ

(
ρu′iνi

)(
ϕ1 + uiϕi+1 +Hϕ5

)
(34)

Hence, se�ing Φ = ρϕ1 + ρuiϕi+1 + ρHϕ5, formula (29) can be recast to the form

dV J =

∫
Γ

∂g

∂p
p′ +

∂g

∂ν
· ν ′ +

(
(ν · ∇) + κ)g

(
V · ν

)
=

∫
Γ

−(u′ · ν) Φ +
∂g

∂ν
· ν ′ +

(
∂νg + κg

)(
V · ν

)
(35)

�e shape derivative of the velocity u′ on the boundary Γ is de�ned by the boundary condition
(23) and ν ′ = −∇Γ(V · ν). Proceeding with integration by parts we obtain

dV J =

∫
Γ

(
u · ν ′ + V · ∇(uν)

)
Φ +

∂g

∂ν
· ν ′ +

(
∂νg + κg

)(
V · ν

)
=

∫
Γ

−(u · ∇Γ(V · ν)
)

Φ− ∂g

∂ν
· ∇Γ(V · ν) +

(
∂νg + κg

)(
V · ν

)
=

∫
Γ

(
∇Γ · (Φu)−∇Γ ·

∂g

∂ν
+ (∂νg + κg)

)(
V · ν

)
=

∫
Γ

G
(
V · ν

)
(36)

which is the form of the shape gradient that we would expect to �nd according to the structure
theorem 1.4. Taking the Hadamard parameterization (De�nition 1.2), we �nd the distribution
that is identi�ed with the shape gradient in terms of the solution of the Euler system and its
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adjoint state

dV J (Γ)(V ) =

∫
Γ

G ζ = 〈G, ζ〉D ′(Γ)×D(Γ) , ζ ∈ D(Γ)

G = ∇Γ · (Φu)−∇Γ ·
∂g

∂ν
+ (∂νg + κg) (37)

where ζ is a smooth function that describes the displacement of the boundary Γ. To compute
Φ the solution of the adjoint BVP is required

−Acijk∂iϕj = 0 in Ω

ϕi+1νi = ∂g
∂p

on Γ

ϕj = 0 on Γ∞

(38)

for i = 1, . . . , 3 and k, j = 1, . . . , 5. Observe that (38) incorporates the adjoint Euler equa-
tions, which is a system of linear hyperbolic equations with variable coe�cients, and a bound-
ary condition on the deforming boundary Γ that depends on the cost functional J .

2.5 An algorithm for optimal shape design of aerodynamic bodies

To summarize the above procedures, the basic sketch of a shape optimization algorithm is
presented, generating airfoils of minimal drag subject to the given constraints.

Algorithm 1: Pressure drag minimization of obstacle immersed in inviscid �uid.
Input:

Initial geometry: Initial domain Ω = B \ Σ.
Flow conditions: Freestream Mach number M∞, velocity vector V∞ etc.
Optimization parameters: Marching step δs > 0 and tolerance ε > 0.

Pick V ∈ VC and choose the Hadamard parameterization (De�nition 1.2).
Set i← 0 and Ωi ← Ω.
begin

1. Solve Euler equations (18) in Ωi to obtain the �ow solution

Upi =
(
ρ, u1, u2, u3, p

)>
(x) for every x ∈ Ωi

and compute the convective �ux Jacobian Acijk(Up) in Ωi.
2. Solve adjoint Euler equations (38) in Ωi to obtain the adjoint state

(ϕ1, ϕ2, ϕ3, ϕ4, ϕ5)>(x) for every x ∈ Ωi

3. Compute the shape gradient (37) on Γi with suitable ζ ∈ D(Γ) to account
for the volume preserving contraint of the set VC (see Remark 1).
4. Perturb the current boundary Γi to create the new domain Ωi+1 using the
transformation

x 7→ x+ δsV
∗
C with V ∗C (x) = (ζG) ν for x ∈ Γ

or by perturbing the control points of a B-spline curve that parameterizes the
boundary Γi in the direction of G and with step δs.
Stop if reduction in drag coe�cient cd is below the given tolerance ε.
Otherwise set i← i+ 1 and go to 1.

end
Output: Boundary shape Γ∗ that minimizes the drag coe�cient cd (according to the
Euler equations) for prescribed �ow conditions and geometric constraints.
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3 Optimal control of the boundary for the Navier-Stokes equations

�e shape optimization method that is described in section 2 is carried out using the Euler
equations. To introduce the e�ect of viscous phenomena and turbulence on the optimization,
the method must build upon the Navier-Stokes equations. However, the shape optimization
method is not to be developed from scratch. To the contrary, the Euler equations and the
adjoint Euler equations are the ‘convective’ part of the Navier-Stokes equations and their ad-
joint state respectively. More speci�cally, looking at the equations as a conservation law, the
Navier-Stokes equations are the Euler equations with the addition of new terms to account
for the viscous momentum and thermal stresses. Considering drag minimization applications,
the objective function J given by (26) is augmented to account for friction (momentum stress
component parallel to the boundary Γ) and the boundary conditions on the wall are modi�ed
to account for the no-slip (zero wall velocity) condition instead of the no-penetration condi-
tion of the Euler equations.

In this section a very brief overview is given regarding the extension of the Euler shape opti-
mization method to a method based on the Navier-Stokes equations.

3.1 Compressible Navier-Stokes equations

In section 2.1 the Euler equations along with their linearized form were given. In the present
section the steady compressible Reynolds-Averaged Navier-Stokes (RANS) equations are pre-
sented in conservative form.

De�nition 3.1. (Compressible RANS equations) �e nonlinear system of conservation laws for
the mass continuity, momentum balance and energy conservation that describes the mean dy-
namics of a viscous compressible �uid is fully described by the �ux functions Fcij , Fv1ij , Fv2ij ∈
C1(Ω,R5) and the following boundary value problem for adiabatic boundary Γ.

∇ · Fc −∇ · (µdFv1 + µhFv2) = 0 in Ω

V = 0 on Γ

∂νT = 0 on Γ

W + = W∞ on Γ∞

Turbulence model for µt and B.C.

(†)

where µd = µ + µt with µ (µt) the dynamic (turbulent) viscosity, µh = µ/Pr + µt/Prt with Pr
(Prt) the classical (turbulent) Prandtl coe�cient. �e convective �uxes Fcij and the viscous �uxes
Fv1ij , Fv2ij are given by

Fc =


ρui

ρuiu1 + pδi1
ρuiu2 + pδi2
ρuiu3 + pδi3

ρuiH

 Fv1 =


·
τi1
τi2
τi3
ujτij

 Fv2 =


·
·
·
·

cp∂iT

 i = 1, 3

where V = (u1, u2, u3), τij = ∂jui + ∂iuj − 2
3
δij∇ · V the stress tensor, H the enthalpy, T

the temperature, cp = Rγ/(γ − 1) the heat capacity at constant pressure and R is the gas
constant. �e dynamic viscosity µ is given by Sutherland’s Law as a function of temperature and
Pr ' 0.71 for air. �e turbulent Prandtl number Prt can be taken ' 0.91 owing to Reynold’s
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analogy. Otherwise an additional model is required when Reynold’s analogy is violated. Finally,
an appropriate turbulence model is required for closure because of the assumption that turbulence
manifests itself as an increase in viscosity (µd = µ+ µt).

�e linearized RANS equations are obtained in the same fashion as the Euler equations but
with some additional e�ort. �e convective �ux fuction was already linearized and given by
the formula (20). �e linearization of the viscous �ux function can be found in [7]. �ere are
two classical ways to proceed on this: i) the turbulent viscosity µt is considered constant in
the linearization (frozen-viscosity assumption), ii) the turbulent viscosity is nonconstant and
one should proceed with also linearizing the turbulence model.

3.2 Augmenting the pressure functional

�e pressure functional (26) which served as the cost function for the Euler-based shape op-
timization is augmented to account for the viscous forces on drag. �e new functional reads

I (p, τij, ν) =

∫
Γ

g(p, τij, ν) =

∫
Γ

(
pνi − (µ+ µt)τijνj

)
di i, j = 1, . . . , 3 (39)

where di is a nondimensional vector denoting the direction where the force is projected and
takes the direction of the freestream velocity when drag minimization is considered.

�e same shape derivative formula that was used to obtain (29) can be used and new shape
derivatives associated with the momentum stress tensor will appear leading to a modi�ed
boundary condition for the adjoint RANS boundary value problem.

3.3 Adjoint Navier-Stokes equations

�e adjoint RANS boundary value problem shares the same form as its Euler analogue, given
by (38), but with the addition of the viscous Jacobian tensors. �e same far�eld boundary
condition on Γ∞ can be used but the boundary condition on the airfoil boundary Γ must be
reevaluated according the the procedure described in section 2.4 since the cost function I
contains new terms depending on the stress tensor τij .

Since the Navier-Stokes shape optimization method is only an extension of the present work,
the complete derivation of the method for the RANS equations is le� for future work.

4 Numerical treatment for the primal and adjoint Euler equations

To conclude this work, the numerical treatment of the primal and the adjoint Euler equations
is discussed and numerical solutions are provided for three distinct �ow regimes: subsonic,
transonic and supersonic.

4.1 Numerical scheme

�e Euler system (18) and its adjoint state (38) can be numerically solved using a �nite volume
method. Finite volume and �nite element methods occur naturally for linear and nonlinear
systems of conservation laws and are thus usually preferred to the �nite di�erence method.
In this section the numerical schemes are presented in brevity for the one-dimensional case,
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but they immediately extend to R2 and R3.

In the context of the �nite volume method, the domain Ω ⊂ R is partitioned in grid cells or
�nite volumes {Ci}, with

⋃
i Ci = Ω, i ∈ N. A grid cell is de�ned as a subinterval of Ω such

that
Ci = (xi−1/2, xi+1/2) ⊂ Ω

with volume ∆x = |xi−1/2−xi+1/2|. Subsequently, for u(x, t) de�ned in Ω×R+ we have the
local approximation

Un
i ' −

∫
Ci
u(x, tn) dx =

1

∆x

∫ xi+1/2

xi−1/2

u(x, tn) dx (40)

at the timestep n ∈ N. Also, the value Un
i is usually referred to as cell-center value while

values with indeces (·)(·)±1/2 are named face-centered values. Considering the general form
of a scalar conservation law in Ω× R+

∂tu+ ∂xF (u) = 0

with �ux function F as in (16) and u the vector of conservative variables (15), we can work
out to �nd the following explicit approximation

Un+1
i = Un

i −
∆t

∆x

(
F n
i+1/2 − F n

i−1/2

)
(41)

for ∆t = tn+1− tn and with F n
i+1/2 denoting the approximation of the �ux on the face i+1/2,

given by

F n
i+1/2 '

1

∆t

∫ tn+1

tn

F
(
u(xi+1/2, t)

)
dt (42)

We would like to approximate the �ux F n
i+1/2in terms of the values of Un. To this end, know-

ing that the Euler system and its adjoint state exhibit hyperbolic behavior and thus �nite
propagation speed, it sounds reasonable to approximate the �ux by a formula of the form

F n
i−1/2 = F(Un

i−1, U
n
i ) , F n

i+1/2 = F(Un
i , U

n
i+1)

where F(·) is the numerical �ux function. Consequently, the numerical scheme (41) takes the
form

Un+1
i = Un

i −
∆t

∆x

(
F(Un

i−1, U
n
i )−F(Un

i , U
n
i+1)
)

(43)

which in general describes a three-point stencil explicit discretization that preserves the con-
servative nature of the original equation. In the present work, the central-di�erence scheme
of Jameson-Schmidt-Turkel (JST) [8] is employed, for which the numerial �ux function takes
the form

F n
i±1/2 = F(S5) = F (Un

i±1/2)−Di±1/2 (44)

with Un
i−1/2 = 1

2

(
Un
i−1 + Un

i

)
and S5 =

(
Un
i−2, U

n
i−1, U

n
i , U

n
i+1, U

n
i+2

)
denoting the �ve-point

stencil of the scheme. �e term Di−1/2 is the arti�cial dissipative �ux, used to correct for
odd-even decoupling and stabilize the central scheme, which is given by

Di−1/2 = ε
(2)
i−1/2 ∆ui−1/2 + ε

(4)
i−1/2

(
∆ui−3/2 − 2∆ui−1/2 + ∆ui+1/2

)
(45)
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with ∆ui−1/2 = ui − ui−1 and dissipation coe�cients

ε
(2)
i−1/2 = κ2si−1/2ρi−1/2 , ε

(4)
i−1/2 = max(0, κ4ρi−1/2 − κ′4ε

(2)
i−1/2) (46)

where

si−1/2 = max(si, si−1) , si =

∣∣∣∣pi+1 − pj + pi−1

pi+1 + pi + pi−1

∣∣∣∣ (47)

is a pressure sensor that activates in the presence of shock-waves to increase the �rst order
arti�cial dissipation term so that oscillations are avoided. Also,

ρi−1/2 = max(ρi, ρi−1) , ρi = max |λ`| , ` = 1, . . . , 3 (48)

with ρi being the spectral radius and λ` the eigenvalues of the convective Jacobian (20), which
in one dimension is given by truncating the matrix Acijk to Ac1jk for j, k = 1, 2, 5. Finally, the
constant coe�cients κ2, κ4, κ

′
4 ∈ R+ depend on the �ow regime. Some typical values for

transonic �ows are

κ2 =
1

2
, κ4 =

1

64
, κ′4 = 1 (Euler equations) (49)

�e JST scheme, described by the numerical �ux function (44), was originally devised for
the Euler equations and is a second-order accurate scheme. Since the adjoint Euler equations
share many similar properties with the primal Euler equations, the same scheme is used for the
adjoint state for both simplicity and consistency. Previous studies have shown that the adjoint
variables are continuous along the shock-waves of the �ow solution [9] while discontinuities
may arise near the wall (airfoil) boundaries for transonic and supersonic �ows. For this reason,
in the present study, �rst order dissipation terms have been dropped from the scheme in
the case of the adjoint Euler equations. �is is also re�ected on the following choice of the
dissipation coe�cients

κ2 = 0 , κ4 =
1

128
, κ′4 = 1 (Adjoint Euler equations) (50)

For the numerical solution, the unsteady form of the equations is actually solved by march-
ing in time in order to reach a steady-state (if it exists). To accelerate the convergence to
a steady-state, a local time-step is used along with implicit residual smoothing and multi-
grid. Residual smoothing increases the support of the discretization and allows for greater
times-steps (increased CFL numbers) while multigrid is e�ective in making errors of di�erent
frequency scales vanish faster. �e system is �nally solved using a �ve-stage Runge-Ku�a
method. Additional numerical details are omi�ed from this paper.

4.2 Numerical solution

�is paper concludes with the numerical solution of the primal (18) and the adjoint (38) Euler
boundary value problem. In �gure 1 the discretization (mesh) of the solution domain Ω is
depicted for a NACA0012 airfoil (boundary Γ). �e far�eld boundary Γ∞ extends at a dis-
tance of∼ 150 chords3 and the mesh contains∼ 260 million cells. �e numerical solution for
subsonic, transonic and supersonic �ow is presented in �gure 2 for the same angle of a�ack

3Chord refers to the airfoil characteristic length, i.e. the distance between the leading and the trailing edge.
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of 1.25◦ for all the cases.

It is worth mentioning that outgoing characteristics of the primal equations correspond to
incoming characteristics for the adjoint state and vice-versa (characteristics change sign). In
other words, information propagates backwards in time. For the subsonic case, the adjoint
solution closely resembles the primal solution. More interesting are the adjoint solutions for
the transonic and supersonic cases, where shocks appear in the primal solutions. For the tran-
sonic case, the �ow accelerates over the airfoil where it becomes supersonic until it reaches
adverse pressure gradients that decelerate it to the point that a shock-wave appears (�gure
2c). Consequently, a sonic bubble formes over the upper (suction) surface. �e appearance
of the ‘lambda shape’ in the corresponding adjoint solution (�gure 2d) can be interpreted in
the following way: variations in density along the characteristics that impinge on the sonic
point and the shock-foot will produce large changes to the surface pressure distribution. In
general, the adjoint solution shows quantitavely and quantitative how the surface pressure
will change depending on density �eld perturbations. In similar fashion, for the supersonic
case with bow-shock (�gures 2e and 2f), the �ow is particularly sensitive near the leading
edge of the airfoil which dictates the formation of the bow-shock. Also, the change of sign of
the characteristics is evident.

(a) Discretized domain Ω (b) Close-up of airfoil (boundary Γ ⊂ ∂Ω)

Figure 1: Discretization of the domain Ω.
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(a) Density ρ (b) Adjoint density ϕ1

(c) Density ρ (d) Adjoint density ϕ1

(e) Density ρ (f) Adjoint density ϕ1

Figure 2: Numerical solution for the NACA0012 airfoil at M∞ = 0.5 (subsonic) (a,b), M∞ =
0.8 (transonic) (c,d) and M∞ = 1.5 (supersonic) (e,f) with angle of a�ack α = 1.25◦.

20


	Introduction
	Preliminaries of shape sensitivity analysis
	Domain transformations
	The structure of the shape derivative
	Shape derivatives of domain and boundary functionals


	Optimal control of the boundary for the Euler equations
	Linearized Euler equations
	Shape derivatives of the Euler equations
	Boundary functionals depending on pressure
	Adjoint Euler equations
	An algorithm for optimal shape design of aerodynamic bodies

	Optimal control of the boundary for the Navier-Stokes equations
	Compressible Navier-Stokes equations
	Augmenting the pressure functional
	Adjoint Navier-Stokes equations

	Numerical treatment for the primal and adjoint Euler equations
	Numerical scheme
	Numerical solution


